Inflationary Archaeology Through Features in the Power

Total Page:16

File Type:pdf, Size:1020Kb

Inflationary Archaeology Through Features in the Power Astro2020 Science White Paper Scratches from the Past: Inflationary Archaeology through Features in the Power Spectrum of Primordial Fluctuations Thematic Areas: Cosmology and Fundamental Physics Principal Author: Name: Anzeˇ Slosar Institution: Brookhaven National Laboratory Email: [email protected] Phone: (631) 344 8012 Co-authors: See next page. Abstract: Inflation may provide unique insight into the physics at the highest available energy scales that cannot be replicated in any realistic terrestrial experiment. Features in the primordial power spectrum are generically predicted in a wide class of models of inflation and its alternatives, and are observationally one of the most overlooked channels for finding evidence for non-minimal inflationary models. Constraints from observations of the cosmic microwave background cover the widest range of feature frequencies, but the most sensitive constraints will come from future large-scale structure surveys that can measure the largest number of linear and quasi-linear modes. Authors/Endorsers∗: Kevork N. Abazajian1, Muntazir Abidi2, Peter Adshead3, Zeeshan Ahmed4, David Alonso5, Mustafa A. Amin6, Behzad Ansarinejad7, Robert Armstrong8, Carlo Baccigalupi9;10;11, Kevin Bandura12;13, Nicholas Battaglia14, Chetan bavdhankar15, Charles Bennett16, Florian Beutler17, Matteo Biagetti18, Colin Bischoff19, Lindsey Bleem20;21, J. Richard Bond22, Julian Borrill23, Philip Bull24, Christian T. Byrnes25, John E. Carlstrom26;21;20, Emanuele Castorina27, Anthony Challinor28;2;29, Xingang Chen30, J.D. Cohn31, Asantha Cooray1, Francis-Yan Cyr-Racine32;33, Guido D’Amico34, Marcel Demarteau20, Olivier Dore´35, Kelly A. Douglass36, Duan Yutong37, Cora Dvorkin32, John Ellison38, Tom Essinger-Hileman39, Giulio Fabbian25, Simone Ferraro23, Raphael Flauger40, Andreu Font-Ribera41, Simon Foreman22, Franc¸ois R. Bouchet42, Juan Garc´ıa-Bellido43, Martina Gerbino20, Vera Gluscevic44, Satya Gontcho A Gontcho36, Krzysztof M. G/’orski35, Daniel Green40, Jon E. Gudmundsson45, Nikhel Gupta46, Shaul Hanany47, Will Handley29;48, J. Colin Hill49;50, Renee´ Hlozekˇ 51;52, Shunsaku Horiuchi53, Dragan Huterer54, Mustapha Ishak55, Bradley Johnson56, Marc Kamionkowski16, Kirit S. Karkare26;21, Ryan E. Keeley57, Rishi Khatri58, Theodore Kisner23, Jean-Paul Kneib59, Lloyd Knox60, Savvas M. Koushiappas61, Ely D. Kovetz62, Kazuya Koyama17, Benjamin L’Huillier57, Ofer Lahav41, Massimiliano Lattanzi63, Hayden Lee32, Michele Liguori64, Marilena Loverde65, Paul Martini66, Kiyoshi Masui67, Liam McAllister14, Jeff McMahon54, P. Daniel Meerburg29;2;68, Joel Meyers69, Mehrdad Mirbabayi70, Pavel Motloch22, Suvodip Mukherjee42, Julian B. Munoz˜ 32, Adam D. Myers71, Johanna Nagy51, Laura Newburgh72, Michael D. Niemack14, Gustavo Niz73, Andrei Nomerotski74, Lyman Page75, Gonzalo A. Palma76, Mariana Penna-Lima77, Will J. Percival78;79;80, Francesco Piacentini81, Francesco Piacentni81;82, Elena Pierpaoli83, Levon Pogosian84, Abhishek Prakash85, Clement Pryke47, Giuseppe Puglisi34;86, Radek Stompor87, Marco Raveri21;26, Ashley J. Ross66, Graziano Rossi88, John Ruhl89, Lado Samushia90, Misao Sasaki91, Emmanuel Schaan23;27, Alessandro Schillaci85, Marcel Schmittfull49, Neelima Sehgal65, Leonardo Senatore86, Hee-Jong Seo92, Arman Shafieloo57, Huanyuan Shan93, Blake D. Sherwin2;29, Eva Silverstein34, Sara Simon54, Anzeˇ Slosar74, Glenn Starkman89, Aritoki Suzuki23, Eric R. Switzer39, Ritoban Basu Thakur85, Peter Timbie94, Andrew J. Tolley95, Matthieu Tristram96, Mark Trodden97, Yu-Dai Tsai98, Caterina Umilta`19, Eleonora Di Valentino99, M. Vargas-Magana˜ 100, Abigail Vieregg26, Benjamin Wallisch49;40, David Wands17, Yi Wang101, Scott Watson102, Nathan Whitehorn103, W. L. K. Wu21, Zhong-Zhi Xianyu32, Weishuang Xu32, Zhilei Xu97, Siavash Yasini83, Matias Zaldarriaga49, Gong-Bo Zhao104;17, Ningfeng Zhu97, Joe Zuntz105 1 University of California, Irvine, CA 92697 8 Lawrence Livermore National Laboratory, Livermore, 2 DAMTP, Centre for Mathematical Sciences, CA, 94550 Wilberforce Road, Cambridge, UK, CB3 0WA 9 SISSA - International School for Advanced Studies, 3 Department of Physics, University of Illinois at Via Bonomea 265, 34136 Trieste, Italy Urbana-Champaign, Urbana, Illinois 61801, USA 10 IFPU - Institute for Fundamental Physics of the 4 SLAC National Accelerator Laboratory, Menlo Park, Universe, Via Beirut 2, 34014 Trieste, Italy CA 94025 11 INFN – National Institute for Nuclear Physics, Via 5 The University of Oxford, Oxford OX1 3RH, UK Valerio 2, I-34127 Trieste, Italy 6 Department of Physics & Astronomy, Rice University, 12 CSEE, West Virginia University, Morgantown, WV Houston, Texas 77005, USA 26505, USA 7 Department of Physics, Lower Mountjoy, South Rd, 13 Center for Gravitational Waves and Cosmology, West Durham DH1 3LE, United Kingdom Virginia University, Morgantown, WV 26505, USA ∗Names in bold indicate significant contribution. ii 14 Cornell University, Ithaca, NY 14853 Sorbonne University, Paris, France 15 National Center for Nuclear Research, Ul.Pasteura 43 Universidad Autonoma´ de Madrid, 28049, Madrid, 7,Warsaw, Poland Spain 16 Johns Hopkins University, Baltimore, MD 21218 44 University of Florida, Gainesville, FL 32611 17 Institute of Cosmology & Gravitation, University of 45 Oskar Klein Centre for Cosmoparticle Physics, Portsmouth, Dennis Sciama Building, Burnaby Road, Stockholm University, AlbaNova, Stockholm SE-106 91, Portsmouth PO1 3FX, UK Sweden 18 Institute for Theoretical Physics, University of 46 School of Physics, The University of Melbourne, Amsterdam, Science Park 904, 1098 XH Amsterdam, Parkville, VIC 3010, Australia The Netherlands 47 University of Minnesota, Minneapolis, MN 55455 19 University of Cincinnati, Cincinnati, OH 45221 48 Astrophysics Group, Cavendish Laboratory, 20 HEP Division, Argonne National Laboratory, Lemont, J.J.Thomson Avenue, Cambridge, CB3 0HE, UK IL 60439, USA 49 Institute for Advanced Study, Princeton, NJ 08540 21 Kavli Institute for Cosmological Physics, Chicago, IL 50 Center for Computational Astrophysics, 162 5th Ave, 60637 10010, New York, NY, USA 22 Canadian Institute for Theoretical Astrophysics, 51 Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H8, Canada University of Toronto, ON, M5S3H4 23 Lawrence Berkeley National Laboratory, Berkeley, CA 52 Department of Astronomy and Astrophysics, 94720 University of Toronto, ON, M5S3H4 24 Queen Mary University of London, Mile End Road, 53 Virginia Tech, Blacksburg, VA 24061 London E1 4NS, United Kingdom 54 University of Michigan, Ann Arbor, MI 48109 25 Astronomy Centre, School of Mathematical and 55 University of Texas at Dallas, Texas 75080 Physical Sciences, University of Sussex, Brighton BN1 56 Columbia University, New York, NY 10027 9QH, United Kingdom 57 Korea Astronomy and Space Science Institute, 26 University of Chicago, Chicago, IL 60637 Daejeon 34055, Korea 27 Department of Physics, University of California 58 Tata Institute of Fundamental Research, Homi Bhabha Berkeley, Berkeley, CA 94720, USA Road, Mumbai 400005 India 28 Institute of Astronomy, University of 59 Institute of Physics, Laboratory of Astrophysics, Ecole Cambridge,Cambridge CB3 0HA, UK Polytechnique Fed´ erale´ de Lausanne (EPFL), 29 Kavli Institute for Cosmology, Cambridge, UK, CB3 Observatoire de Sauverny, 1290 Versoix, Switzerland 0HA 60 University of California at Davis, Davis, CA 95616 30 Harvard-Smithsonian Center for Astrophysics, MA 61 Brown University, Providence, RI 02912 02138 62 Department of Physics, Ben-Gurion University, Be’er 31 Space Sciences Laboratory, University of California Sheva 84105, Israel Berkeley, Berkeley, CA 94720, USA 63 Istituto Nazionale di Fisica Nucleare, Sezione di 32 Department of Physics, Harvard University, Ferrara, 40122, Italy Cambridge, MA 02138, USA 64 Dipartimento di Fisica e Astronomia “G. 33 University of New Mexico, Albuquerque, NM 87131 Galilei”,Universita` degli Studi di Padova, via Marzolo 8, 34 Stanford University, Stanford, CA 94305 I-35131, Padova, Italy 35 Jet Propulsion Laboratory, California Institute of 65 Stony Brook University, Stony Brook, NY 11794 Technology, Pasadena, CA, USA 66 The Ohio State University, Columbus, OH 43212 36 Department of Physics and Astronomy, University of 67 Massachusetts Institute of Technology, Cambridge, Rochester, 500 Joseph C. Wilson Boulevard, Rochester, MA 02139 NY 14627, USA 68 Van Swinderen Institute for Particle Physics and 37 Boston University, Boston, MA 02215 Gravity, University of Groningen, Nijenborgh 4, 38 University of California at Riverside, Riverside, CA 9747 AG Groningen, The Netherlands 92521 69 Southern Methodist University, Dallas, TX 75275 39 Goddard Space Flight Center, Greenbelt, MD 20771 70 International Centre for Theoretical Physics, Strada USA Costiera, 11, I-34151 Trieste, Italy 40 University of California San Diego, La Jolla, CA 71 Department of Physics and Astronomy, University of 92093 Wyoming, Laramie, WY 82071, USA 41 University College London, WC1E 6BT London, 72 Department of Physics, Yale University, New Haven, United Kingdom CT 06520 42 Institut d’Astrophysique de Paris (IAP), CNRS & 73 Division´ de Ciencias e Ingenier´ıas, Universidad de iii Guanajuato, Leon´ 37150, Mexico´ 91 Kavli Insitute for the Physics and Mathematics of the 74 Brookhaven National Laboratory, Upton, NY 11973 Universe (WPI), University of Tokyo, 277-8583 Kashiwa 75 Princeton University, Princeton, NJ 08544 , Japan 76 Departamento de F´ısica, FCFM, Universidad de Chile, 92 Department of Physics and Astronomy, Ohio Blanco Encalada 2008, Santiago,
Recommended publications
  • Inflation Without Quantum Gravity
    Inflation without quantum gravity Tommi Markkanen, Syksy R¨as¨anen and Pyry Wahlman University of Helsinki, Department of Physics and Helsinki Institute of Physics P.O. Box 64, FIN-00014 University of Helsinki, Finland E-mail: tommi dot markkanen at helsinki dot fi, syksy dot rasanen at iki dot fi, pyry dot wahlman at helsinki dot fi Abstract. It is sometimes argued that observation of tensor modes from inflation would provide the first evidence for quantum gravity. However, in the usual inflationary formalism, also the scalar modes involve quantised metric perturbations. We consider the issue in a semiclassical setup in which only matter is quantised, and spacetime is classical. We assume that the state collapses on a spacelike hypersurface, and find that the spectrum of scalar perturbations depends on the hypersurface. For reasonable choices, we can recover the usual inflationary predictions for scalar perturbations in minimally coupled single-field models. In models where non-minimal coupling to gravity is important and the field value is sub-Planckian, we do not get a nearly scale-invariant spectrum of scalar perturbations. As gravitational waves are only produced at second order, the tensor-to-scalar ratio is negligible. We conclude that detection of inflationary gravitational waves would indeed be needed to have observational evidence of quantisation of gravity. arXiv:1407.4691v2 [astro-ph.CO] 4 May 2015 Contents 1 Introduction 1 2 Semiclassical inflation 3 2.1 Action and equations of motion 3 2.2 From homogeneity and isotropy to perturbations 6 3 Matching across the collapse 7 3.1 Hypersurface of collapse 7 3.2 Inflation models 10 4 Conclusions 13 1 Introduction Inflation and the quantisation of gravity.
    [Show full text]
  • Effects of Primordial Chemistry on the Cosmic Microwave Background
    A&A 490, 521–535 (2008) Astronomy DOI: 10.1051/0004-6361:200809861 & c ESO 2008 Astrophysics Effects of primordial chemistry on the cosmic microwave background D. R. G. Schleicher1, D. Galli2,F.Palla2, M. Camenzind3, R. S. Klessen1, M. Bartelmann1, and S. C. O. Glover4 1 Institute of Theoretical Astrophysics / ZAH, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany e-mail: [dschleic;rklessen;mbartelmann]@ita.uni-heidelberg.de 2 INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy e-mail: [galli;palla]@arcetri.astro.it 3 Landessternwarte Heidelberg / ZAH, Koenigstuhl 12, 69117 Heidelberg, Germany e-mail: [email protected] 4 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: [email protected] Received 27 March 2008 / Accepted 3 July 2008 ABSTRACT Context. Previous works have demonstrated that the generation of secondary CMB anisotropies due to the molecular optical depth is likely too small to be observed. In this paper, we examine additional ways in which primordial chemistry and the dark ages might influence the CMB. Aims. We seek a detailed understanding of the formation of molecules in the postrecombination universe and their interactions with the CMB. We present a detailed and updated chemical network and an overview of the interactions of molecules with the CMB. Methods. We calculate the evolution of primordial chemistry in a homogeneous universe and determine the optical depth due to line absorption, photoionization and photodissociation, and estimate the resulting changes in the CMB temperature and its power spectrum. Corrections for stimulated and spontaneous emission are taken into account.
    [Show full text]
  • Chapter 4: Linear Perturbation Theory
    Chapter 4: Linear Perturbation Theory May 4, 2009 1. Gravitational Instability The generally accepted theoretical framework for the formation of structure is that of gravitational instability. The gravitational instability scenario assumes the early universe to have been almost perfectly smooth, with the exception of tiny density deviations with respect to the global cosmic background density and the accompanying tiny velocity perturbations from the general Hubble expansion. The minor density deviations vary from location to location. At one place the density will be slightly higher than the average global density, while a few Megaparsecs further the density may have a slightly smaller value than on average. The observed fluctuations in the temperature of the cosmic microwave background radiation are a reflection of these density perturbations, so that we know that the primordial density perturbations have been in the order of 10−5. The origin of this density perturbation field has as yet not been fully understood. The most plausible theory is that the density perturbations are the product of processes in the very early Universe and correspond to quantum fluctuations which during the inflationary phase expanded to macroscopic proportions1 Originally minute local deviations from the average density of the Universe (see fig. 1), and the corresponding deviations from the global cosmic expansion velocity (the Hubble expansion), will start to grow under the influence of the involved gravity perturbations. The gravitational force acting on each patch of matter in the universe is the total sum of the gravitational attraction by all matter throughout the universe. Evidently, in a homogeneous Universe the gravitational force is the same everywhere.
    [Show full text]
  • Planck 'Toolkit' Introduction
    Planck ‘toolkit’ introduction Welcome to the Planck ‘toolkit’ – a series of short questions and answers designed to equip you with background information on key cosmological topics addressed by the Planck science releases. The questions are arranged in thematic blocks; click the header to visit that section. Planck and the Cosmic Microwave Background (CMB) What is Planck and what is it studying? What is the Cosmic Microwave Background? Why is it so important to study the CMB? When was the CMB first detected? How many space missions have studied the CMB? What does the CMB look like? What is ‘the standard model of cosmology’ and how does it relate to the CMB? Behind the CMB: inflation and the meaning of temperature fluctuations How did the temperature fluctuations get there? How exactly do the temperature fluctuations relate to density fluctuations? The CMB and the distribution of matter in the Universe How is matter distributed in the Universe? Has the Universe always had such a rich variety of structure? How did the Universe evolve from very smooth to highly structured? How can we study the evolution of cosmic structure? Tools to study the distribution of matter in the Universe How is the distribution of matter in the Universe described mathematically? What is the power spectrum? What is the power spectrum of the distribution of matter in the Universe? Why are cosmologists interested in the power spectrum of cosmic structure? What was the distribution of the primordial fluctuations? How does this relate to the fluctuations in the CMB?
    [Show full text]
  • A873: Cosmology Course Notes VIII. Linear Fluctuations Linear
    A873: Cosmology Course Notes VIII. Linear Fluctuations Linear perturbation theory in general Start with an \unperturbed" solution for quantities xi, i = 1; 2; ::: Write equations for x~i = xi + δxi: Expand, keeping terms linear in δxi, and subtracting off unperturbed solution to get equations for δxi. Hope you can solve them. In GR, the quantities xi might be metric coefficients, densities, velocities, etc. GR pertur- bation theory can be tricky for two reasons. (1) The equations are very complicated. This is a problem of practice, not of principle. (2) In a perturbed universe, the \natural" coordinate choice is no longer obvious. Different coordinate choices have different equations. Results for physically measurable quantities should be the same, but the descriptions can look quite different. For scales l cH−1 and velocities v c, one can usually get by with Newtonian linear perturbationtheory. Newtonian perturbation theory in an expanding universe (This discussion follows Peebles, pp. 111-119.) Basic unperturbed equations In an inertial frame, the equations governing the density ρ(r; t) and velocity u(r; t) of an ideal fluid are: @ρ Continuity equation : + ~ r (ρu) = 0 (mass conservation) @t r r · @u Euler equation : + (u ~ r)u = ~ rΦ (momentum conservation) @t r · r −r 2 Poisson equation : rΦ = 4πGρ. r We have ignored pressure gradients in the Euler equation. Transformation of variables We would like to have these equations in comoving coordinates x = r=a(t) with \peculiar" velocity v = u (a=a_ )r = (a_x) a_x = ax_ : − − We want to use a quantity that will be small when perturbations are small, so define the dimensionless density contrast δ(x; t) by ρ = ρb(t) [1 + δ(x; t)], ρb = background density 1=a3.
    [Show full text]
  • The Primordial Fireball Transcript
    The Primordial Fireball Transcript Date: Wednesday, 23 September 2015 - 1:00PM Location: Museum of London 23 September 2015 The Primordial Fireball Professor Joseph Silk The universe underwent an inflationary period of expansion. From an extremely hot beginning, it cooled down, and then reheated to form the expanding universe that we observe today. The relic radiation generated the fossil glow of the cosmic microwave background radiation, a testament to its fiery origin. Infinitesimal fluctuations in temperature were laid down very soon after the beginning. Gravity triumphed in slightly over-dense regions where galaxies eventually formed. Microwave telescopes map out the structure of the universe long before the galaxies were present. I will describe the current challenges in cosmic microwave background astronomy. The universe began in a state of extreme density and temperature, some 14 billion years ago. Our best estimate is that its density was once higher than its present value by 120 powers of 10. This is at the limit of extrapolation of our current theories of gravity and quantum physics. And it was very hot, hotter than the radiation that presently fills the universe by some 28 powers of 10 in temperature. How do we arrive at such incredible extrapolations from the present? The Expansion of the Universe The story begins with the discovery of the expansion of the universe in 1929 by American astronomer Edwin Hubble. Now confirmed at immense distances from us, over many billions of light years, the extrapolation to an ultra-dense beginning is essentially inevitable. Of course, most of this extrapolation is based on theory.
    [Show full text]
  • Structures in the Early Universe
    Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview • problems in Standard Model of Cosmology: horizon and flatness problems – presence of structures • Need for an exponential expansion in the early universe • Inflation scenarios – scalar inflaton field • Primordial fluctuations in inflaton field • Growth of density fluctuations during radiation and matter dominated eras • Observations related to primordial fluctuations: CMB and LSS 2011-12 Structures in early Universe 2 •Galactic and intergalactic magnetic fields as source of structures? •problems in Standard Model of Cosmology related to initial conditions required: horizon and flatness problems PART 1: PROBLEMS IN STANDARD COSMOLOGICAL MODEL 2011-12 Structures in early Universe 3 Galactic and intergalactic B fields cosmology model assumes Non-uniformity observed uniform & homogeous in CMB and galaxy medium distribution, • Is cltilustering of matter ithin the universe dtdue to galtilactic and intergalactic magnetic fields? • At small = stellar scales : intense magnetic fldfieldsare onlyimportant in later stages of star evolution • At galtilacticscale: magnetic fie ld in Milky Way ≈ 3G3µG • At intergalactic scale : average fields of 10-7 –10-11 G • → itinterga lac ticmagnetic fie ldsprobblbably have very small role in development of large scale structures • DDlevelopmen toflf large scallleesstttructures mailinly dtdue to gravity 2011-12 Structures in early Universe 4 Horizon in static universe • Particle horizon = distance over which one can observe a particle
    [Show full text]
  • Primordial Cosmology
    TASI Lectures on Primordial Cosmology Daniel Baumann Institute of Theoretical Physics, University of Amsterdam, Science Park, 1098 XH Amsterdam, The Netherlands Contents 1 Introduction 1 I Relics from the Hot Big Bang4 2 Big Bang Cosmology5 2.1 Geometry and Dynamics5 2.2 Thermal History8 2.3 Structure Formation 10 2.4 Initial Conditions 10 3 Afterglow of the Big Bang 12 3.1 CMB Anisotropies 12 3.2 CMB Power Spectrum 17 4 Cosmic Sound Waves 20 4.1 Photon-Baryon Fluid 20 4.2 Acoustic Oscillations 21 5 Light Relics 25 5.1 Dark Radiation 25 5.2 Imprints in the CMB 27 5.3 EFT of Light Species 31 II Relics from Inflation 35 6 Inflationary Cosmology 36 6.1 Horizon Problem 36 6.2 Slow-Roll Inflation 38 6.3 Effective Field Theory 40 7 Quantum Initial Conditions 42 7.1 Quantum Fluctuations 42 7.2 Curvature Perturbations 50 7.3 Gravitational Waves 51 8 Primordial Interactions 55 8.1 Non-Gaussianity 55 8.2 In-In Formalism 57 8.3 Gravitational Floor 59 1 9 Heavy Relics 63 9.1 Massive Fields in de Sitter 63 9.2 Local and Non-Local 65 9.3 Cosmological Collider Physics 68 References 71 1 Introduction There are many reasons to believe that our current understanding of fundamental physics is incomplete. For example, the nature of dark matter and dark energy are still unknown, the stability of the Higgs mass remains unsolved, the origin of neutrino masses is unexplained, the strong CP problem is still there, the physics of inflation remains elusive, and the origin of the matter-antimatter asymmetry is still to be discovered.
    [Show full text]
  • Multi-Field Versus Single-Field in the Supergravity Models of Inflation And
    universe Article Multi-Field versus Single-Field in the Supergravity Models of Inflation and Primordial Black Holes † Sergei V. Ketov 1,2,3 1 Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-Shi, Tokyo 192-0397, Japan; [email protected] 2 Research School of High-Energy Physics, Tomsk Polytechnic University, 2a Lenin Avenue, 634028 Tomsk, Russia 3 Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, Kashiwa 277-8583, Japan † This paper is an extended version from the proceeding paper: Sergei V. Ketov. Inflation, Primordial Black Holes and Induced Gravitational Waves from Modified Supergravity. In Proceedings of the 1st Electronic Conference on Universe, online, 22–28 February 2021. Abstract: We review the models unifying inflation and Primordial Black Hole (PBH) formation, which are based on the modified (Starobinsky-type) supergravity. We begin with the basic (Starobinsky) inflationary model of modified gravity and its alpha-attractor-type generalizations for PBH produc- tion, and recall how all those single-field models can be embedded into the minimal supergravity. Then, we focus on the effective two-field models arising from the modified (Starobinsky-type) super- gravity and compare them to the single-field models under review. Those two-field models describe double inflation whose first stage is driven by Starobinsky’s scalaron and whose second stage is driven by another scalar belonging to the supergravity multiplet. The power spectra are numerically computed, and it is found that the ultra-slow-roll regime gives rise to the enhancement (peak) in the scalar power spectrum leading to an efficient PBH formation.
    [Show full text]
  • Early Universe: Inflation and the Generation of Fluctuations
    1 Early Universe: Inflation and the generation of fluctuations I. PROBLEMS OF THE STANDARD MODEL A. The horizon problem We know from CMB observations that the universe at recombination was the same temperature in all directions to better than 10−4. Unless the universe has been able to smooth itself out dynamically, this means that the universe must have started in a very special initial state, being essentially uniform over the entire observable universe. Furthermore if we look at the small fluctuations in the temperature we see correlations on degree scales: there are 10−4 hot and cold spots of larger than degree size on the sky. Since random processes cannot generate correlations on scales larger than the distance light can travel, these fluctuations must have been in causal contact at some time in the past. This is telling us something very interesting about the evolution of the early universe, as we shall now see. Let's investigate the distance travelled by a photon from the big bang to recombination and then from recombination to us. A photon follows a null trajectory, ds2 = 0, and travels a proper distance cdt in interval dt. Setting c = 1 the comoving distance travelled is dr = dt=a ≡ dη, where we have defined η, the conformal time. The comoving distance light can travel from the big bang to a time t, the particle horizon, is therefore Z Z t dt0 dr = η = 0 : (1) 0 a(t ) So starting at a given point, light can only reach inside a sphere of comoving radius η∗ by the time of recombination t∗.
    [Show full text]
  • Inflationary Cosmology and the Scale-Invariant Spectrum
    Inflationary cosmology and the scale-invariant spectrum Gordon McCabe August 8, 2017 Abstract The claim of inflationary cosmology to explain certain observable facts, which the Friedmann-Roberston-Walker models of `Big-Bang' cosmology were forced to assume, has already been the subject of signi¯cant philo- sophical analysis. However, the principal empirical claim of inflationary cosmology, that it can predict the scale-invariant power spectrum of den- sity perturbations, as detected in measurements of the cosmic microwave background radiation, has hitherto been taken at face value by philoso- phers. The purpose of this paper is to expound the theory of density pertur- bations used by inflationary cosmology, to assess whether inflation really does predict a scale-invariant spectrum, and to identify the assumptions necessary for such a derivation. The ¯rst section of the paper explains what a scale-invariant power- spectrum is, and the requirements placed on a cosmological theory of such density perturbations. The second section explains and analyses the concept of the Hubble horizon, and its behaviour within an inflation- ary space-time. The third section expounds the inflationary derivation of scale-invariance, and scrutinises the assumptions within that deriva- tion. The fourth section analyses the explanatory role of `horizon-crossing' within the inflationary scenario. 1 Introduction In the past couple of decades, inflationary cosmology has been subject to tren- chant criticism in some quarters. The criticism has come both from physicists (Penrose 2004, 2010, 2016; Steinhardt 2011), and philosophers of physics (Ear- man 1995, Chapter 5; Earman and Mosterin 1999). The primary contention is that inflation has failed to deliver on its initial promise of supplying cosmological explanations which are free from dependence on initial conditions.
    [Show full text]
  • Quantum Origin of the Primordial Fluctuation Spectrum and Its Statistics
    PHYSICAL REVIEW D 88, 023526 (2013) Quantum origin of the primordial fluctuation spectrum and its statistics CORE Metadata, citation and similar papers at core.ac.uk Provided by CONICET Digital Susana Landau, 1, * Gabriel Leo´n, 2,3, † and Daniel Sudarsky 3,4, ‡ 1Instituto de Fı´sica de Buenos Aires, CONICET-UBA, Ciudad Universitaria—Pab. 1, 1428 Buenos Aires, Argentina 2Dipartimento di Fisica, Universita` di Trieste, Strada Costiera 11, 34151 Trieste, Italy 3Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, Me´xico D.F. 04510, Mexico 4Instituto de Astronomı´a y Fı´sica del Espacio, Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires, Argentina (Received 3 July 2012; revised manuscript received 23 April 2013; published 26 July 2013) The usual account for the origin of cosmic structure during inflation is not fully satisfactory, as it lacks a physical mechanism capable of generating the inhomogeneity and anisotropy of our Universe, from an exactly homogeneous and isotropic initial stateassociated withthe early inflationary regime. The proposalin[A. Perez, H. Sahlmann, and D. Sudarsky, Classical Quantum Gravity 23 , 2317 (2006)] considers the spontaneous dynamical collapse of the wave function as a possible answer to that problem. In this work, we review briefly the difficulties facing the standard approach, as well as the answers provided by the above proposal and explore their relevance to the investigations concerning the characterization of the primordial spectrum and other statistical aspects of the cosmic microwave background and large-scale matter distribution. We will see that the new approach leads to novel ways of considering some of the relevant questions, and, in particular, to distinct characterizations of the non-Gaussianities that might have left imprints on the available data.
    [Show full text]