Genomics and Phylogeny of Cytoskeletal Proteins: Tools and Analyses

Total Page:16

File Type:pdf, Size:1020Kb

Genomics and Phylogeny of Cytoskeletal Proteins: Tools and Analyses Genomics and Phylogeny of Cytoskeletal Proteins: Tools and Analyses Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität vorgelegt von Björn Hammesfahr aus Ludwigsburg Göttingen 2012 Thesis Committee: PD Dr. Martin Kollmar (Referent) AG System-Biologie von Motorproteinen, Max-Planck-Institut für Biophysikalische Chemie Göttingen Prof. Dr. Burkhard Morgenstern (Co-Referent) Institut für Mikrobiologie und Genetik, Abteilung Bioinformatik, Georg-August-Universität Göttingen Dr. Dirk Fasshauer Associate Professor Department of Cell Biology and Morphology Faculty of Biology and Medicine University of Lausanne 1005 Lausanne Switzerland Tag der mündlichen Prüfung: 05.11.2012 Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt habe. Es wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel benutzt. Wörtlich oder sinngemäß übernommenes Gedankengut habe ich als solches kenntlich gemacht. ______________________ _______________________ Datum, Ort Unterschrift 6 Erklärung Talks: March 2010 Alpbach Meeting, Myotin & Muscle and Many other Motors “CyMoBase – The Reference Database For Cyotskeletal And Motor Proteins” Poster presentations: February 2010 Biophysical Society 54th Annual Meeting, San Francisco (USA) “CyMoBase – The Reference Database For Cytoskeletal And Motor Proteins” March 2010 Alpbach Meeting, Myosin & Muscle and Many other Motors, Alpbach (Austria) “CyMoBase – The Reference Database For Cyotskeletal And Motor Proteins” October 2010 2nd Bio-IT World Europe, Hannover (Germany) “CyMoBase – The Reference Database For Cyotskeletal And Motor Proteins” July 2011 ISMB/ECCB, Vienna (Austria) “CyMoBase and diArk - Resources for cytoskeletal and motor protein sequence information and eukaryotic genome research” October 2011 3rd Bio-IT World Europe “diArk and CyMoBase – Resources for eukaryotic genome research, and cytoskeletal and motor protein sequence information” Table of contents 7 Table of contents Erklärung............................................................................................................... 5 Table of contents .................................................................................................. 7 1 Introduction ........................................................................................... 11 1.1 Bits of Life ............................................................................................................ 11 1.1.1 Genome ................................................................................................................. 11 1.1.2 Gene ...................................................................................................................... 14 1.2 Cytoskeletal Proteins ............................................................................................ 16 1.2.1 Cytoskeleton ......................................................................................................... 16 1.2.2 Microfilaments ...................................................................................................... 16 1.2.3 Intermediate filaments .......................................................................................... 17 1.2.4 Microtubules ......................................................................................................... 17 1.2.5 Motor proteins ....................................................................................................... 17 1.3 Protein Family Analyses ....................................................................................... 20 1.3.1 Why analysing a protein family? .......................................................................... 20 1.3.2 How analysing a protein family? .......................................................................... 20 1.3.3 Issues during a protein family analysis ................................................................. 21 1.3.4 Correctly predict and assemble proteins ............................................................... 22 1.3.5 Phylogenetic analysis ............................................................................................ 23 1.4 Databases and Web applications ........................................................................... 25 1.4.1 Database ................................................................................................................ 25 1.4.2 Web application .................................................................................................... 25 1.4.3 Development ......................................................................................................... 26 1.4.4 Deployment ........................................................................................................... 27 1.4.5 Set up a new database ........................................................................................... 27 1.4.6 NMR ..................................................................................................................... 28 2 Publications ........................................................................................... 30 2.1 Evolution of the eukaryotic dynactin complex, the activator of cytoplasmic dynein 30 2.1.1 Abstract ................................................................................................................. 30 2.1.2 Background ........................................................................................................... 31 2.1.3 Results ................................................................................................................... 33 2.1.4 Discussion ............................................................................................................. 49 2.1.5 Conclusions ........................................................................................................... 57 2.1.6 Methods ................................................................................................................ 57 2.1.7 Competing interests .............................................................................................. 59 2.1.8 Authors' contributions ........................................................................................... 59 2.1.9 Acknowledgements ............................................................................................... 60 8 Table of contents 2.1.10 Additional files ..................................................................................................... 60 2.1.10.1 Additional file 1 as ZIP ..................................................................................... 60 2.1.10.2 Additional file 2 as PDF .................................................................................... 60 2.1.10.3 Additional file 3 as PDF .................................................................................... 60 2.1.10.4 Additional file 4 as PDF .................................................................................... 60 2.1.10.5 Additional file 5 as PDF .................................................................................... 61 2.1.10.6 Additional file 6 as PDF .................................................................................... 61 2.1.10.7 Additional file 7 ................................................................................................ 61 2.1.10.8 Additional file 8 as PDF .................................................................................... 64 2.2 A holistic phylogeny of the coronin gene family reveals an ancient origin of the tandem-coronin, defines a new subfamily, and predicts protein function ........................... 65 2.2.1 Abstract ................................................................................................................. 65 2.2.2 Background ........................................................................................................... 66 2.2.3 Results ................................................................................................................... 67 2.2.4 Discussion ............................................................................................................. 82 2.2.5 Conclusions ........................................................................................................... 86 2.2.6 Methods ................................................................................................................ 86 2.2.7 Acknowledgements ............................................................................................... 88 2.2.8 Authors' contributions ........................................................................................... 88 2.2.9 Additional files ..................................................................................................... 88 2.2.9.1 Additional file 1 – Sequence alignment of the coronins ................................... 88 2.2.9.2 Additional file 2 – MrBayes tree of the coronin family .................................... 88 2.2.9.3 Additional file 3 – RAxML tree of the coronin family ..................................... 89 2.2.9.4 Additional file 4 – Coronin repertoire of all eukaryotes analyzed .................... 89 2.2.9.5 Additional file 5 – Conserved residues in the coronin domain ......................... 89 2.3 diArk 2.0 provides detailed analyses of the ever increasing eukaryotic genome sequencing data...................................................................................................................
Recommended publications
  • 1 the Genetic Architecture of the Human Cerebral Cortex. Katrina L. Grasby1*, Neda Jahanshad2*, Jodie N. Painter1, Lucía Colodr
    bioRxiv preprint doi: https://doi.org/10.1101/399402; this version posted September 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The genetic architecture of the human cerebral cortex. Katrina L. Grasby1*, Neda Jahanshad2*, Jodie N. Painter1, Lucía Colodro-Conde1, Janita Bralten3,4, Derrek P. Hibar2,5, Penelope A. Lind1, Fabrizio Pizzagalli2, Christopher R.K. Ching2,6, Mary Agnes B. McMahon2, Natalia Shatokhina2, Leo C.P. Zsembik7, Ingrid Agartz8,9,10,11, Saud Alhusaini12,13, Marcio A.A. Almeida14, Dag Alnæs8,9, Inge K. Amlien15, Micael Andersson16,17, Tyler Ard18, Nicola J. Armstrong19, Allison Ashley-Koch20, Manon Bernard21, Rachel M. Brouwer22, Elizabeth E.L. Buimer22, Robin Bülow23, Christian Bürger24, Dara M. Cannon25, Mallar Chakravarty26,27, Qiang Chen28, Joshua W. Cheung2, Baptiste Couvy-Duchesne29,30,31, Anders M. Dale32,33, Shareefa Dalvie34, Tânia K. de Araujo35, Greig I. de Zubicaray36, Sonja M.C. de Zwarte22, Anouk den Braber37,38, Nhat Trung Doan8,9, Katharina Dohm24, Stefan Ehrlich39, Hannah-Ruth Engelbrecht40, Susanne Erk41, Chun Chieh Fan42, Iryna O. Fedko37, Sonya F. Foley43, Judith M. Ford44, Masaki Fukunaga45, Melanie E. Garrett20, Tian Ge46,47, Sudheer Giddaluru48, Aaron L. Goldman28, Nynke A. Groenewold34, Dominik Grotegerd24, Tiril P. Gurholt8,9,10, Boris A. Gutman2,49, Narelle K. Hansell31, Mathew A. Harris50,51, Marc B. Harrison2, Courtney C. Haswell52,53, Michael Hauser20, Stefan Herms54,55,56, Dirk J. Heslenfeld57, New Fei Ho58, David Hoehn59, Per Hoffmann54,55,60, Laurena Holleran25, Martine Hoogman3,4, Jouke-Jan Hottenga37, Masashi Ikeda61, Deborah Janowitz62, Iris E.
    [Show full text]
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supporting Information
    Supporting Information Bender et al. 10.1073/pnas.0802779105 Table S1. Species names and calculated numeric values pertaining to Fig. 1 Mitochondrially Nuclear encoded Nuclear encoded Species name encoded methionine, % methionine, % methionine, corrected, % Animals Primates Cebus albifrons 6.76 Cercopithecus aethiops 6.10 Colobus guereza 6.73 Gorilla gorilla 5.46 Homo sapiens 5.49 2.14 2.64 Hylobates lar 5.33 Lemur catta 6.50 Macaca mulatta 5.96 Macaca sylvanus 5.96 Nycticebus coucang 6.07 Pan paniscus 5.46 Pan troglodytes 5.38 Papio hamadryas 5.99 Pongo pygmaeus 5.04 Tarsius bancanus 6.74 Trachypithecus obscurus 6.18 Other mammals Acinonyx jubatus 6.86 Artibeus jamaicensis 6.43 Balaena mysticetus 6.04 Balaenoptera acutorostrata 6.17 Balaenoptera borealis 5.96 Balaenoptera musculus 5.78 Balaenoptera physalus 6.02 Berardius bairdii 6.01 Bos grunniens 7.04 Bos taurus 6.88 2.26 2.70 Canis familiaris 6.54 Capra hircus 6.84 Cavia porcellus 6.41 Ceratotherium simum 6.06 Choloepus didactylus 6.23 Crocidura russula 6.17 Dasypus novemcinctus 7.05 Didelphis virginiana 6.79 Dugong dugon 6.15 Echinops telfairi 6.32 Echinosorex gymnura 6.86 Elephas maximus 6.84 Equus asinus 6.01 Equus caballus 6.07 Erinaceus europaeus 7.34 Eschrichtius robustus 6.15 Eumetopias jubatus 6.77 Felis catus 6.62 Halichoerus grypus 6.46 Hemiechinus auritus 6.83 Herpestes javanicus 6.70 Hippopotamus amphibius 6.50 Hyperoodon ampullatus 6.04 Inia geoffrensis 6.20 Bender et al. www.pnas.org/cgi/content/short/0802779105 1of10 Mitochondrially Nuclear encoded Nuclear encoded Species
    [Show full text]
  • Integrating Protein Copy Numbers with Interaction Networks to Quantify Stoichiometry in Mammalian Endocytosis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.361196; this version posted October 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Integrating protein copy numbers with interaction networks to quantify stoichiometry in mammalian endocytosis Daisy Duan1, Meretta Hanson1, David O. Holland2, Margaret E Johnson1* 1TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218. 2NIH, Bethesda, MD, 20892. *Corresponding Author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.361196; this version posted October 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Proteins that drive processes like clathrin-mediated endocytosis (CME) are expressed at various copy numbers within a cell, from hundreds (e.g. auxilin) to millions (e.g. clathrin). Between cell types with identical genomes, copy numbers further vary significantly both in absolute and relative abundance. These variations contain essential information about each protein’s function, but how significant are these variations and how can they be quantified to infer useful functional behavior? Here, we address this by quantifying the stoichiometry of proteins involved in the CME network. We find robust trends across three cell types in proteins that are sub- vs super-stoichiometric in terms of protein function, network topology (e.g.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • SYSTEMATICS of DIVISION ASCOMYCOTA 1 Group
    References: Kirk PM, Cannon PF, Minter DW, Stalpers JA. 2008. Dictionary of the Fungi (10th ed.). Wallingford, UK: CABI. Webster, J., & Weber, R. (2007). Introduction to fungi. Cambridge, UK: Cambridge University Press. Url1.: https://en.wikipedia.org/wiki/Ascomycota SYSTEMATICS OF DIVISION ASCOMYCOTA 1 Group: Plectomycetes Plectomycetes is an artificial group of Ascomycota and it originally contained all Ascomycete fungi which produce their asci within a cleistothecium. Plectomycetes can be defined by the following set of characters; Cleistothecium or gymnothecium is usually present, ascogenous hyphae are usually not conspicuous, asci are scattered throughout the cleistothecium, asci are mostly globose and thin-walled, and the ascospores are released passively after disintegration of the ascus wall, not by active discharge, ascospores are small, unicellular and usually spherical or ovoid, conidia are commonly produced from phialides or as arthroconidia. Class: Eurotiomycetes Most members of the class produce an enclosed structure cleistothecium within which they produce their spores. It contains 10 order, 27 families 280 genus and about 3400 species. Order: Onygenales Onygenales members are able to digest keratin and because of this have become dominant organisms in environments where keratin is available. The most members have colorless cleistothecia and ascospores. The spherical to egg-shaped asci are always uniformly packed in the centrum and may be dispersed among hyphal elements. The ascospores are always single-celled (example: Chrysosporium, Microsporum and Trichophyton). Order: Eurotiales Most members of the order have phialidic asexual stages belonging to the genera Aspergillus and Penicillium or, less commonly, to Paecilomyces or even simpler types. Rarely there is no anamorph at all.
    [Show full text]
  • Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
    Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/).
    [Show full text]
  • Phylogenomic and Comparative Analysis of the Distribution And
    www.nature.com/scientificreports OPEN Phylogenomic and comparative analysis of the distribution and regulatory patterns of TPP Received: 25 August 2017 Accepted: 20 March 2018 riboswitches in fungi Published: xx xx xxxx Sumit Mukherjee1, Matan Drory Retwitzer2, Danny Barash2 & Supratim Sengupta 1 Riboswitches are metabolite or ion sensing cis-regulatory elements that regulate the expression of the associated genes involved in biosynthesis or transport of the corresponding metabolite. Among the nearly 40 diferent classes of riboswitches discovered in bacteria so far, only the TPP riboswitch has also been found in algae, plants, and in fungi where their presence has been experimentally validated in a few instances. We analyzed all the available complete fungal and related genomes and identifed TPP riboswitch-based regulation systems in 138 fungi and 15 oomycetes. We fnd that TPP riboswitches are most abundant in Ascomycota and Basidiomycota where they regulate TPP biosynthesis and/ or transporter genes. Many of these transporter genes were found to contain conserved domains consistent with nucleoside, urea and amino acid transporter gene families. The genomic location of TPP riboswitches when correlated with the intron structure of the regulated genes enabled prediction of the precise regulation mechanism employed by each riboswitch. Our comprehensive analysis of TPP riboswitches in fungi provides insights about the phylogenomic distribution, regulatory patterns and functioning mechanisms of TPP riboswitches across diverse fungal species and provides a useful resource that will enhance the understanding of RNA-based gene regulation in eukaryotes. Riboswitches are conserved non-coding structural RNA sensors that bind specifc metabolites and regulate gene expression1–4. A riboswitch is mainly composed of two domains; a highly conserved aptamer domain, which is responsible for binding of metabolites, and the expression platform that changes conformation on metabolite binding and regulates the expression of associated genes2.
    [Show full text]
  • Fungal Genome Initiative
    Fungal Genome Initiative A White Paper for Fungal Genomics July 10, 2004 Submitted on behalf of: The Fungal Genome Initiative Steering Committee Corresponding author: Bruce Birren The Broad Institute of Harvard and MIT 320 Charles Street, Cambridge, MA 02141 USA. Phone: 617-258-0900. E-mail: [email protected]. Summary Since 2001 fungal scientists and members of the Broad Institute have been pursuing a comprehensive plan to apply comparative sequence analysis to study the evolution of eukaryotic cellular processes and the molecular basis for fungal pathogenesis. In this white paper we seek approval to sequence four fungi to continue these efforts: • Schizosaccharomyces octosporus and Schizosaccharomyces japonicus — to improve the annotation of the S. pombe genome sequence. • Trichophyton rubrum — the cause of athlete’s foot and the first organism to be sequenced in the class of fungi that adhere to human skin. • Batrachochytrium dendrobatidis — the causal organism in the recent dramatic decline of global amphibian populations. The sequences of these four genomes, totaling 88 Mb, will both directly contribute to the study of key fungal pathogens and advance the utility of S. pombe, a widely used model for molecular and cellular research. Background and rationale Although S. cerevisiae, S. pombe and several filamentous fungi are well-established research organisms, the vast majority of fungi remain very poorly understood. The fact that over 800 million years (myr) has elapsed since the divergence from the common ancestor of the fungal kingdom (Figure1) means that these few well-studied organisms do not adequately represent the diversity found within the many fungi that play critical roles in human health and industry.
    [Show full text]
  • Genome-Wide Meta-Analysis Identifies Six Novel Loci Associated With
    Molecular Psychiatry (2015) 20, 647–656 © 2015 Macmillan Publishers Limited All rights reserved 1359-4184/15 www.nature.com/mp ORIGINAL ARTICLE Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption The Coffee and Caffeine Genetics Consortium, MC Cornelis1,2, EM Byrne3,117, T Esko4,5,6,7,117, MA Nalls8,117, A Ganna9, N Paynter10, KL Monda11, N Amin12, K Fischer4, F Renstrom13, JS Ngwa14, V Huikari15, A Cavadino16, IM Nolte17, A Teumer18,KYu19, P Marques-Vidal20, R Rawal21, A Manichaikul22, MK Wojczynski23, JM Vink24, JH Zhao25, G Burlutsky26, J Lahti27,28, V Mikkilä29,30, RN Lemaitre31, J Eriksson32, SK Musani33, T Tanaka34, F Geller35, J Luan25, J Hui36,37,38,39, R Mägi4, M Dimitriou40, ME Garcia41, W-K Ho42, MJ Wright43, LM Rose10, PKE Magnusson9, NL Pedersen9, D Couper44, BA Oostra45, A Hofman12, MA Ikram12,46,47, HW Tiemeier12,48, AG Uitterlinden12,49, FJA van Rooij12, I Barroso50,51, I Johansson52, L Xue14, M Kaakinen15,53,54, L Milani4, C Power16, H Snieder17, RP Stolk17, SE Baumeister55, R Biffar56,FGu19, F Bastardot57, Z Kutalik58,59,60, DR Jacobs Jr61, NG Forouhi25, E Mihailov4, L Lind62, C Lindgren63, K Michaëlsson64, A Morris63, M Jensen2, K-T Khaw42, RN Luben42, JJ Wang26, S Männistö65, M-M Perälä65, M Kähönen66, T Lehtimäki67, J Viikari68, D Mozaffarian1,2,69,70, K Mukamal71, BM Psaty31,72,73,74, A Döring75, AC Heath76, GW Montgomery43, N Dahmen77, T Carithers78, KL Tucker79, L Ferrucci34, HA Boyd35, M Melbye35, JL Treur24, D Mellström32, JJ Hottenga24, I Prokopenko63,80, A Tönjes81,82,
    [Show full text]
  • Downloaded, Each with Over 20 Samples for AD-Specific Pathways, Biological Processes, and Driver Each Specific Brain Region in Each Condition
    Xiang et al. BMC Medical Genomics 2018, 11(Suppl 6):115 https://doi.org/10.1186/s12920-018-0431-1 RESEARCH Open Access Condition-specific gene co-expression network mining identifies key pathways and regulators in the brain tissue of Alzheimer’s disease patients Shunian Xiang1,2, Zhi Huang4, Wang Tianfu1, Zhi Han3, Christina Y. Yu3,5, Dong Ni1*, Kun Huang3* and Jie Zhang2* From 29th International Conference on Genome Informatics Yunnan, China. 3-5 December 2018 Abstract Background: Gene co-expression network (GCN) mining is a systematic approach to efficiently identify novel disease pathways, predict novel gene functions and search for potential disease biomarkers. However, few studies have systematically identified GCNs in multiple brain transcriptomic data of Alzheimer’s disease (AD) patients and looked for their specific functions. Methods: In this study, we first mined GCN modules from AD and normal brain samples in multiple datasets respectively; then identified gene modules that are specific to AD or normal samples; lastly, condition-specific modules with similar functional enrichments were merged and enriched differentially expressed upstream transcription factors were further examined for the AD/normal-specific modules. Results: We obtained 30 AD-specific modules which showed gain of correlation in AD samples and 31 normal- specific modules with loss of correlation in AD samples compared to normal ones, using the network mining tool lmQCM. Functional and pathway enrichment analysis not only confirmed known gene functional categories related to AD, but also identified novel regulatory factors and pathways. Remarkably, pathway analysis suggested that a variety of viral, bacteria, and parasitic infection pathways are activated in AD samples.
    [Show full text]