A873: Cosmology Course Notes VIII. Linear Fluctuations Linear
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AAS 13-250 Hohmann Spiral Transfer with Inclination Change Performed
AAS 13-250 Hohmann Spiral Transfer With Inclination Change Performed By Low-Thrust System Steven Owens1 and Malcolm Macdonald2 This paper investigates the Hohmann Spiral Transfer (HST), an orbit transfer method previously developed by the authors incorporating both high and low- thrust propulsion systems, using the low-thrust system to perform an inclination change as well as orbit transfer. The HST is similar to the bi-elliptic transfer as the high-thrust system is first used to propel the spacecraft beyond the target where it is used again to circularize at an intermediate orbit. The low-thrust system is then activated and, while maintaining this orbit altitude, used to change the orbit inclination to suit the mission specification. The low-thrust system is then used again to reduce the spacecraft altitude by spiraling in-toward the target orbit. An analytical analysis of the HST utilizing the low-thrust system for the inclination change is performed which allows a critical specific impulse ratio to be derived determining the point at which the HST consumes the same amount of fuel as the Hohmann transfer. A critical ratio is found for both a circular and elliptical initial orbit. These equations are validated by a numerical approach before being compared to the HST utilizing the high-thrust system to perform the inclination change. An additional critical ratio comparing the HST utilizing the low-thrust system for the inclination change with its high-thrust counterpart is derived and by using these three critical ratios together, it can be determined when each transfer offers the lowest fuel mass consumption. -
Astrodynamics
Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities -
Optimisation of Propellant Consumption for Power Limited Rockets
Delft University of Technology Faculty Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Optimisation of Propellant Consumption for Power Limited Rockets. What Role do Power Limited Rockets have in Future Spaceflight Missions? (Dutch title: Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten. De rol van deze raketten in toekomstige ruimtevlucht missies. ) A thesis submitted to the Delft Institute of Applied Mathematics as part to obtain the degree of BACHELOR OF SCIENCE in APPLIED MATHEMATICS by NATHALIE OUDHOF Delft, the Netherlands December 2017 Copyright c 2017 by Nathalie Oudhof. All rights reserved. BSc thesis APPLIED MATHEMATICS \ Optimisation of Propellant Consumption for Power Limited Rockets What Role do Power Limite Rockets have in Future Spaceflight Missions?" (Dutch title: \Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten De rol van deze raketten in toekomstige ruimtevlucht missies.)" NATHALIE OUDHOF Delft University of Technology Supervisor Dr. P.M. Visser Other members of the committee Dr.ir. W.G.M. Groenevelt Drs. E.M. van Elderen 21 December, 2017 Delft Abstract In this thesis we look at the most cost-effective trajectory for power limited rockets, i.e. the trajectory which costs the least amount of propellant. First some background information as well as the differences between thrust limited and power limited rockets will be discussed. Then the optimal trajectory for thrust limited rockets, the Hohmann Transfer Orbit, will be explained. Using Optimal Control Theory, the optimal trajectory for power limited rockets can be found. Three trajectories will be discussed: Low Earth Orbit to Geostationary Earth Orbit, Earth to Mars and Earth to Saturn. After this we compare the propellant use of the thrust limited rockets for these trajectories with the power limited rockets. -
A Strategy for the Eigenvector Perturbations of the Reynolds Stress Tensor in the Context of Uncertainty Quantification
Center for Turbulence Research 425 Proceedings of the Summer Program 2016 A strategy for the eigenvector perturbations of the Reynolds stress tensor in the context of uncertainty quantification By R. L. Thompsony, L. E. B. Sampaio, W. Edeling, A. A. Mishra AND G. Iaccarino In spite of increasing progress in high fidelity turbulent simulation avenues like Di- rect Numerical Simulation (DNS) and Large Eddy Simulation (LES), Reynolds-Averaged Navier-Stokes (RANS) models remain the predominant numerical recourse to study com- plex engineering turbulent flows. In this scenario, it is imperative to provide reliable estimates for the uncertainty in RANS predictions. In the recent past, an uncertainty estimation framework relying on perturbations to the modeled Reynolds stress tensor has been widely applied with satisfactory results. Many of these investigations focus on perturbing only the Reynolds stress eigenvalues in the Barycentric map, thus ensuring realizability. However, these restrictions apply to the eigenvalues of that tensor only, leav- ing the eigenvectors free of any limiting condition. In the present work, we propose the use of the Reynolds stress transport equation as a constraint for the eigenvector pertur- bations of the Reynolds stress anisotropy tensor once the eigenvalues of this tensor are perturbed. We apply this methodology to a convex channel and show that the ensuing eigenvector perturbations are a more accurate measure of uncertainty when compared with a pure eigenvalue perturbation. 1. Introduction Turbulent flows are present in a wide number of engineering design problems. Due to the disparate character of such flows, predictive methods must be robust, so as to be easily applicable for most of these cases, yet possessing a high degree of accuracy in each. -
Inflation Without Quantum Gravity
Inflation without quantum gravity Tommi Markkanen, Syksy R¨as¨anen and Pyry Wahlman University of Helsinki, Department of Physics and Helsinki Institute of Physics P.O. Box 64, FIN-00014 University of Helsinki, Finland E-mail: tommi dot markkanen at helsinki dot fi, syksy dot rasanen at iki dot fi, pyry dot wahlman at helsinki dot fi Abstract. It is sometimes argued that observation of tensor modes from inflation would provide the first evidence for quantum gravity. However, in the usual inflationary formalism, also the scalar modes involve quantised metric perturbations. We consider the issue in a semiclassical setup in which only matter is quantised, and spacetime is classical. We assume that the state collapses on a spacelike hypersurface, and find that the spectrum of scalar perturbations depends on the hypersurface. For reasonable choices, we can recover the usual inflationary predictions for scalar perturbations in minimally coupled single-field models. In models where non-minimal coupling to gravity is important and the field value is sub-Planckian, we do not get a nearly scale-invariant spectrum of scalar perturbations. As gravitational waves are only produced at second order, the tensor-to-scalar ratio is negligible. We conclude that detection of inflationary gravitational waves would indeed be needed to have observational evidence of quantisation of gravity. arXiv:1407.4691v2 [astro-ph.CO] 4 May 2015 Contents 1 Introduction 1 2 Semiclassical inflation 3 2.1 Action and equations of motion 3 2.2 From homogeneity and isotropy to perturbations 6 3 Matching across the collapse 7 3.1 Hypersurface of collapse 7 3.2 Inflation models 10 4 Conclusions 13 1 Introduction Inflation and the quantisation of gravity. -
Spacecraft Guidance Techniques for Maximizing Mission Success
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2014 Spacecraft Guidance Techniques for Maximizing Mission Success Shane B. Robinson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Mechanical Engineering Commons Recommended Citation Robinson, Shane B., "Spacecraft Guidance Techniques for Maximizing Mission Success" (2014). All Graduate Theses and Dissertations. 2175. https://digitalcommons.usu.edu/etd/2175 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. SPACECRAFT GUIDANCE TECHNIQUES FOR MAXIMIZING MISSION SUCCESS by Shane B. Robinson A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Mechanical Engineering Approved: Dr. David K. Geller Dr. Jacob H. Gunther Major Professor Committee Member Dr. Warren F. Phillips Dr. Charles M. Swenson Committee Member Committee Member Dr. Stephen A. Whitmore Dr. Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2013 [This page intentionally left blank] iii Copyright c Shane B. Robinson 2013 All Rights Reserved [This page intentionally left blank] v Abstract Spacecraft Guidance Techniques for Maximizing Mission Success by Shane B. Robinson, Doctor of Philosophy Utah State University, 2013 Major Professor: Dr. David K. Geller Department: Mechanical and Aerospace Engineering Traditional spacecraft guidance techniques have the objective of deterministically min- imizing fuel consumption. -
Effects of Primordial Chemistry on the Cosmic Microwave Background
A&A 490, 521–535 (2008) Astronomy DOI: 10.1051/0004-6361:200809861 & c ESO 2008 Astrophysics Effects of primordial chemistry on the cosmic microwave background D. R. G. Schleicher1, D. Galli2,F.Palla2, M. Camenzind3, R. S. Klessen1, M. Bartelmann1, and S. C. O. Glover4 1 Institute of Theoretical Astrophysics / ZAH, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany e-mail: [dschleic;rklessen;mbartelmann]@ita.uni-heidelberg.de 2 INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy e-mail: [galli;palla]@arcetri.astro.it 3 Landessternwarte Heidelberg / ZAH, Koenigstuhl 12, 69117 Heidelberg, Germany e-mail: [email protected] 4 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: [email protected] Received 27 March 2008 / Accepted 3 July 2008 ABSTRACT Context. Previous works have demonstrated that the generation of secondary CMB anisotropies due to the molecular optical depth is likely too small to be observed. In this paper, we examine additional ways in which primordial chemistry and the dark ages might influence the CMB. Aims. We seek a detailed understanding of the formation of molecules in the postrecombination universe and their interactions with the CMB. We present a detailed and updated chemical network and an overview of the interactions of molecules with the CMB. Methods. We calculate the evolution of primordial chemistry in a homogeneous universe and determine the optical depth due to line absorption, photoionization and photodissociation, and estimate the resulting changes in the CMB temperature and its power spectrum. Corrections for stimulated and spontaneous emission are taken into account. -
Richard Dalbello Vice President, Legal and Government Affairs Intelsat General
Commercial Management of the Space Environment Richard DalBello Vice President, Legal and Government Affairs Intelsat General The commercial satellite industry has billions of dollars of assets in space and relies on this unique environment for the development and growth of its business. As a result, safety and the sustainment of the space environment are two of the satellite industry‘s highest priorities. In this paper I would like to provide a quick survey of past and current industry space traffic control practices and to discuss a few key initiatives that the industry is developing in this area. Background The commercial satellite industry has been providing essential space services for almost as long as humans have been exploring space. Over the decades, this industry has played an active role in developing technology, worked collaboratively to set standards, and partnered with government to develop successful international regulatory regimes. Success in both commercial and government space programs has meant that new demands are being placed on the space environment. This has resulted in orbital crowding, an increase in space debris, and greater demand for limited frequency resources. The successful management of these issues will require a strong partnership between government and industry and the careful, experience-based expansion of international law and diplomacy. Throughout the years, the satellite industry has never taken for granted the remarkable environment in which it works. Industry has invested heavily in technology and sought out the best and brightest minds to allow the full, but sustainable exploitation of the space environment. Where problems have arisen, such as space debris or electronic interference, industry has taken 1 the initiative to deploy new technologies and adopt new practices to minimize negative consequences. -
Perturbation Theory in Celestial Mechanics
Perturbation Theory in Celestial Mechanics Alessandra Celletti Dipartimento di Matematica Universit`adi Roma Tor Vergata Via della Ricerca Scientifica 1, I-00133 Roma (Italy) ([email protected]) December 8, 2007 Contents 1 Glossary 2 2 Definition 2 3 Introduction 2 4 Classical perturbation theory 4 4.1 The classical theory . 4 4.2 The precession of the perihelion of Mercury . 6 4.2.1 Delaunay action–angle variables . 6 4.2.2 The restricted, planar, circular, three–body problem . 7 4.2.3 Expansion of the perturbing function . 7 4.2.4 Computation of the precession of the perihelion . 8 5 Resonant perturbation theory 9 5.1 The resonant theory . 9 5.2 Three–body resonance . 10 5.3 Degenerate perturbation theory . 11 5.4 The precession of the equinoxes . 12 6 Invariant tori 14 6.1 Invariant KAM surfaces . 14 6.2 Rotational tori for the spin–orbit problem . 15 6.3 Librational tori for the spin–orbit problem . 16 6.4 Rotational tori for the restricted three–body problem . 17 6.5 Planetary problem . 18 7 Periodic orbits 18 7.1 Construction of periodic orbits . 18 7.2 The libration in longitude of the Moon . 20 1 8 Future directions 20 9 Bibliography 21 9.1 Books and Reviews . 21 9.2 Primary Literature . 22 1 Glossary KAM theory: it provides the persistence of quasi–periodic motions under a small perturbation of an integrable system. KAM theory can be applied under quite general assumptions, i.e. a non– degeneracy of the integrable system and a diophantine condition of the frequency of motion. -
Session 6:Analytical Approximations for Low Thrust Maneuvers
Session 6: Analytical Approximations for Low Thrust Maneuvers As mentioned in the previous lecture, solving non-Keplerian problems in general requires the use of perturbation methods and many are only solvable through numerical integration. However, there are a few examples of low-thrust space propulsion maneuvers for which we can find approximate analytical expressions. In this lecture, we explore a couple of these maneuvers, both of which are useful because of their precision and practical value: i) climb or descent from a circular orbit with continuous thrust, and ii) in-orbit repositioning, or walking. Spiral Climb/Descent We start by writing the equations of motion in polar coordinates, 2 d2r �dθ � µ − r + = a (1) 2 2 r dt dt r 2 d θ 2 dr dθ aθ + = (2) 2 dt r dt dt r We assume continuous thrust in the angular direction, therefore ar = 0. If the acceleration force along θ is small, then we can safely assume the orbit will remain nearly circular and the semi-major axis will be just slightly different after one orbital period. Of course, small and slightly are vague words. To make the analysis rigorous, we need to be more precise. Let us say that for this approximation to be valid, the angular acceleration has to be much smaller than the corresponding centrifugal or gravitational forces (the last two terms in the LHS of Eq. (1)) and that the radial acceleration (the first term in the LHS in the same equation) is negligible. Given these assumptions, from Eq. (1), dθ r µ d2θ 3 r µ dr ≈ ! ≈ − (3) 3 2 5 dt r dt 2 r dt Substituting into Eq. -
Chapter 4: Linear Perturbation Theory
Chapter 4: Linear Perturbation Theory May 4, 2009 1. Gravitational Instability The generally accepted theoretical framework for the formation of structure is that of gravitational instability. The gravitational instability scenario assumes the early universe to have been almost perfectly smooth, with the exception of tiny density deviations with respect to the global cosmic background density and the accompanying tiny velocity perturbations from the general Hubble expansion. The minor density deviations vary from location to location. At one place the density will be slightly higher than the average global density, while a few Megaparsecs further the density may have a slightly smaller value than on average. The observed fluctuations in the temperature of the cosmic microwave background radiation are a reflection of these density perturbations, so that we know that the primordial density perturbations have been in the order of 10−5. The origin of this density perturbation field has as yet not been fully understood. The most plausible theory is that the density perturbations are the product of processes in the very early Universe and correspond to quantum fluctuations which during the inflationary phase expanded to macroscopic proportions1 Originally minute local deviations from the average density of the Universe (see fig. 1), and the corresponding deviations from the global cosmic expansion velocity (the Hubble expansion), will start to grow under the influence of the involved gravity perturbations. The gravitational force acting on each patch of matter in the universe is the total sum of the gravitational attraction by all matter throughout the universe. Evidently, in a homogeneous Universe the gravitational force is the same everywhere. -
Planck 'Toolkit' Introduction
Planck ‘toolkit’ introduction Welcome to the Planck ‘toolkit’ – a series of short questions and answers designed to equip you with background information on key cosmological topics addressed by the Planck science releases. The questions are arranged in thematic blocks; click the header to visit that section. Planck and the Cosmic Microwave Background (CMB) What is Planck and what is it studying? What is the Cosmic Microwave Background? Why is it so important to study the CMB? When was the CMB first detected? How many space missions have studied the CMB? What does the CMB look like? What is ‘the standard model of cosmology’ and how does it relate to the CMB? Behind the CMB: inflation and the meaning of temperature fluctuations How did the temperature fluctuations get there? How exactly do the temperature fluctuations relate to density fluctuations? The CMB and the distribution of matter in the Universe How is matter distributed in the Universe? Has the Universe always had such a rich variety of structure? How did the Universe evolve from very smooth to highly structured? How can we study the evolution of cosmic structure? Tools to study the distribution of matter in the Universe How is the distribution of matter in the Universe described mathematically? What is the power spectrum? What is the power spectrum of the distribution of matter in the Universe? Why are cosmologists interested in the power spectrum of cosmic structure? What was the distribution of the primordial fluctuations? How does this relate to the fluctuations in the CMB?