universe Article Multi-Field versus Single-Field in the Supergravity Models of Inflation and Primordial Black Holes † Sergei V. Ketov 1,2,3 1 Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-Shi, Tokyo 192-0397, Japan;
[email protected] 2 Research School of High-Energy Physics, Tomsk Polytechnic University, 2a Lenin Avenue, 634028 Tomsk, Russia 3 Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, Kashiwa 277-8583, Japan † This paper is an extended version from the proceeding paper: Sergei V. Ketov. Inflation, Primordial Black Holes and Induced Gravitational Waves from Modified Supergravity. In Proceedings of the 1st Electronic Conference on Universe, online, 22–28 February 2021. Abstract: We review the models unifying inflation and Primordial Black Hole (PBH) formation, which are based on the modified (Starobinsky-type) supergravity. We begin with the basic (Starobinsky) inflationary model of modified gravity and its alpha-attractor-type generalizations for PBH produc- tion, and recall how all those single-field models can be embedded into the minimal supergravity. Then, we focus on the effective two-field models arising from the modified (Starobinsky-type) super- gravity and compare them to the single-field models under review. Those two-field models describe double inflation whose first stage is driven by Starobinsky’s scalaron and whose second stage is driven by another scalar belonging to the supergravity multiplet. The power spectra are numerically computed, and it is found that the ultra-slow-roll regime gives rise to the enhancement (peak) in the scalar power spectrum leading to an efficient PBH formation.