The Role of the Actin-Regulatory Proteins Coronin 1A and Coronin 1B in the Regulation of Natural Killer Cell Development and Function

Total Page:16

File Type:pdf, Size:1020Kb

The Role of the Actin-Regulatory Proteins Coronin 1A and Coronin 1B in the Regulation of Natural Killer Cell Development and Function Aus dem Forschungszentrum Borstel Leibniz-Zentrum für Medizin und Biowissenschaften Programmbereich Asthma & Allergie Forschungsgruppe Immunbiologie THE ROLE OF THE ACTIN-REGULATORY PROTEINS CORONIN 1A AND CORONIN 1B IN THE REGULATION OF NATURAL KILLER CELL DEVELOPMENT AND FUNCTION DISSERTATION zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftliche Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von André Jenckel Bad Segeberg, 2013 Erste/r Gutachter/in: Prof. Dr. Dr. Silvia Bulfone-Paus Zweite/r Gutachter/in: Prof. Dr. Thomas Roeder Tag der mündlichen Prüfung: 09.01.2014 Zum Druck genehmigt: 09.01.2014 gez. Prof. Dr. Wolfgang J. Duschl, Dekan Table of contents II Table of contents Table of contents ................................................................................................................. II Abbreviations ..................................................................................................................... VI List of figures...................................................................................................................... IX List of tables ....................................................................................................................... XI 1 Introduction .............................................................................................................. 1 1.1 The immune system ................................................................................................... 1 1.2 Natural killer cells ....................................................................................................... 2 1.2.1 Stages of NK cell development .................................................................................. 5 1.2.2 NK cell cytotoxicity and its regulation ......................................................................... 7 1.3 The actin cytoskeleton and its function ......................................................................10 1.4 Coronins ...................................................................................................................11 1.4.1 Coronins: Structure, classification and expression in mammalian tissues/cells .........12 1.4.2 Coronins and the actin cytoskeleton ..........................................................................14 1.4.3 Regulation of coronins ..............................................................................................16 1.4.4 Functions of coronins in the mammalian system .......................................................17 2 Aim of the study ......................................................................................................19 3 Materials ..................................................................................................................20 3.1 Mice and cell lines .....................................................................................................20 3.2 Chemicals and reagents ...........................................................................................20 3.3 Molecular and cell biology kits and reagents .............................................................22 3.4 Primer and UPL probes .............................................................................................22 3.5 Antibodies .................................................................................................................23 3.5.1 Antibodies for flow cytometry and immunofluorescence microscopy .........................23 3.5.2 Antibodies used for stimulation .................................................................................25 3.5.3 Antibodies for Western blotting .................................................................................25 3.6 Laboratory equipment ...............................................................................................26 3.7 Laboratory supplies ...................................................................................................27 Table of contents III 3.8 Software ....................................................................................................................27 4 Methods ...................................................................................................................28 4.1 Cell isolation, cultivation and stimulation ...................................................................28 4.1.1 Isolation of cells from spleen, lymph nodes, bone marrow and liver ..........................28 4.1.2 Cell cultivation ...........................................................................................................29 4.1.3 Purification and expansion of NK cells ......................................................................29 4.1.4 Purification of CD4+ and CD8+ T cells .......................................................................29 4.1.5 Purification of B cells .................................................................................................30 4.1.6 Generation of bone marrow-derived mast cells .........................................................30 4.1.7 Generation of bone marrow-derived macrophages ...................................................30 4.1.8 Generation of bone marrow-derived dendritic cells ...................................................31 4.1.9 Culture of YAC-1 and A20 cells .................................................................................31 4.1.10 NK cell stimulation ....................................................................................................31 4.2 Quantitative real-time PCR analysis ..........................................................................32 4.2.1 Total RNA isolation ...................................................................................................32 4.2.2 cDNA synthesis .........................................................................................................32 4.2.3 Quantitative real-time PCR ........................................................................................33 4.3 Flow cytometry and intracellular staining ...................................................................34 4.3.1 Analysis of surface molecules ...................................................................................34 4.3.2 Intracellular FACS staining ........................................................................................34 4.4 SDS polyacrylamide gel elektrophoresis (SDS-PAGE) and Western blot (WB) .........35 4.4.1 Sample preparation ...................................................................................................35 4.4.2 SDS-PAGE ...............................................................................................................35 4.5 Western blotting ........................................................................................................36 4.6 Immunofluorescence microscopy ..............................................................................36 4.7 Transwell migration assay .........................................................................................37 4.8 In vitro lactate dehydrogenase (LDH)-based killing assay .........................................37 4.9 Flow cytometric conjugate assay...............................................................................38 4.10 Cytoskeleton-rich fraction isolation ............................................................................38 4.11 CD107a-degranulation assay ....................................................................................39 Table of contents IV 4.12 Cytokine measurement by ELISA ..............................................................................39 4.13 Statistical analysis .....................................................................................................40 5 Results .....................................................................................................................41 5.1 Coro1a and Coro1b are co-expressed in NK cells .....................................................41 5.2 Subcellular localization of Coro1a and Coro1b in NK Cells .......................................44 5.3 Increased cellular F-actin levels in Coro1a-deficient NK cells ....................................46 5.4 CXCL10 and CXCL12- induced migration of Coro1a-/- and Coro1a-/-Coro1b-/- NK cells is impaired by the loss of Coro1a ..............................................................................47 5.5 Coro1a-deficiency affects absolute numbers of naïve NK cells in the bone marrow but not in the spleen ........................................................................................................48 5.6 Impaired NK cell maturation in Coro1a- and Coro1aCoro1b-deficient mice ...............50 5.7 IL-15-expanded wild type, Coro1a-/- and/or Coro1b-/- NK cells show a similar phenotype .................................................................................................................56 5.8 Coro1a-/- and Coro1a-/-Coro1b-/- NK cells show decreased cytotoxicity ......................58 5.9 The impact of Coro1a- and Coro1b-deficency on NK cell activities and their modulators ................................................................................................................59 5.9.1 Intercellular conjugate formation is not affected by the loss of Coro1a or Coro1b .....59 5.9.2 Akt and Erk phosphorylation in Coro1a-/- and/or Coro1b-/- NK cells upon cellular activation ...................................................................................................................62
Recommended publications
  • 1 the Genetic Architecture of the Human Cerebral Cortex. Katrina L. Grasby1*, Neda Jahanshad2*, Jodie N. Painter1, Lucía Colodr
    bioRxiv preprint doi: https://doi.org/10.1101/399402; this version posted September 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The genetic architecture of the human cerebral cortex. Katrina L. Grasby1*, Neda Jahanshad2*, Jodie N. Painter1, Lucía Colodro-Conde1, Janita Bralten3,4, Derrek P. Hibar2,5, Penelope A. Lind1, Fabrizio Pizzagalli2, Christopher R.K. Ching2,6, Mary Agnes B. McMahon2, Natalia Shatokhina2, Leo C.P. Zsembik7, Ingrid Agartz8,9,10,11, Saud Alhusaini12,13, Marcio A.A. Almeida14, Dag Alnæs8,9, Inge K. Amlien15, Micael Andersson16,17, Tyler Ard18, Nicola J. Armstrong19, Allison Ashley-Koch20, Manon Bernard21, Rachel M. Brouwer22, Elizabeth E.L. Buimer22, Robin Bülow23, Christian Bürger24, Dara M. Cannon25, Mallar Chakravarty26,27, Qiang Chen28, Joshua W. Cheung2, Baptiste Couvy-Duchesne29,30,31, Anders M. Dale32,33, Shareefa Dalvie34, Tânia K. de Araujo35, Greig I. de Zubicaray36, Sonja M.C. de Zwarte22, Anouk den Braber37,38, Nhat Trung Doan8,9, Katharina Dohm24, Stefan Ehrlich39, Hannah-Ruth Engelbrecht40, Susanne Erk41, Chun Chieh Fan42, Iryna O. Fedko37, Sonya F. Foley43, Judith M. Ford44, Masaki Fukunaga45, Melanie E. Garrett20, Tian Ge46,47, Sudheer Giddaluru48, Aaron L. Goldman28, Nynke A. Groenewold34, Dominik Grotegerd24, Tiril P. Gurholt8,9,10, Boris A. Gutman2,49, Narelle K. Hansell31, Mathew A. Harris50,51, Marc B. Harrison2, Courtney C. Haswell52,53, Michael Hauser20, Stefan Herms54,55,56, Dirk J. Heslenfeld57, New Fei Ho58, David Hoehn59, Per Hoffmann54,55,60, Laurena Holleran25, Martine Hoogman3,4, Jouke-Jan Hottenga37, Masashi Ikeda61, Deborah Janowitz62, Iris E.
    [Show full text]
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Associated 16P11.2 Deletion in Drosophila Melanogaster
    ARTICLE DOI: 10.1038/s41467-018-04882-6 OPEN Pervasive genetic interactions modulate neurodevelopmental defects of the autism- associated 16p11.2 deletion in Drosophila melanogaster Janani Iyer1, Mayanglambam Dhruba Singh1, Matthew Jensen1,2, Payal Patel 1, Lucilla Pizzo1, Emily Huber1, Haley Koerselman3, Alexis T. Weiner 1, Paola Lepanto4, Komal Vadodaria1, Alexis Kubina1, Qingyu Wang 1,2, Abigail Talbert1, Sneha Yennawar1, Jose Badano 4, J. Robert Manak3,5, Melissa M. Rolls1, Arjun Krishnan6,7 & 1234567890():,; Santhosh Girirajan 1,2,8 As opposed to syndromic CNVs caused by single genes, extensive phenotypic heterogeneity in variably-expressive CNVs complicates disease gene discovery and functional evaluation. Here, we propose a complex interaction model for pathogenicity of the autism-associated 16p11.2 deletion, where CNV genes interact with each other in conserved pathways to modulate expression of the phenotype. Using multiple quantitative methods in Drosophila RNAi lines, we identify a range of neurodevelopmental phenotypes for knockdown of indi- vidual 16p11.2 homologs in different tissues. We test 565 pairwise knockdowns in the developing eye, and identify 24 interactions between pairs of 16p11.2 homologs and 46 interactions between 16p11.2 homologs and neurodevelopmental genes that suppress or enhance cell proliferation phenotypes compared to one-hit knockdowns. These interac- tions within cell proliferation pathways are also enriched in a human brain-specific network, providing translational relevance in humans. Our study indicates a role for pervasive genetic interactions within CNVs towards cellular and developmental phenotypes. 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA. 2 Bioinformatics and Genomics Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
    [Show full text]
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptNat Immunol Author Manuscript. Author manuscript; Author Manuscript available in PMC 2009 May 01. Published in final edited form as: Nat Immunol. 2008 November ; 9(11): 1307–1315. doi:10.1038/ni.1662. The actin regulator coronin-1A is mutated in a thymic egress deficient mouse strain and in a T−B+NK+ SCID patient Lawrence R. Shiow1,2,3, David W. Roadcap5, Kenneth Paris7, Susan R. Watson2, Irina L. Grigorova1,2, Tonya Lebet2,4, Jinping An1,2, Ying Xu1,2, Craig N. Jenne1,2, Niko Föger8, Ricardo U. Sorensen7, Christopher C. Goodnow6, James E. Bear5, Jennifer M. Puck3,4, and Jason G. Cyster1,2,3 1 Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 2 Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 3 Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 4 Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, CA 5 Lineberger Comprehensive Cancer Center and Department of Cell and Developmental Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 6 John Curtin School of Medical Research, The Australian National University, Canberra, Australia 7 Department of Pediatrics, Louisiana State University Health Sciences Center and Children’s Hospital, New Orleans, LA 8 Department of Immunology and Cell Biology, Leibniz Center for Medicine and Biosciences, Borstel, Germany Abstract Mice carrying the recessive peripheral T cell deficiency (Ptcd) locus have a block in thymic egress but the mechanism responsible is undefined.
    [Show full text]
  • Integrating Protein Copy Numbers with Interaction Networks to Quantify Stoichiometry in Mammalian Endocytosis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.361196; this version posted October 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Integrating protein copy numbers with interaction networks to quantify stoichiometry in mammalian endocytosis Daisy Duan1, Meretta Hanson1, David O. Holland2, Margaret E Johnson1* 1TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218. 2NIH, Bethesda, MD, 20892. *Corresponding Author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.361196; this version posted October 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Proteins that drive processes like clathrin-mediated endocytosis (CME) are expressed at various copy numbers within a cell, from hundreds (e.g. auxilin) to millions (e.g. clathrin). Between cell types with identical genomes, copy numbers further vary significantly both in absolute and relative abundance. These variations contain essential information about each protein’s function, but how significant are these variations and how can they be quantified to infer useful functional behavior? Here, we address this by quantifying the stoichiometry of proteins involved in the CME network. We find robust trends across three cell types in proteins that are sub- vs super-stoichiometric in terms of protein function, network topology (e.g.
    [Show full text]
  • Prediction of Candidate Primary Immunodeficiency Disease Genes
    DNA RESEARCH 16, 345–351, (2009) doi:10.1093/dnares/dsp019 Prediction of Candidate Primary Immunodeficiency Disease Genes Using a Support Vector Machine Learning Approach SHIVAKUMAR Keerthikumar1,2,3,SAHELY Bhadra4,KUMARAN Kandasamy1,2,5,RAJESH Raju1,2,3, Y.L. Ramachandra2,CHIRANJIB Bhattacharyya4,KOHSUKE Imai8,OSAMU Ohara6,7, SUJATHA Mohan1,3, and AKHILESH Pandey1,5,* Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India1; Department of Biotechnology and Bioinformatics, Kuvempu University, Jnanasahyadri, Shimoga 577 451, India2; Research Unit for Immunoinformatics, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Kanagawa 230- 0045, Japan3; Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India4; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, BRB Room 527, Baltimore, MD 21205, USA5; Laboratory for Immunogenomics, Research Center for Allergy and Immunology, RIKEN, Yokohama Institute, Kanagawa 230-0045, Japan6; Department of Human Genome Technology, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan7 and Department of Medical Informatics, National Defense Medical College, Saitama 359-8513, Japan8 (Received 23 July 2009; accepted 5 September 2009; published online 3 October 2009) Abstract Screening and early identification of primary immunodeficiency disease (PID) genes is a major chal- lenge for physicians. Many resources have catalogued molecular alterations in known PID genes along with their associated clinical and immunological phenotypes. However, these resources do not assist in identifying candidate PID genes. We have recently developed a platform designated Resource of Asian PDIs, which hosts information pertaining to molecular alterations, protein–protein interaction networks, mouse studies and microarray gene expression profiling of all known PID genes.
    [Show full text]
  • Structural Basis of Arp2/3 Complex Inhibition by GMF, Coronin, and Arpin
    Structural Basis of Arp2/3 Complex Inhibition by GMF, Coronin, and Arpin Olga Sokolova, Angelina Chemeris, Siyang Guo, Salvatore Alioto, Meghal Gandhi, Shae Padrick, Evgeniya Pechnikova, Violaine David, Alexis Gautreau, Bruce Goode To cite this version: Olga Sokolova, Angelina Chemeris, Siyang Guo, Salvatore Alioto, Meghal Gandhi, et al.. Structural Basis of Arp2/3 Complex Inhibition by GMF, Coronin, and Arpin. Journal of Molecular Biology, Elsevier, 2017, 429 (2), pp.237-248. 10.1016/j.jmb.2016.11.030. hal-01964479 HAL Id: hal-01964479 https://hal-polytechnique.archives-ouvertes.fr/hal-01964479 Submitted on 22 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Mol Biol Manuscript Author . Author manuscript; Manuscript Author available in PMC 2017 March 14. Published in final edited form as: J Mol Biol. 2017 January 20; 429(2): 237–248. doi:10.1016/j.jmb.2016.11.030. Structural basis of Arp2/3 complex inhibition by GMF, Coronin, and Arpin Olga S. Sokolova1, Angelina Chemeris1,5, Siyang Guo2, Salvatore L.
    [Show full text]
  • Single-Cell Transcriptomes Reveal a Complex Cellular Landscape in the Middle Ear and Differential Capacities for Acute Response to Infection
    fgene-11-00358 April 9, 2020 Time: 15:55 # 1 ORIGINAL RESEARCH published: 15 April 2020 doi: 10.3389/fgene.2020.00358 Single-Cell Transcriptomes Reveal a Complex Cellular Landscape in the Middle Ear and Differential Capacities for Acute Response to Infection Allen F. Ryan1*, Chanond A. Nasamran2, Kwang Pak1, Clara Draf1, Kathleen M. Fisch2, Nicholas Webster3 and Arwa Kurabi1 1 Departments of Surgery/Otolaryngology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States, 2 Medicine/Center for Computational Biology & Bioinformatics, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States, 3 Medicine/Endocrinology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States Single-cell transcriptomics was used to profile cells of the normal murine middle ear. Clustering analysis of 6770 transcriptomes identified 17 cell clusters corresponding to distinct cell types: five epithelial, three stromal, three lymphocyte, two monocyte, Edited by: two endothelial, one pericyte and one melanocyte cluster. Within some clusters, Amélie Bonnefond, Institut National de la Santé et de la cell subtypes were identified. While many corresponded to those cell types known Recherche Médicale (INSERM), from prior studies, several novel types or subtypes were noted. The results indicate France unexpected cellular diversity within the resting middle ear mucosa. The resolution of Reviewed by: Fabien Delahaye, uncomplicated, acute, otitis media is too rapid for cognate immunity to play a major Institut Pasteur de Lille, France role. Thus innate immunity is likely responsible for normal recovery from middle ear Nelson L. S. Tang, infection. The need for rapid response to pathogens suggests that innate immune The Chinese University of Hong Kong, China genes may be constitutively expressed by middle ear cells.
    [Show full text]
  • Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
    Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/).
    [Show full text]
  • Diagnostic Interpretation of Genetic Studies in Patients with Primary
    AAAAI Work Group Report Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: A working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology Ivan K. Chinn, MD,a,b Alice Y. Chan, MD, PhD,c Karin Chen, MD,d Janet Chou, MD,e,f Morna J. Dorsey, MD, MMSc,c Joud Hajjar, MD, MS,a,b Artemio M. Jongco III, MPH, MD, PhD,g,h,i Michael D. Keller, MD,j Lisa J. Kobrynski, MD, MPH,k Attila Kumanovics, MD,l Monica G. Lawrence, MD,m Jennifer W. Leiding, MD,n,o,p Patricia L. Lugar, MD,q Jordan S. Orange, MD, PhD,r,s Kiran Patel, MD,k Craig D. Platt, MD, PhD,e,f Jennifer M. Puck, MD,c Nikita Raje, MD,t,u Neil Romberg, MD,v,w Maria A. Slack, MD,x,y Kathleen E. Sullivan, MD, PhD,v,w Teresa K. Tarrant, MD,z Troy R. Torgerson, MD, PhD,aa,bb and Jolan E. Walter, MD, PhDn,o,cc Houston, Tex; San Francisco, Calif; Salt Lake City, Utah; Boston, Mass; Great Neck and Rochester, NY; Washington, DC; Atlanta, Ga; Rochester, Minn; Charlottesville, Va; St Petersburg, Fla; Durham, NC; Kansas City, Mo; Philadelphia, Pa; and Seattle, Wash AAAAI Position Statements,Work Group Reports, and Systematic Reviews are not to be considered to reflect current AAAAI standards or policy after five years from the date of publication. The statement below is not to be construed as dictating an exclusive course of action nor is it intended to replace the medical judgment of healthcare professionals.
    [Show full text]
  • Genome-Wide Meta-Analysis Identifies Six Novel Loci Associated With
    Molecular Psychiatry (2015) 20, 647–656 © 2015 Macmillan Publishers Limited All rights reserved 1359-4184/15 www.nature.com/mp ORIGINAL ARTICLE Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption The Coffee and Caffeine Genetics Consortium, MC Cornelis1,2, EM Byrne3,117, T Esko4,5,6,7,117, MA Nalls8,117, A Ganna9, N Paynter10, KL Monda11, N Amin12, K Fischer4, F Renstrom13, JS Ngwa14, V Huikari15, A Cavadino16, IM Nolte17, A Teumer18,KYu19, P Marques-Vidal20, R Rawal21, A Manichaikul22, MK Wojczynski23, JM Vink24, JH Zhao25, G Burlutsky26, J Lahti27,28, V Mikkilä29,30, RN Lemaitre31, J Eriksson32, SK Musani33, T Tanaka34, F Geller35, J Luan25, J Hui36,37,38,39, R Mägi4, M Dimitriou40, ME Garcia41, W-K Ho42, MJ Wright43, LM Rose10, PKE Magnusson9, NL Pedersen9, D Couper44, BA Oostra45, A Hofman12, MA Ikram12,46,47, HW Tiemeier12,48, AG Uitterlinden12,49, FJA van Rooij12, I Barroso50,51, I Johansson52, L Xue14, M Kaakinen15,53,54, L Milani4, C Power16, H Snieder17, RP Stolk17, SE Baumeister55, R Biffar56,FGu19, F Bastardot57, Z Kutalik58,59,60, DR Jacobs Jr61, NG Forouhi25, E Mihailov4, L Lind62, C Lindgren63, K Michaëlsson64, A Morris63, M Jensen2, K-T Khaw42, RN Luben42, JJ Wang26, S Männistö65, M-M Perälä65, M Kähönen66, T Lehtimäki67, J Viikari68, D Mozaffarian1,2,69,70, K Mukamal71, BM Psaty31,72,73,74, A Döring75, AC Heath76, GW Montgomery43, N Dahmen77, T Carithers78, KL Tucker79, L Ferrucci34, HA Boyd35, M Melbye35, JL Treur24, D Mellström32, JJ Hottenga24, I Prokopenko63,80, A Tönjes81,82,
    [Show full text]