Limits of Modal Insensitivity for Laser Vibrometry, Spectral Reduction Requires Super-symmetry Michael C. Kobold1 AUGUST 2014 Distribution unlimited and unclassified 1 Personal:
[email protected], Work: Michael.C.Kobold @ Navy.mil, Code X-12, Science, Technology, Analysis and Simulation Department, NSWC Panama City Division, Naval Surface Warfare Center PCD, 110 Vernon Ave, BL 110, 3B24W, Panama City, FL, USA 32407-7001, O 850.230.7212, (after-hours M 321.591.3679) Modal Insensitivity ABSTRACT Laboratory measurements showed that identification (ID) and monitoring of objects using remote sensing of their vibration signatures are limited in a couple of rare cases. This work provides two necessary conditions to infer that the remote identification of common targets to within prescribed bounds is practical; failure to ID the spectrum is shown to be rare. Modal modulation of laser return produces data clusters for adequate spectral ID using slowly swept sine (SSS) and small deflection multi-modal (MM) analyses. Results using these completely different calculations lead to practical removal of a remote sensing concern, spectral “reduction” (SR) of return used for object ID. The optical return adequately provides structural mode ID for non-imaging detection and classification of vehicles. Calculations using a large spot size to completely paint the vibrating object provide insight for SR found in laboratory measurements which use spot size as a variable. Non-imaging analytical calculations comparing SSS and MM approximations match to second order. Numerical SSS and MM calculations show vibrating rectangular plates have spatially integrated (non-imaging) return that varies substantially among low-frequency vibration modes. The clustering of data from these two methods is a necessary condition for ID.