Vertical-Cavity Surface-Emitting Lasers for Medical Diagnosis

Total Page:16

File Type:pdf, Size:1020Kb

Vertical-Cavity Surface-Emitting Lasers for Medical Diagnosis Downloaded from orbit.dtu.dk on: Dec 20, 2017 Vertical-cavity surface-emitting lasers for medical diagnosis Ansbæk, Thor; Yvind, Kresten; Chung, Il-Sug; Larsson, David Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Ansbæk, T., Yvind, K., Chung, I-S., & Larsson, D. (2012). Vertical-cavity surface-emitting lasers for medical diagnosis. Kgs. Lyngby: Technical University of Denmark (DTU). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Vertical-cavity surface-emitting lasers for medical diagnosis PhD Dissertation Submitted to the Department of Photonics Engineering at The Technical University of Denmark in partial fulfillment for the degree of Doctor of Philosophy Thor Ansbæk 2012 Preface This dissertation has been submitted to the Department of Photonics Engineer- ing at The Technical University of Denmark (DTU) for the partial fulfillment of the degree of Doctor of Philosophy (PhD). The main supervisor has been Associate Professor Kresten Yvind. I gratefully acknowledge the PhD Scholar- ship funded by DTU. Part of the thesis work has been funded by the NanoNose project and the support from the Danish Agency for Science and Technology’s Program Commision on Nanoscience Biotechnology and IT (NABIIT) is ac- knowledged. The motivation of the work has been to combine Vertical-Cavity Surface- Emitting Lasers with Micro-Opto-Electro-Mechanical Systems in order to ad- vance the field of Optical Coherence Tomography (OCT). It has been a highly motivating subject to work on and I would like to thank my main supervisor Kresten Yvind for giving me this opportunity and supporting my project in every manner. A cornerstone in the project has been the use of the novel High- index Contrast subwavelength Grating (HCG) and to this aim I would like to thank Il-Sug Chung for his supervision into this for me completely new field. Last but not least I would like to thank David Larsson for his supervision on the Volatile Organic Compound (VOC) sensor. The initial part of the PhD was spent on getting acquainted with Vertical- Cavity Surface-Emitting Laser (VCSEL) processing by the fabrication of bottom emitting VCSELs. Simultaneously, experiments where done coating an off-the- shelf VCSEL with polystyrene and measurering the response to Acetone vapour. I would like to thank Claus Højgård Nielsen for doing the plasma polymeriza- tion of the polystyrene coatings and Søren Dohn for giving me access to his environmetal chamber for performing the experiments. The second part of the PhD project has been spent on the fabrication of a tun- able Fabry-Pérot filter with a HCG top mirror. I would like to thank Jong-Min Kim for his initial work on growing epitaxial wafers with InGaP and AlInP. In order to fabricate subwavelength gratings dry etching was a neccesity and I would like to acknowledge the efforts of Martin Schubert and Jin Liu on the GaAs dry etching using Reactive Ion Etching (RIE) and Inductively Coupled Plasma (ICP), respectively. The aim was to use the tunable filters as part of a Fourier Domain Mode-Locked (FDML) swept source and I would like to thank Sebastian Marschall for discussion on tunable filters for OCT and his help on setting up a swept laser for characterization of the filters. The main part of the characterization of the filters was done using a fiber-based transmission setup and I would like to thank Radu Malureanu for his help and guidance. The last year of the PhD has been a race to develop a tunable VCSEL. I would like to thank Elizaveta Semenova for shedding light on the art of epitax- 2 ial growth. I greatly appreaciated the help of Nadezda Kuznetsova and Sara Ek on the micro photoluminescene setup which was instrumental in measuring non-lasing VCSELs. Thanks go to Martin Schubert for setting up the character- ization setup. Silvan Schmid is thankfully acknowledged for his help with laser Doppler vibrometer measurements on the mechanical properties of the VCSELs. Ole Hansen and Erik V. Thomsen are both thanked for their supervision on the Micro-Electro-Mechanical Systems (MEMS). Having been associated to DTU Fotonik and the adjacent DTU Nanotech for almost 7 years I have had the pleasure to work along a long list of friendly collegues and students. I have greatly appreciated the helpful environment. In particular I would like to thank Troels Suhr Skovgård, Sara Ek, Róz˙aShirazi and Andrei Andryieuski for the cheerfull atmosphere upheld in our office - plastered with cake pictures. Lastly I would like to thank my family for their support - in particular my girl friend Benedicte Ersted Jensen who has supported me all the way and made sure that life went on as usual outside the world of research. This thesis is dedicated to my grandmother Jutta Ursula Elisabeth Chris- tensen. Thor Ansbæk September 30, 2012 Supervisors: Kresten Yvind Il-Sug Chung David Larsson Department of Photonics Engineering Technical University of Denmark Ørsted Plads 344 2800 Kgs. Lyngby Abstract This thesis deals with the design and fabrication of tunable Vertical-Cavity Surface-Emitting Lasers (VCSELs). The focus has been the application of tun- able VCSELs in medical diagnostics, specifically OCT. VCSELs are candidates as light sources for swept-source OCT where their high sweep rate, wide sweep range and high degree of coherence enable deep probing of tissue at acquisition rates that will eliminate the effects of rapid involuntary eye movements. The main achievement of the dissertation work has been the development of an electro-statically tunable VCSEL at 1060 nm with wide tuning range and high tuning rate. The VCSEL is highly single-mode and inherently polarization stable due to the use of a High-index Contrast subwavelength Grating (HCG). HCG VCSELs are presented with 1.5% relative tuning range at a tuning rate of 850 kHz. The thesis reports on the analysis of narrow linewidth Fabry-Pérot filters with dissimilar mirrors and the design of such Fabry-Pérot cavities for VCSELs. Fabrication of InGaAs multiple quantum wells with GaAsP strain balancing layers is covered together with the growth and wet chemical etching of InAlP. The fabrication of the proposed Fabry-Pérot filters and VCSELs is outlined and the results on their characterization reported. 4 Danish Resumé Denne afhandling omhandler design og fremstilling af overfladeemitterende ver- tikal kavitets lasere med variabel resonansbølgelængde. Disse lasere udvikles med henblik på brug indenfor medicinsk diagnostik, nærmere bestemt optisk kohærens tomografi. Denne type laser er oplagt som lyskilde til optisk ko- hærens tomografi hvor den høje repetitionsrate, brede bølgelængde tunbarhed og høje grad af kohærens muliggør dybdeafbildning af øjets lagstruktur uden tab af opløsning på grund af ufrivillige øjenbevægelser. Hovedresultatet i afhandlingen er udviklingen af en overfladeemitterende ver- tikal kavitets laser ved 1060 nm hvor bølgelængden ændres hurtigt i et bredt om- råde ved elektro-statisk kraft. Denne type laser udmærker sig endvidere ved at være monokromatisk og lineært polariseret. Denne polariseringsbestemthed er opnået ved brug af et optisk gitter med en periode mindre end lysets bølgelængde og et brydningsindeks meget højere end det omgivende materiale (luft). Med denne type laser demonstreres en relativ bølgelængdeændring på 1.5% af cen- terbølgelængden ved en repetitionsrate på 850 kHz. I afhandlingen gennemgås teorien for et Fabry-Pérot optisk filter med smal optisk båndbredde hvor filterets to spejle er af forskellig type. Teorien for et Fabry-Pérot filter udvides til at gælde for overfladeemitterende lasere og de relevante designovervejelser for lasere, der kan dække et bredt spektralt om- råde, gennemgås. Afhandlingens andet store resultat er udviklingen af frem- stillingsprocessen til at lave disse Fabry-Pérot filtre og lasere med InGaAs kvan- tebrønde under tøjning. For at kunne danne et tomrum som muliggør ændring af bølgelængden ved elektro-statisk kraft er offeræts af InAlP undersøgt. På baggrund af de valgte designs fremstilles Fabry-Pérot optiske filtre og over- fladeemitterende vertikal kavitets lasere, og deres elektro-optiske egenskaber undersøges eksperimentelt. 5 Contents 1 Introduction 9 1.1 Optical coherence tomography . 9 1.2 Tunable semiconductor lasers . 11 1.3 Stateoftheart ............................ 13 1.4 Thesisoutline............................. 15 2 Theory and design 17 2.1 Fabry-Pérotetalon .......................... 17 2.2 Mirrors ................................ 18 2.2.1 Method ............................ 19 2.2.2 HCG.............................. 20 2.3 Fabry-Pérot filter . 24 2.3.1 Resonance wavelength . 24 2.3.2 Transmission ......................... 26 2.4 HCG-VCSEL ............................. 29 2.4.1 Lasingcondition ....................... 31 2.4.2 Method ............................ 32 2.4.3 Two mirror Fabry-Pérot cavity . 32 2.4.4 Three mirror Fabry-Pérot cavity . 36 2.4.5 Summary ........................... 38 2.5 Electro-static actuation . 40 2.5.1 Static operation . 40 2.5.2 Dynamic operation . 42 3 Device fabrication 46 3.1 Epitaxialgrowth ........................... 46 3.1.1 InGaAsMQW ........................ 48 3.1.2 VCSEL ............................ 50 3.1.3 InAlP ............................. 51 3.2 Sacrificial release etch . 53 3.2.1 General considerations . 53 3.2.2 InAlP sacrificial etch . 54 3.2.3 Results ............................ 55 3.3 Grating pattern transfer . 56 3.3.1 Si3N4 mask.........................
Recommended publications
  • High Contrast Grating for Optical Sensing by Tianbo Sun A
    High Contrast Grating for Optical Sensing By Tianbo Sun A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Connie Chang-Hasnain, Chair Professor Ming C. Wu Professor Xiang Zhang Fall 2015 High Contrast Gratings for Optical Sensing © Copyright 2015 By Tianbo Sun All rights reserved Abstract High Contrast Gratings for Optical Sensing by Tianbo Sun Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences University of California, Berkeley Professor Constance J. Chang-Hasnain, Chair Integrated optoelectronics has seen its rapid development in the past decades. It has been expanded to many emerging applications beyond optical communication, including environmental sensing, healthcare and remote sensing, etc. This revolutionary progress greatly benefits from device level innovation. High contrast gratings (HCG) is an emerging element in integrated optoelectronics. Compared to the other elements, HCG has a very rich properties and design flexibility. Two most extraordinary properties of HCG are broadband reflectivity and high quality factor resonance, which are highly desired to solve current challenges in the aforementioned applications. In this dissertation, we will explore the physical origins of the extraordinary features of HCG, and discuss its applications in optical sensing. Various device innovation for optical sensing, such as HCG slow light hollow-core waveguide for gas sensing, HCG resonator for bio-medical sensing, flexible surface plasma sensor , fast optical phase array and HCG-graphene spatial light modulator for remoting sensing are demonstrated with HCG as the enabling elements.
    [Show full text]
  • Reflection Coefficients in the TM Mode
    Research institute Research Group GeMMe Department ArGEnCo Faculty of Applied Sciences University of Liege, Belgium Thesis committee Prof. Luc Courard Université de Liège Advisor Prof. Frédéric Nguyen Université de Liège Co-advisor Prof. Eric Pirard Université de Liège President Prof. Jean-Paul Balayssac INSA Toulouse Prof. Andrzej Garbacz Politechnika Warszawska Prof. Jan van der Kruk Forschungszentrum Jülich Prof. André Plumier Université de Liège Funding This research has been supported by the F.R.S.-FNRS research fellow grant FC 84664. Copyright © 2014 Audrey Van der Wielen Citation: Van der Wielen, A. (2014). Detection and characterization of thin layers into concrete with Ground Penetrating Radar. PhD Thesis, University of Liège, Belgium, pp. XXX. Abstract The Ground Penetrating Radar (GPR) is a nondestructive technique increasingly used for the inspection of concrete structures. The method is well suited to study multilayer media, because only a part of the incident energy is reflected at each interface. But the quantitative determination of the thickness and properties of thin embedded layer remains an application under development, in particular when the tests are performed with contact antennas of high frequency. The aim of this work is to contribute to the development of a fast method for the thin layers determination, based on measurements performed with commercial antennas, by proposing an analytical estimation of the reflection coefficient. As a first step, the equations allowing to estimate the reflection coefficient on a simple interface were developed, taking into account the wave spherical reflection in the near field and the lateral wave propagation. Similarly, for thin layers, equations taking into account the multiple reflections on the interfaces can be developed with different approaches.
    [Show full text]
  • Meeting Abstracts
    Downloaded from orbit.dtu.dk on: Oct 08, 2021 Danish activities concerning noise in the environment (A) Ingerslev, Fritz Published in: Acoustical Society of America. Journal Link to article, DOI: 10.1121/1.2019901 Publication date: 1982 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Ingerslev, F. (1982). Danish activities concerning noise in the environment (A). Acoustical Society of America. Journal, 72(S1), S45-S46. https://doi.org/10.1121/1.2019901 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. PROGRAM OF The 104thMeeting of theAcoustical Society of America SheratonTwin Towers ß Orlando,Florida ß 8-12 November1982 TUESDAY MORNING, 9 NOVEMBER 1982 BROWARD AND PALM BEACH ROOMS, 8:00TO 10:15A.M. SessionA.Underwater Acoustics I: The Impact of Satellite and Aerial Remote Sensing onthe Study of Ocean Acoustics Paul D. Scully-Power,Chairman Naval UnderwaterSystems Center, New London, Connecticut 06320 Chairman'sIntroduction4:00 Invited Papers 8:05 A1.
    [Show full text]
  • Millimeter-Wave Monitoring of Nuclear Waste Glass Melts – an Overview
    PSFC/JA-02-1 MILLIMETER-WAVE MONITORING OF NUCLEAR WASTE GLASS MELTS – AN OVERVIEW P. P. Woskov, J. S. Machuzak, P. Thomas, S. K. Sundaram1, and William E. Daniel2, Jr. January 2002 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 1 also with Pacific Northwest National Laboratory, Richland, WA 99352 2 Savannah River Technology Center, Aiken, SC 29808 This work was supported by the U. S. Department of Energy, Office of Science and Technology, Mixed Waste Focus Area. Reproduction, translation, publication, and use in whole or in part, by or for the United States government is permitted. To be published in the Proceedings of the 103rd Meeting of the American Ceramic Society MILLIMETER-WAVE MONITORING OF NUCLEAR WASTE GLASS MELTS – AN OVERVIEW P. P. Woskov, J. S. Machuzak, and P. Thomas Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 S. K. Sundaram Pacific Northwest National Laboratory Richland, WA 99352 William E. Daniel, Jr. Westinghouse Savannah River Company Aiken, SC 29808 ABSTRACT Molten glass characteristics of temperature, resistivity, and viscosity can be monitored reliably in the high temperature and chemically corrosive environment of nuclear waste glass melters using millimeter-wave sensor technology. Millimeter-waves are ideally suited for such measurements because they are long enough to penetrate optically unclear atmospheres, but short enough for spatially resolved measurements. Also efficient waveguide and optic components can be fabricated from refractory materials such as ceramics. Extensive testing has been carried out at a frequency of 137 GHz to temperatures up to 1500 °C. Performance of refractory waveguides at high temperature has been shown to be satisfactory.
    [Show full text]
  • Middlesex University Research Repository
    Middlesex University Research Repository An open access repository of Middlesex University research http://eprints.mdx.ac.uk Lei, Daiqing (1999) Multi-chip module interconnections at microwave frequencies: electromagnetic simulation and material characterisation. PhD thesis, Middlesex University. Available from Middlesex University’s Research Repository at http://eprints.mdx.ac.uk/13417/ Copyright: Middlesex University Research Repository makes the University’s research available electronically. Copyright and moral rights to this thesis/research project are retained by the author and/or other copyright owners. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non- commercial, research or study without prior permission and without charge. Any use of the thesis/research project for private study or research must be properly acknowledged with reference to the work’s full bibliographic details. This thesis/research project may not be reproduced in any format or medium, or extensive quotations taken from it, or its content changed in any way, without first obtaining permission in writing from the copyright holder(s). If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address: [email protected] The item will be removed from the repository while any claim is being investigated. Mi~dles.ex University London " Middlesex University Research Repository: an open access repository of Middlesex University research http://eprints.mdx.ac.uk Lei, Daiqing, 1999. Multi-chip module interconnections at microwave frequencies: electromagnetic simulation and material characterisation. Available from Middlesex University's Research Repository.
    [Show full text]
  • Low Profile UHF/VHF Metamaterial Backed Circularly Polarized
    Progress In Electromagnetics Research C, Vol. 60, 11–20, 2015 Low Profile UHF/VHF Metamaterial Backed Circularly Polarized Antenna Structure Taulant Rexhepi1, *, Igor Bendoym2, Ada-Simona Popescu1, Andrii Golovin1, Johnny Daniel3, Kate J. Duncan3, and David Crouse2 Abstract—In this work, a low-profile metamaterial backed planar antenna structure designed to work in the UHF/VHF range is presented. The antenna has right-hand circular polarization. It is ideal for satellite-based communications and radar systems. An artificial magnetic conductor was designed using a metamaterial composed of a split ring resonators to reduce the size of the planar antenna and ground plane system. The proposed artificial magnetic conductor has more confined surface waves at the reflecting plane than previous designs and is suitable for circular polarization. Through numerical simulations, performance characteristics including return-loss, and realized gain of the antenna systems are calculated and analyzed in the VHF range. The proposed antenna system is narrowband and is linearly scalable in the range of 100 MHz–1 GHz. 1. INTRODUCTION Over the recent decade, a major area of interest for microwave researchers has been the replacement of metallic electric-conducting ground planes of antennas with artificial magnetic material surfaces made from metamaterials [1–7]. With such structures, it was demonstrated that the distance between the antenna and the metal ground plane can be significantly reduced while maintaining the optimized gain [2]. The radiation emitted by a planar antenna has two components: a forward propagating component emitted in the direction of the receiver or target, and a backwards propagating component that, unless captured, would be wasted.
    [Show full text]
  • High Contrast Grating for Optical Sensing
    High Contrast Grating for Optical Sensing Tianbo Sun Constance Chang-Hasnain, Ed. Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2017-170 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-170.html December 1, 2017 Copyright © 2017, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. High Contrast Grating for Optical Sensing By Tianbo Sun A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Connie Chang-Hasnain, Chair Professor Ming C. Wu Professor Xiang Zhang Fall 2015 High Contrast Gratings for Optical Sensing © Copyright 2015 By Tianbo Sun All rights reserved Abstract High Contrast Gratings for Optical Sensing by Tianbo Sun Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences University of California, Berkeley Professor Constance J. Chang-Hasnain, Chair Integrated optoelectronics has seen its rapid development in the past decades. It has been expanded to many emerging applications beyond optical communication, including environmental sensing, healthcare and remote sensing, etc. This revolutionary progress greatly benefits from device level innovation.
    [Show full text]
  • High Contrast Gratings for Integrated Optoelectronics
    High Contrast Gratings for Integrated Optoelectronics Weijian Yang Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014-197 http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-197.html December 1, 2014 Copyright © 2014, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. High Contrast Gratings for Integrated Optoelectronics by Weijian Yang A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences and the Designated Emphasis in Nanoscale Science and Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Constance J. Chang-Hasnain, Chair Professor Ming C. Wu Professor Xiang Zhang Professor Eli Yablonovitch Fall 2013 High Contrast Gratings for Integrated Optoelectronics © 2013 by Weijian Yang Abstract High Contrast Gratings for Integrated Optoelectronics by Weijian Yang Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences and the Designated Emphasis in Nanoscale Science and Engineering University of California, Berkeley Professor Constance J. Chang-Hasnain, Chair Integrated optoelectronics has seen its rapid development in the past decade. From its original primary application in long-haul optical communications and access network, integrated optoelectronics has expanded itself to data center, consumer electronics, energy harness, environmental sensing, biological and medical imaging, industry manufacture control etc.
    [Show full text]
  • Multifocal Terahertz Lens with Adjustable Focal Points
    Multifocal Terahertz Lens with Adjustable Focal Points Ali Abdolali 1,*, Roya Kargar 1, and Kasra Rouhi 1 1 Applied Electromagnetic Laboratory, School of Electrical Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran E-mail: [email protected] Abstract The conventional lens's tunability drawback always restricts their application compared to the metasurface lens (metalens). On the other side, reconfigurable metalenses offer the benefits of ultrathin thickness and capable of tunability. Therefore achieving reconfigurable functionalities in a single metasurface has attracted significant research interest for potential terahertz (THz) applications. In this paper, an adjustable metasurface is presented using Vanadium dioxide (VO2) to manipulate the electromagnetic waves and provide the full reflection phase. The phase-change metasurface is composed of a VO2 nanofilm, a silicon spacer, and a gold layer embedded in the structure's bottom. By employing the reconfigurable metasurface with the specific phase distribution, the incident beam can converge to determined points in any arbitrary manner, including the number of the focal points, focal points location, and power intensity ratio. Numerical simulations demonstrate that the proposed reconfigurable metasurface can concentrate power on one or more than one focal point in reflection modes as expected. Additionally, the VO2-based metasurface can control concentration width in a real-time manner using a novel proposed method. The simulation and theoretical results are in good agreement to verify the validity and feasibility of 2-bit metalens design, which has considerable potential in wireless high-speed communication and super-resolution imaging. Keywords: Adjustable, Metalens, Metasurface, Phase-change, Vanadium dioxide 1. Introduction Metasurface, referring to the thin planar arrangement of artificial unit cells in the subwavelength scale, has presented versatile abilities in manipulating the amplitude, phase, and polarization of electromagnetic waves for various applications [1].
    [Show full text]
  • Limits of Modal Insensitivity for Laser Vibrometry, Spectral Reduction Requires Super-Symmetry
    Limits of Modal Insensitivity for Laser Vibrometry, Spectral Reduction Requires Super-symmetry Michael C. Kobold1 AUGUST 2014 Distribution unlimited and unclassified 1 Personal: [email protected], Work: Michael.C.Kobold @ Navy.mil, Code X-12, Science, Technology, Analysis and Simulation Department, NSWC Panama City Division, Naval Surface Warfare Center PCD, 110 Vernon Ave, BL 110, 3B24W, Panama City, FL, USA 32407-7001, O 850.230.7212, (after-hours M 321.591.3679) Modal Insensitivity ABSTRACT Laboratory measurements showed that identification (ID) and monitoring of objects using remote sensing of their vibration signatures are limited in a couple of rare cases. This work provides two necessary conditions to infer that the remote identification of common targets to within prescribed bounds is practical; failure to ID the spectrum is shown to be rare. Modal modulation of laser return produces data clusters for adequate spectral ID using slowly swept sine (SSS) and small deflection multi-modal (MM) analyses. Results using these completely different calculations lead to practical removal of a remote sensing concern, spectral “reduction” (SR) of return used for object ID. The optical return adequately provides structural mode ID for non-imaging detection and classification of vehicles. Calculations using a large spot size to completely paint the vibrating object provide insight for SR found in laboratory measurements which use spot size as a variable. Non-imaging analytical calculations comparing SSS and MM approximations match to second order. Numerical SSS and MM calculations show vibrating rectangular plates have spatially integrated (non-imaging) return that varies substantially among low-frequency vibration modes. The clustering of data from these two methods is a necessary condition for ID.
    [Show full text]
  • Independent Modulation of the Phase and Amplitude of Electromagnetic Waves Based on the Phase Change of VO 2 and Mode Coupling
    American Journal of Physics and Applications 2021; 9(4): 88-93 http://www.sciencepublishinggroup.com/j/ajpa doi: 10.11648/j.ajpa.20210904.13 ISSN: 2330-4286 (Print); ISSN: 2330-4308 (Online) Independent Modulation of the Phase and Amplitude of Electromagnetic Waves Based on the Phase Change of VO 2 and Mode Coupling Tianrui Pan, Yuan Pei, Maosheng Wang, Xiaojuan Xie, Wanxia Huang * School of Physics and Electronic Information & Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, Anhui Normal University, Wuhu, China Email address: *Corresponding author To cite this article: Tianrui Pan, Yuan Pei, Maosheng Wang, Xiaojuan Xie, Wanxia Huang. Independent Modulation of the Phase and Amplitude of Electromagnetic Waves Based on the Phase Change of VO2 and Mode Coupling. American Journal of Physics and Applications . Vol. 9, No. 4, 2021, pp. 88-93. doi: 10.11648/j.ajpa.20210904.13 Received : July 11, 2021; Accepted : August 2, 2021; Published : August 12, 2021 Abstract: Metasurfaces in a metal–semiconductor–metal configuration have been studied in multiple contexts, including perfect absorption and phase modulation. Nevertheless, limit progress has been achieved in independent phase modulation. To study further in this work, a metasurface composed of an Au film/ VO 2 film/ Au patch array with square holes was proposed in this paper. Through simulating and analysing the optical properties, simulated results indicated that an extremely switchable function can be realized by modulating the phase transition of VO 2, when VO 2 was in the metal (semiconductor) phase, the whole structure represented as ON (OFF) state. Additionally, the efficient modulation depth is approximately 99.6% for the y-polarization at a wavelength of 2.019 µm.
    [Show full text]
  • Electronic Tuning of Semiconductor Lasers with Multiple Quantum Well
    ELECTRONIC TUNING OF SEMICONDUCTOR LASERS WITH MULTIPLE QUANTUM WELL DEVICES Submitted to University of London in Fulfillment of the Requirements for the Degree of Philosophiae Doctor Thesis Author: BO CAI Thesis Supervisor: ALWYN SEEDS Department of Electronic and Electrical Engineering University College London Torrington Place, London WC1E 7JE October, 1991 1 ProQuest Number: 10797639 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10797639 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 Electronic Tuning of Semiconductor Lasers With Multiple Quantum Well Devices Abstract This thesis has been devoted to theoretical and experimental work on tunable semiconductor lasers, devices which play an important role in optical communication. The use of multiple quantum well (MQW) materials as tuning elements has been studied. In theoretical work the static and dynamic characteristics of single and multi-cavity tunable laser systems have been investigated in considerable detail. The various tuning structures were discussed. The refractive index change in MQW materials has been modelled and comparison between MQW and bulk materials has been made.
    [Show full text]