Creating a New Physics Education Learning Environment at Joliet Junior College

Total Page:16

File Type:pdf, Size:1020Kb

Creating a New Physics Education Learning Environment at Joliet Junior College Creating a New Physics Education Learning Environment at Joliet Junior College Presented by The Institute on Learning Technology part of the Susan Millar ([email protected]), Ph.D., William Clifton ([email protected]), Ph.D., and Andrew Beversdorf ([email protected]) Fall 1999 This case study also is available from the Learning Through Technology web site, www.wcer.wisc.edu/nise/cl1/ilt. Acknowledgements: The authors thank the JJC faculty, staff, and students who participated in this study. These individuals very graciously responded to our requests for their time and attention. This case study is based on a collaborative analysis and planning process undertaken by the NISE's Learning Through Technology "Fellows" group: Jean-Pierre Bayard, Stephen Erhmann, John Jungck, Flora McMartin, Susan Millar, and Marco Molinaro. The Fellows, in turn, benefited substantially from members of the College Level One Team: Andrew Beversdorf, Mark Connolly, Susan Daffinrud, Art Ellis, Kate Loftus-Fahl, and Robert Mathieu. Table of Contents READER’S GUIDE .............................................................................................................. i INTRODUCTION .................................................................................................................ii I. THE SETTING ................................................................................................................. 1 II. LEARNING PROBLEMS AND GOALS.......................................................................... 4 A. Problems Motivating JJC Faculty to Try Computer-Dependent Learning Strategies ........... 4 B. Learning Goals the JJC Faculty Seek to Achieve .................................................................. 6 III. CREATING THE LEARNING ENVIRONMENT............................................................ 7 A. Computer-Dependent Learning Activities............................................................................. 8 B. Computer-Independent Learning Activities......................................................................... 10 IV. SUMMATIVE OUTCOMES DATA.............................................................................. 14 V. IMPLEMENTATION ..................................................................................................... 19 A. Resources ............................................................................................................................. 19 B. Processes for Getting Going: How Not to Reinvent the Wheel .......................................... 22 C. Managing the Dissolution of the “Atlas Complex” ............................................................. 24 VI. SUMMING UP – YOU HAVE TO BE AN INDEPENDENT LEARNER...................... 27 DISCUSSIONS ................................................................................................................. 28 1. Getting Students to Make the Connections: A Discussion of Curt’s Teaching Goals........ 29 2. We can do things with a computer that years ago took hours to do: Faculty Discuss Computer-Dependent Learning Activities................................................................................ 31 3. The labs are incredible, absolutely incredible: Students Discuss Computer-Dependent Learning Activities.................................................................................................................... 36 4. We have to know where students’ problems are and not where we think they will be: Curt Discusses Formative Assessment Activities............................................................................. 41 5. Once you do the task, you learn it: Curt’s Students Discuss Formative Assessment Activities................................................................................................................................... 43 6. The JJC Faculty Discuss External Resources ...................................................................... 46 7. This networking thing can be critical: More Reflections on Networking.......................... 51 RESOURCES ................................................................................................................... 55 A. What is a “Learning Environment”?.................................................................................... 56 B. Brief Description of Joliet Junior College............................................................................ 60 C. Syllabi for Selected Courses Featured in This Case Study .................................................. 61 D. Pre- and Post-tests Used by Curt for Formative Assessment............................................... 96 E. Curt’s Tasks Inspired by Physics Education Research (TIPERs) ........................................ 98 F. Finkel and Monk’s “Atlas Complex” ................................................................................. 102 G. Methods used to Produce the Case Study .......................................................................... 104 GLOSSARY: SPECIAL TERMS USED IN THE LT2 WEBSITE................................... 105 REFERENCES ............................................................................................................... 107 ENDNOTES .................................................................................................................... 111 Reader’s Guide Special terms appear in the Glossary. The first time one of these terms occurs in a major section, it appears double-underlined and the definition is available in a mouse-over box. (In the print version, these definitions appear as lettered footnotes.) All citations to which the case study refers are listed in the References. Technical asides are indicated by a numbered footnote marker and available to the reader in a mouse-over box. (In the print version, these asides can be found in the Endnotes.) Lengthy quotes from participants that illustrate a point often are available in mouse-over boxes (lettered footnotes in the print version), for the benefit of the reader who prefers to read the participants’ own words. Various topics introduced in the study are developed at greater length in Discussions (specified by number in the print version) to which the reader is referred via links at relevant points. The reader is referred via links at relevant points to various other Resources (specified by letter in the print version). Among these is a short description of the Methods Used to Produce this Case Study (Resource G in the print version). We use pseudonyms for the students who appear in the quoted material. To help avoid confusion, the researchers are identified as “interviewer” the first time their voice appears an interview segment. Lengthier quotes appear in italics. The instructors and administrators who are identified in the case study read the document and gave us permission to use the quotes we attribute to them. These Joliet readers also affirmed that this case study conveys the essence of what they were doing in the fall of 1999. i Introduction “We’re serving these students by teaching them physics. But more than that, we’re teaching them how to think, developing their ability to analyze complex sets of data, and developing the unique skill of separating the irrelevant from the relevant. We’re teaching in context—in a context where they try to do physics.” Dr. Curt Hieggelke Who is Curt Hieggelke? Dr. Curt Hieggelke teaches physics at Joliet Junior College in Joliet, Illinois. He is a national leader in the development, use and dissemination of innovative computer-enhanced introductory physics teaching methods. In the last ten years, he has received nine NSF grants to pursue his work in this area. His current projects include “Two-Year College Physics Workshops for the 21st Century" (see http://tycphysics.org) and "Tools for Learning and Assessment.” What’s he done? A “tekkie” from way back, physicist Curt Hieggelke has transformed his introductory physics courses at Joliet Junior College into meaningful and exciting learning experiences for his students—whether they are aspiring engineers, scientists, health professionals, or non-science majors. Key to his success is the use of computer-based labs that actively engage his students through real-time acquisition and analysis of data, connections to real-world events, visualization and simulation. ii Why? For some time, Curt had been aware—and concerned—that despite the care he took to present material to his students, they were just not grasping the concepts and ideas he was trying to teach. First, he tried refining his lectures—to no avail. Gradually he came to realize that “lecture doesn’t necessarily transmit any information.” …I became convinced that no matter how much I told them the right answer, they still didn’t pick it up; that becoming a better lecturer doesn’t have a better impact on them. What his students needed, Curt decided, was a more active learning environment, one that encouraged—no, demanded—student participation in the learning process. Teaching in a lecture format simply was not accomplishing this. So, what would? Well, for years Curt had been using computers in the classroom to aid in the analysis of data. In the late 1980s, however, it dawned on him that he might go 1. Predict—Students are given a situation or problem and are asked to beyond using computers merely for analysis and instead use predict what will happen when them to transform the way his students learn physics. In something is done to change that situation.
Recommended publications
  • High Contrast Grating for Optical Sensing by Tianbo Sun A
    High Contrast Grating for Optical Sensing By Tianbo Sun A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Connie Chang-Hasnain, Chair Professor Ming C. Wu Professor Xiang Zhang Fall 2015 High Contrast Gratings for Optical Sensing © Copyright 2015 By Tianbo Sun All rights reserved Abstract High Contrast Gratings for Optical Sensing by Tianbo Sun Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences University of California, Berkeley Professor Constance J. Chang-Hasnain, Chair Integrated optoelectronics has seen its rapid development in the past decades. It has been expanded to many emerging applications beyond optical communication, including environmental sensing, healthcare and remote sensing, etc. This revolutionary progress greatly benefits from device level innovation. High contrast gratings (HCG) is an emerging element in integrated optoelectronics. Compared to the other elements, HCG has a very rich properties and design flexibility. Two most extraordinary properties of HCG are broadband reflectivity and high quality factor resonance, which are highly desired to solve current challenges in the aforementioned applications. In this dissertation, we will explore the physical origins of the extraordinary features of HCG, and discuss its applications in optical sensing. Various device innovation for optical sensing, such as HCG slow light hollow-core waveguide for gas sensing, HCG resonator for bio-medical sensing, flexible surface plasma sensor , fast optical phase array and HCG-graphene spatial light modulator for remoting sensing are demonstrated with HCG as the enabling elements.
    [Show full text]
  • Reflection Coefficients in the TM Mode
    Research institute Research Group GeMMe Department ArGEnCo Faculty of Applied Sciences University of Liege, Belgium Thesis committee Prof. Luc Courard Université de Liège Advisor Prof. Frédéric Nguyen Université de Liège Co-advisor Prof. Eric Pirard Université de Liège President Prof. Jean-Paul Balayssac INSA Toulouse Prof. Andrzej Garbacz Politechnika Warszawska Prof. Jan van der Kruk Forschungszentrum Jülich Prof. André Plumier Université de Liège Funding This research has been supported by the F.R.S.-FNRS research fellow grant FC 84664. Copyright © 2014 Audrey Van der Wielen Citation: Van der Wielen, A. (2014). Detection and characterization of thin layers into concrete with Ground Penetrating Radar. PhD Thesis, University of Liège, Belgium, pp. XXX. Abstract The Ground Penetrating Radar (GPR) is a nondestructive technique increasingly used for the inspection of concrete structures. The method is well suited to study multilayer media, because only a part of the incident energy is reflected at each interface. But the quantitative determination of the thickness and properties of thin embedded layer remains an application under development, in particular when the tests are performed with contact antennas of high frequency. The aim of this work is to contribute to the development of a fast method for the thin layers determination, based on measurements performed with commercial antennas, by proposing an analytical estimation of the reflection coefficient. As a first step, the equations allowing to estimate the reflection coefficient on a simple interface were developed, taking into account the wave spherical reflection in the near field and the lateral wave propagation. Similarly, for thin layers, equations taking into account the multiple reflections on the interfaces can be developed with different approaches.
    [Show full text]
  • Meeting Abstracts
    Downloaded from orbit.dtu.dk on: Oct 08, 2021 Danish activities concerning noise in the environment (A) Ingerslev, Fritz Published in: Acoustical Society of America. Journal Link to article, DOI: 10.1121/1.2019901 Publication date: 1982 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Ingerslev, F. (1982). Danish activities concerning noise in the environment (A). Acoustical Society of America. Journal, 72(S1), S45-S46. https://doi.org/10.1121/1.2019901 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. PROGRAM OF The 104thMeeting of theAcoustical Society of America SheratonTwin Towers ß Orlando,Florida ß 8-12 November1982 TUESDAY MORNING, 9 NOVEMBER 1982 BROWARD AND PALM BEACH ROOMS, 8:00TO 10:15A.M. SessionA.Underwater Acoustics I: The Impact of Satellite and Aerial Remote Sensing onthe Study of Ocean Acoustics Paul D. Scully-Power,Chairman Naval UnderwaterSystems Center, New London, Connecticut 06320 Chairman'sIntroduction4:00 Invited Papers 8:05 A1.
    [Show full text]
  • Millimeter-Wave Monitoring of Nuclear Waste Glass Melts – an Overview
    PSFC/JA-02-1 MILLIMETER-WAVE MONITORING OF NUCLEAR WASTE GLASS MELTS – AN OVERVIEW P. P. Woskov, J. S. Machuzak, P. Thomas, S. K. Sundaram1, and William E. Daniel2, Jr. January 2002 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 1 also with Pacific Northwest National Laboratory, Richland, WA 99352 2 Savannah River Technology Center, Aiken, SC 29808 This work was supported by the U. S. Department of Energy, Office of Science and Technology, Mixed Waste Focus Area. Reproduction, translation, publication, and use in whole or in part, by or for the United States government is permitted. To be published in the Proceedings of the 103rd Meeting of the American Ceramic Society MILLIMETER-WAVE MONITORING OF NUCLEAR WASTE GLASS MELTS – AN OVERVIEW P. P. Woskov, J. S. Machuzak, and P. Thomas Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 S. K. Sundaram Pacific Northwest National Laboratory Richland, WA 99352 William E. Daniel, Jr. Westinghouse Savannah River Company Aiken, SC 29808 ABSTRACT Molten glass characteristics of temperature, resistivity, and viscosity can be monitored reliably in the high temperature and chemically corrosive environment of nuclear waste glass melters using millimeter-wave sensor technology. Millimeter-waves are ideally suited for such measurements because they are long enough to penetrate optically unclear atmospheres, but short enough for spatially resolved measurements. Also efficient waveguide and optic components can be fabricated from refractory materials such as ceramics. Extensive testing has been carried out at a frequency of 137 GHz to temperatures up to 1500 °C. Performance of refractory waveguides at high temperature has been shown to be satisfactory.
    [Show full text]
  • Middlesex University Research Repository
    Middlesex University Research Repository An open access repository of Middlesex University research http://eprints.mdx.ac.uk Lei, Daiqing (1999) Multi-chip module interconnections at microwave frequencies: electromagnetic simulation and material characterisation. PhD thesis, Middlesex University. Available from Middlesex University’s Research Repository at http://eprints.mdx.ac.uk/13417/ Copyright: Middlesex University Research Repository makes the University’s research available electronically. Copyright and moral rights to this thesis/research project are retained by the author and/or other copyright owners. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non- commercial, research or study without prior permission and without charge. Any use of the thesis/research project for private study or research must be properly acknowledged with reference to the work’s full bibliographic details. This thesis/research project may not be reproduced in any format or medium, or extensive quotations taken from it, or its content changed in any way, without first obtaining permission in writing from the copyright holder(s). If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address: [email protected] The item will be removed from the repository while any claim is being investigated. Mi~dles.ex University London " Middlesex University Research Repository: an open access repository of Middlesex University research http://eprints.mdx.ac.uk Lei, Daiqing, 1999. Multi-chip module interconnections at microwave frequencies: electromagnetic simulation and material characterisation. Available from Middlesex University's Research Repository.
    [Show full text]
  • Low Profile UHF/VHF Metamaterial Backed Circularly Polarized
    Progress In Electromagnetics Research C, Vol. 60, 11–20, 2015 Low Profile UHF/VHF Metamaterial Backed Circularly Polarized Antenna Structure Taulant Rexhepi1, *, Igor Bendoym2, Ada-Simona Popescu1, Andrii Golovin1, Johnny Daniel3, Kate J. Duncan3, and David Crouse2 Abstract—In this work, a low-profile metamaterial backed planar antenna structure designed to work in the UHF/VHF range is presented. The antenna has right-hand circular polarization. It is ideal for satellite-based communications and radar systems. An artificial magnetic conductor was designed using a metamaterial composed of a split ring resonators to reduce the size of the planar antenna and ground plane system. The proposed artificial magnetic conductor has more confined surface waves at the reflecting plane than previous designs and is suitable for circular polarization. Through numerical simulations, performance characteristics including return-loss, and realized gain of the antenna systems are calculated and analyzed in the VHF range. The proposed antenna system is narrowband and is linearly scalable in the range of 100 MHz–1 GHz. 1. INTRODUCTION Over the recent decade, a major area of interest for microwave researchers has been the replacement of metallic electric-conducting ground planes of antennas with artificial magnetic material surfaces made from metamaterials [1–7]. With such structures, it was demonstrated that the distance between the antenna and the metal ground plane can be significantly reduced while maintaining the optimized gain [2]. The radiation emitted by a planar antenna has two components: a forward propagating component emitted in the direction of the receiver or target, and a backwards propagating component that, unless captured, would be wasted.
    [Show full text]
  • High Contrast Grating for Optical Sensing
    High Contrast Grating for Optical Sensing Tianbo Sun Constance Chang-Hasnain, Ed. Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2017-170 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-170.html December 1, 2017 Copyright © 2017, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. High Contrast Grating for Optical Sensing By Tianbo Sun A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Connie Chang-Hasnain, Chair Professor Ming C. Wu Professor Xiang Zhang Fall 2015 High Contrast Gratings for Optical Sensing © Copyright 2015 By Tianbo Sun All rights reserved Abstract High Contrast Gratings for Optical Sensing by Tianbo Sun Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences University of California, Berkeley Professor Constance J. Chang-Hasnain, Chair Integrated optoelectronics has seen its rapid development in the past decades. It has been expanded to many emerging applications beyond optical communication, including environmental sensing, healthcare and remote sensing, etc. This revolutionary progress greatly benefits from device level innovation.
    [Show full text]
  • High Contrast Gratings for Integrated Optoelectronics
    High Contrast Gratings for Integrated Optoelectronics Weijian Yang Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014-197 http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-197.html December 1, 2014 Copyright © 2014, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. High Contrast Gratings for Integrated Optoelectronics by Weijian Yang A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences and the Designated Emphasis in Nanoscale Science and Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Constance J. Chang-Hasnain, Chair Professor Ming C. Wu Professor Xiang Zhang Professor Eli Yablonovitch Fall 2013 High Contrast Gratings for Integrated Optoelectronics © 2013 by Weijian Yang Abstract High Contrast Gratings for Integrated Optoelectronics by Weijian Yang Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences and the Designated Emphasis in Nanoscale Science and Engineering University of California, Berkeley Professor Constance J. Chang-Hasnain, Chair Integrated optoelectronics has seen its rapid development in the past decade. From its original primary application in long-haul optical communications and access network, integrated optoelectronics has expanded itself to data center, consumer electronics, energy harness, environmental sensing, biological and medical imaging, industry manufacture control etc.
    [Show full text]
  • Multifocal Terahertz Lens with Adjustable Focal Points
    Multifocal Terahertz Lens with Adjustable Focal Points Ali Abdolali 1,*, Roya Kargar 1, and Kasra Rouhi 1 1 Applied Electromagnetic Laboratory, School of Electrical Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran E-mail: [email protected] Abstract The conventional lens's tunability drawback always restricts their application compared to the metasurface lens (metalens). On the other side, reconfigurable metalenses offer the benefits of ultrathin thickness and capable of tunability. Therefore achieving reconfigurable functionalities in a single metasurface has attracted significant research interest for potential terahertz (THz) applications. In this paper, an adjustable metasurface is presented using Vanadium dioxide (VO2) to manipulate the electromagnetic waves and provide the full reflection phase. The phase-change metasurface is composed of a VO2 nanofilm, a silicon spacer, and a gold layer embedded in the structure's bottom. By employing the reconfigurable metasurface with the specific phase distribution, the incident beam can converge to determined points in any arbitrary manner, including the number of the focal points, focal points location, and power intensity ratio. Numerical simulations demonstrate that the proposed reconfigurable metasurface can concentrate power on one or more than one focal point in reflection modes as expected. Additionally, the VO2-based metasurface can control concentration width in a real-time manner using a novel proposed method. The simulation and theoretical results are in good agreement to verify the validity and feasibility of 2-bit metalens design, which has considerable potential in wireless high-speed communication and super-resolution imaging. Keywords: Adjustable, Metalens, Metasurface, Phase-change, Vanadium dioxide 1. Introduction Metasurface, referring to the thin planar arrangement of artificial unit cells in the subwavelength scale, has presented versatile abilities in manipulating the amplitude, phase, and polarization of electromagnetic waves for various applications [1].
    [Show full text]
  • Limits of Modal Insensitivity for Laser Vibrometry, Spectral Reduction Requires Super-Symmetry
    Limits of Modal Insensitivity for Laser Vibrometry, Spectral Reduction Requires Super-symmetry Michael C. Kobold1 AUGUST 2014 Distribution unlimited and unclassified 1 Personal: [email protected], Work: Michael.C.Kobold @ Navy.mil, Code X-12, Science, Technology, Analysis and Simulation Department, NSWC Panama City Division, Naval Surface Warfare Center PCD, 110 Vernon Ave, BL 110, 3B24W, Panama City, FL, USA 32407-7001, O 850.230.7212, (after-hours M 321.591.3679) Modal Insensitivity ABSTRACT Laboratory measurements showed that identification (ID) and monitoring of objects using remote sensing of their vibration signatures are limited in a couple of rare cases. This work provides two necessary conditions to infer that the remote identification of common targets to within prescribed bounds is practical; failure to ID the spectrum is shown to be rare. Modal modulation of laser return produces data clusters for adequate spectral ID using slowly swept sine (SSS) and small deflection multi-modal (MM) analyses. Results using these completely different calculations lead to practical removal of a remote sensing concern, spectral “reduction” (SR) of return used for object ID. The optical return adequately provides structural mode ID for non-imaging detection and classification of vehicles. Calculations using a large spot size to completely paint the vibrating object provide insight for SR found in laboratory measurements which use spot size as a variable. Non-imaging analytical calculations comparing SSS and MM approximations match to second order. Numerical SSS and MM calculations show vibrating rectangular plates have spatially integrated (non-imaging) return that varies substantially among low-frequency vibration modes. The clustering of data from these two methods is a necessary condition for ID.
    [Show full text]
  • Independent Modulation of the Phase and Amplitude of Electromagnetic Waves Based on the Phase Change of VO 2 and Mode Coupling
    American Journal of Physics and Applications 2021; 9(4): 88-93 http://www.sciencepublishinggroup.com/j/ajpa doi: 10.11648/j.ajpa.20210904.13 ISSN: 2330-4286 (Print); ISSN: 2330-4308 (Online) Independent Modulation of the Phase and Amplitude of Electromagnetic Waves Based on the Phase Change of VO 2 and Mode Coupling Tianrui Pan, Yuan Pei, Maosheng Wang, Xiaojuan Xie, Wanxia Huang * School of Physics and Electronic Information & Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, Anhui Normal University, Wuhu, China Email address: *Corresponding author To cite this article: Tianrui Pan, Yuan Pei, Maosheng Wang, Xiaojuan Xie, Wanxia Huang. Independent Modulation of the Phase and Amplitude of Electromagnetic Waves Based on the Phase Change of VO2 and Mode Coupling. American Journal of Physics and Applications . Vol. 9, No. 4, 2021, pp. 88-93. doi: 10.11648/j.ajpa.20210904.13 Received : July 11, 2021; Accepted : August 2, 2021; Published : August 12, 2021 Abstract: Metasurfaces in a metal–semiconductor–metal configuration have been studied in multiple contexts, including perfect absorption and phase modulation. Nevertheless, limit progress has been achieved in independent phase modulation. To study further in this work, a metasurface composed of an Au film/ VO 2 film/ Au patch array with square holes was proposed in this paper. Through simulating and analysing the optical properties, simulated results indicated that an extremely switchable function can be realized by modulating the phase transition of VO 2, when VO 2 was in the metal (semiconductor) phase, the whole structure represented as ON (OFF) state. Additionally, the efficient modulation depth is approximately 99.6% for the y-polarization at a wavelength of 2.019 µm.
    [Show full text]
  • Electronic Tuning of Semiconductor Lasers with Multiple Quantum Well
    ELECTRONIC TUNING OF SEMICONDUCTOR LASERS WITH MULTIPLE QUANTUM WELL DEVICES Submitted to University of London in Fulfillment of the Requirements for the Degree of Philosophiae Doctor Thesis Author: BO CAI Thesis Supervisor: ALWYN SEEDS Department of Electronic and Electrical Engineering University College London Torrington Place, London WC1E 7JE October, 1991 1 ProQuest Number: 10797639 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10797639 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 Electronic Tuning of Semiconductor Lasers With Multiple Quantum Well Devices Abstract This thesis has been devoted to theoretical and experimental work on tunable semiconductor lasers, devices which play an important role in optical communication. The use of multiple quantum well (MQW) materials as tuning elements has been studied. In theoretical work the static and dynamic characteristics of single and multi-cavity tunable laser systems have been investigated in considerable detail. The various tuning structures were discussed. The refractive index change in MQW materials has been modelled and comparison between MQW and bulk materials has been made.
    [Show full text]