Monomethylvaline Compounds Capable of Conjugation to Ligands

Total Page:16

File Type:pdf, Size:1020Kb

Monomethylvaline Compounds Capable of Conjugation to Ligands (19) TZZ Z T (11) EP 2 260 858 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 15.12.2010 Bulletin 2010/50 A61K 38/06 (2006.01) A61K 39/395 (2006.01) C07K 16/46 (2006.01) C07K 7/02 (2006.01) (2006.01) (21) Application number: 10175437.2 A61K 47/48 (22) Date of filing: 05.11.2004 (84) Designated Contracting States: • Toki, Brian E. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Shoreline, WA 98155 (US) HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR • Ebens, Allen J. Designated Extension States: San Carlos, CA 94070 (US) AL HR LT LV MK YU • Kline, Toni Beth Seattle, WA 98119 (US) (30) Priority: 06.11.2003 US 518534 P • Polakis, Paul 26.03.2004 US 557116 P Burlingame, CA 94010 (US) 04.08.2004 US 598899 P • Sliwkowski, Mark X. 27.10.2004 US 622455 P San Carlos, CA 94070 (US) • Spencer, Susan D. (62) Document number(s) of the earlier application(s) in Tiburon, CA 94920 (US) accordance with Art. 76 EPC: 04821486.0 / 1 725 249 (74) Representative: Wytenburg, Wilhelmus Johannes et al (71) Applicant: Seattle Genetics, Inc. Mewburn Ellis LLP Bothell, WA 98021 (US) 33 Gutter Lane London (72) Inventors: EC2V 8AS (GB) • Doronina, Svetlana O. Snohomish, WA 98296 (US) Remarks: • Senter, Peter D. This application was filed on 06-09-2010 as a Seattle, WA 98115 (US) divisional application to the application mentioned under INID code 62. (54) Monomethylvaline compounds capable of conjugation to ligands (57) Auristatin peptides, including MeVal-Val-Dil- various linkers, including maleimidocaproyl-val-cit-PAB. Dap-Norephedrine (MMAE) and MeVal-Val-Dil-Dap-Phe The resulting ligand drug conjugates were active in vitro (MMAF), were prepared and attached to Ligands through and in vivo. EP 2 260 858 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 260 858 A2 Description [0001] This application claims the benefit of U.S. Provisional Patent Application No. 60/518,534, filed November 6, 2003; U.S. Provisional Patent Application No. 601557,116, filed March 26, 2004; U.S. Provisional Patent Application 5 No. 60/598,899, filed August 4, 2004; and U.S. Provisional Patent Application No. 60/622,455, filed October 27, 2004; the disclosures of which are incorporated by reference herein. 1. FIELD OF THE INVENTION 10 [0002] The present invention is directed to a Drug Compound and more particularly to Drug-Linker-Ligand Conjugates, Drug-Linker Compounds, and Drug-Ligand Conjugates, to compositions including the same, and to methods for using the same to treat cancer, an autoimmune disease or an infectious disease. The present invention is also directed to antibody-drug conjugates, to compositions including the same, and to methods for using the same to treat cancer, an autoimmune disease or an infectious. disease. The invention also relates to methods of using antibody-drug conjugate 15 compounds for in vitro, in situ, and in vivo diagnosis or treatment of mammalian cells, or associated pathological con- ditions. 2. BACKGROUND OF THE INVENTION 20 [0003] Improving the delivery of drugs and other agents to target cells, tissues and tumors to achieve maximal efficacy and minimal toxicity has been the focus. of considerable research for many years. Though many attempts have been made to develop effective methods for importing biologically active molecules into cells, both in vivo and in vitro, none has proved to be entirely satisfactory. Optimizing the association of the drug with its intracellular target, while minimizing intercellular redistribution of the drug, e.g., to neighboring cells, is often difficult or inefficient. 25 [0004] Most agents currently administered to a patient parenterally are not targeted, resulting in systemic delivery of the agent to cells and tissues of the body where it is unnecessary, and often undesirable. This may result in adverse drug side effects, and often limits the dose of a drug (e.g., chemotherapeutic (anti-cancer), cytotoxic, enzyme inhibitor agents and antiviral or antimicrobial drugs) that can be administered. By comparison, although oral administration of drugs is considered to be a convenient and economical mode of administration, it shares the same concerns of non- 30 specific toxicity to unaffected cells once the drug has been absorbed into the systemic circulation. Further complications involve problems with oral bioavailability and residence of drug in the gut leading to additional exposure of gut to the drug and hence risk of gut toxicities. Accordingly, a major goal has been to develop methods for specifically targeting agents to cells and tissues. The benefits of such treatment include avoiding the general physiological effects of inap- propriate delivery of such agents to other cells and tissues, such as uninfected cells. Intracellular targeting may be 35 achieved by methods, compounds and formulations which allow accumulation or retention of biologically active agents, i.e. active metabolites, inside cells. [0005] Monoclonal antibody therapy has been established for the targeted treatment of patients with cancer, immu- nological and angiogenic disorders. [0006] The use of antibody-drug conjugates for the local delivery of cytotoxic or cytostatic agents, e.g., drugs to kill 40 or inhibit tumor cells in the treatment of cancer (Syrigos and Epenetos (1999) Anticancer Research 19:605-614; Niculescu- Duvaz and Springer (1997) Adv. Drg. Del. Rev. 26:151-172; U.S. Patent No. 4975278) theoretically allows targeted delivery of the drug moiety to tumors, and intracellular accumulation therein, while systemic administration of these unconjugated drug agents may result in unacceptable levels of toxicity to normal cells as well as the tumor cells sought to be eliminated (Baldwin et al., 1986, Lancet pp. (Mar. 15, 1986):603-05; Thorpe, 1985, "Antibody Carriers Of Cytotoxic 45 Agents In Cancer Therapy: A Review," in Monoclonal Antibodies ’84: Biological And Clinical Applications, A. Pinchera et al. (ed.s), pp. 475-506). Maximal efficacy with minimal toxicity is sought thereby. Both polyclonal antibodies and monoclonal antibodies have been reported as useful in these strategies (Rowland et al., 1986, Cancer Immunol. Immu- nother. 21:183-87). Drugs used in these methods include daunomycin, doxorubicin, methotrexate, and vindesine (Row- land et al., 1986, supra). Toxins used in antibody-toxin conjugates include bacterial toxins such as diphtheria toxin, plant 50 toxins such as ricin, small molecule toxins such as geldanamycin (Kerr et al., 1997, Bioconjugate Chem. 8(6):781-784; Mandler et al. (2000) Jour. of the Nat. Cancer Inst. 92(19):1573-1581; Mandler et al. (2000) Bioorganic & Med. Chem. Letters 10:1025-1028; Mandler et al. (2002) Bioconjugate Chem. 13:786-791), maytansinoids (EP 1391213; Liu et al., (1996) Proc. Natl. Acad. Sci. USA 93:8618-8623), and calicheamicin (Lode et al. (1998) Cancer Res. 58:2928; Hinman et al. (1993) Cancer Res. 53:3336-3342). The toxins may affect their cytotoxic and cytostatic effects by mechanisms 55 including tubulin binding, DNA binding, or topoisomerase inhibition (Meyer, D.L. and Senter, P.D. "Recent Advances in Antibody Drug Conjugates for Cancer Therapy" in Annual Reports in Medicinal Chemistry, Vol 38 (2003) Chapter 23, 229-237). Some cytotoxic drugs tend to be inactive or less active when conjugated to large antibodies or protein receptor ligands. 2 EP 2 260 858 A2 [0007] ZEVALIN® (ibritumomab tiuxetan, Biogen/Idec) is an antibody-radioisotope conjugate composed of a murine IgG1 kappa monoclonal antibody directed against the CD20 antigen found on the surface of normal and malignant B lymphocytes and 111In or 90Y radioisotope bound by a thiourea linker-chelator (Wiseman et al. (2000) Eur. Jour. Nucl. Med. 27(7):766-77; Wiseman et al. (2002) Blood 99(12):4336-42; Witzig et al. (2002) J. Clin. Oncol. 20(10):2453-63; 5 Witzig et al. (2002) J. Clin. Oncol. 20(15):3262-69). Although ZEVALIN has activity against B-cell non-Hodgkin’s Lym- phoma (NHL), administration results in severe and prolonged cytopenias in most patients. MYLOTARG™ (gemtuzumab ozogamicin, Wyeth Pharmaceuticals), an antibody drug conjugate composed of a hu CD33 antibody linked to calicheam- icin, was approved in 2000 for the treatment of acute myeloid leukemia by injection (Drugs of the Future (2000) 25(7): 686; U.S. Patent Nos. 4970198; 5079233; 5585089; 5606040; 5693762; 5739116; 5767285; 5773001). Cantuzumab 10 mertansine (Immunogen, Inc.), an antibody drug conjugate composed of the huC242 antibody linked via the disulfide linker SPP to the maytansinoid drug moiety, DM1, is advancing into Phase II trials for the treatment of cancers that express CanAg, such as colon, pancreatic, gastric, and others. MLN-2704 (Millennium Pharm., BZL Biologics, Immu- nogen Inc.), ah antibody drug conjugate composed of the anti-prostate specific membrane antigen (PSMA) monoclonal antibody linked to the maytansinoid drug moiety, DM1, is under development for the potential treatment of prostate 15 tumors. The same maytansinoid drug moiety, DM1, was linked through a non-disulfide linker, SMCC, to a mouse murine monoclonal antibody, TA.1 (Chari et al. (1992) Cancer Research 52:127-131). This conjugate was reported to be 200- fold less potent than the corresponding disulfide linker conjugate. The SMCC linker was considered therein to be "non- cleavable." [0008] Several short peptidic compounds have been isolated from the marine mollusc Dolabella auricularia and found 20 to have biological activity (Pettit et al. (1993) Tetrahedron 49:9151; Nakamura et al. (1995) Tetrahedron Letters 36: 5059-5062; Sone et al. (1995) Jour. Org Chem. 60:4474). Analogs of these compounds have also been prepared, and some were found to have biological activity (for a review, see Pettit et al. (1998) Anti-Cancer Drug Design 13:243-277). For example, auristatin E (U.S. Patent No. 5635483) is a synthetic analogue of the marine natural product Dolastatin 10, an agent that inhibits tubulin polymerization by binding to the same domain on tubulin as the anticancer drug vincristine 25 (G.
Recommended publications
  • In the United States Court of Appeals for the Federal Circuit
    Case: 18-1959 Document: 16 Page: 1 Filed: 08/20/2018 No. 18-1959 In the United States Court of Appeals for the Federal Circuit GENENTECH, INC., APPELLANT v. HOSPIRA, INC., APPELLEE ON APPEAL FROM THE UNITED STATES PATENT AND TRADEMARK OFFICE PATENT TRIAL AND APPEAL BOARD IN NO. IPR2016-01771 BRIEF OF APPELLANT GENENTECH, INC. PAUL B. GAFFNEY ADAM L. PERLMAN THOMAS S. FLETCHER WILLIAMS & CONNOLLY LLP 725 Twelfth Street, N.W. Washington, DC 20005 (202) 434-5000 Case: 18-1959 Document: 16 Page: 2 Filed: 08/20/2018 CERTIFICATE OF INTEREST Pursuant to Federal Circuit Rule 47.4, undersigned counsel for appellant certifies the following: 1. The full name of the party represented by me is Genentech, Inc. 2. The name of the real party in interest represented by me is the same. 3. Genentech, Inc. is a wholly-owned subsidiary of Roche Holdings Inc. Roche Holdings Inc.’s ultimate parent, Roche Holdings Ltd, is a publicly held Swiss corporation traded on the Swiss Stock Exchange. Upon information and belief, more than 10% of Roche Holdings Ltd’s voting shares are held either directly or indirectly by Novartis AG, a publicly held Swiss corporation. 4. The following attorneys appeared for Genentech, Inc. in proceedings below or are expected to appear in this Court and are not already listed on the docket for the current case: Teagan J. Gregory and Christopher A. Suarez of Williams & Connolly LLP, 725 Twelfth Street, N.W., Washington, D.C. 20005. 5. The title and number of any case known to counsel to be pending in this or any other court or agency that will directly affect or be directly affected by this court’s decision in this pending appeal are Genentech, Inc.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Anticancer Effect of Deuterium Oxide on a Bladder Cancer Cell Related to Bcl-2 and Bax
    J. Ind. Eng. Chem., Vol. 13, No. 4, (2007) 501-507 Anticancer Effect of Deuterium Oxide on a Bladder Cancer Cell Related to Bcl-2 and Bax Jong Yoon Bahk*, Jeong-Hee Lee**, Hong Suk Chung***, Hae Young Lee******, † † Bong Chul Chung**** , Moon Seok Park******, Seung Ki Min*****, and Myeong Ok Kim****** *Department of Urology and **Pathology, Medical School, Gyeongsang National University, Jinju, 660-751, Korea ***Korea Atomic Energy Research Institute, PO Box 105, Daejeon, 305-600, Korea ****Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, P.O.BOX 131, Seoul, Korea *****Department of Urology, National Police Hospital, Seoul, 138-708, Korea ****** Division of Life Science and Applied of Life Science, BK 21 College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Korea Received February 17, 2007; Accepted April 18, 2007 Abstract: To evaluate the potentiality, as a drug for an intravesical instillation after a transurethral resection of a bladder tumor, we studied the anticancer effects of deuterium oxide (D2O) related to bcl-2 and bax. Bladder cancer cell T-24 was used and culture media were prepared with H2O and D2O at different concentrations (D2O v/v), 0 (control), 75, and 100 %. Cells were exposed to each D2O for 2, 2.5, 3, and 3.5 h. The anti- proliferative effects were measured by a quantitative colorimetric assay (MTT assay) and a hemocytometer. Invasion study was implemented with a modified reconstituted basement membrane after an exposure to D2O. Immunohistochemical staining and Western blot analysis for bcl-2 and bax were implemented to evaluate the relation between D2O and apoptosis.
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • WO 2017/173206 Al 5 October 2017 (05.10.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/173206 Al 5 October 2017 (05.10.2017) P O P C T (51) International Patent Classification: CA 94121 (US). HUBBARD, Robert; 7684 Marker Road, A61K 31/52 (2006.01) C07D 473/02 (2006.01) San Diego, CA 92087 (US). MIKOLON, David; 6140 A61K 31/505 (2006.01) C07D 473/26 (2006.01) Calle Empinada, San Diego, CA 92120 (US). RAYMON, A61K 31/519 (2006.01) C07D 473/32 (2006.01) Heather; 3520 Vista de la Orilla, San Diego, CA 921 17 (US). SHI, Tao; 4650 Tarantella Lane, San Diego, CA (21) International Application Number: 92130 (US). TRAN, Tam, M.; 8953 Libra Drive, San PCT/US20 17/025252 Diego, CA 92126 (US). TSUJI, Toshiya; 4171 Donald (22) International Filing Date: Court, San Diego, CA 921 17 (US). WONG, Lilly, L.; 871 3 1 March 2017 (3 1.03.2017) Viva Court, Solana Beach, CA 92075 (US). XU, Suichan; 9650 Deer Trail Place, San Diego, CA 92127 (US). ZHU, (25) Filing Language: English Dan; 4432 Calle Mar De Armonia, San Diego, CA 92130 (26) Publication Language: English (US). (30) Priority Data: (74) Agents: BRUNER, Michael, J. et al; Jones Day, 250 Ve- 62/3 17,412 1 April 2016 (01.04.2016) US sey Street, New York, NY 10281-1047 (US). (71) Applicant: SIGNAL PHARMACEUTICALS, LLC (81) Designated States (unless otherwise indicated, for every [US/US]; 10300 Campus Point Drive, Suite 100, San kind of national protection available): AE, AG, AL, AM, Diego, CA 92121 (US).
    [Show full text]
  • WO 2018/175958 Al 27 September 2018 (27.09.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/175958 Al 27 September 2018 (27.09.2018) W !P O PCT (51) International Patent Classification: A61K 31/53 (2006 .01) A61P 35/00 (2006 .0 1) C07D 251/40 (2006.01) (21) International Application Number: PCT/US20 18/024 134 (22) International Filing Date: 23 March 2018 (23.03.2018) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/476,585 24 March 2017 (24.03.2017) US (71) Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 1111 Franklin Street, Twelfth Floor, Oakland, CA 94607-5200 (US). (72) Inventors: NOMURA, Daniel, K.; 4532 Devenport Av enue, Berkeley, CA 94619 (US). ANDERSON, Kimberly, E.; 8 Marchant Court, Kensington, CA 94707 (US). (74) Agent: LEE, Joohee et al; Mintz Levin Cohn Ferris Glovsky And Popeo, P.C., One Financial Center, Boston, MA 021 11 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • C19) United States 02) Patent Application Publication (10) Pub
    1111111111111111 IIIIII IIIII 111111111111111 111111111111111 IIIII IIIII IIIII 1111111111 11111111 US 20190241665Al c19) United States 02) Patent Application Publication (10) Pub. No.: US 2019/0241665 Al KREEGER et al. (43) Pub. Date: Aug. 8, 2019 (54) METHODS OF INHIBITING METASTASIS IN C07K 16/24 (2006.01) CANCER C12N 15/113 (2006.01) A61K 31/439 (2006.01) (71) Applicant: WISCONSIN ALUMNI RESEARCH (52) U.S. Cl. FOUNDATION, Madison, WI (US) CPC .......... C07K 1612854 (2013.01); A61P 35/04 (2018.01); C07K 16/24 (2013.01); Cl2N (72) Inventors: PAMELA KAY KREEGER, 2310/14 (2013.01); C12N 15/1138 (2013.01); MIDDLETON, WI (US); MOLLY A61K 31/439 (2013.01); C07K 2317/76 JANE CARROLL, MADISON, WI (2013.01); C07K 16/2866 (2013.01) (US); KAITLIN C. FOGG, FITCHBURG, WI (US) (57) ABSTRACT (21) Appl. No.: 16/256,065 As described herein, a method of inhibiting metastasis in (22) Filed: Jan. 24, 2019 cancer includes administering to a human subject diagnosed with a cancer of an organ of the peritoneal cavity a thera­ Related U.S. Application Data peutically effective amount of an inhibitor of CCR5 or P-selectin. Preferably the subject has a tumor positive for a (60) Provisional application No. 62/621,769, filed on Jan. ligand of P-selectin such as a CD24+ or PSGL-1 + tumor. 25, 2018. Analysis of samples from HGSOC patients confirmed increased MIP-1 fJ and P-selectin, suggesting that this novel Publication Classification multi-cellular mechanism can be targeted to slow or stop (51) Int. Cl. metastasis in cancers such as high-grade serous ovarian C07K 16/28 (2006.01) cancer, for example by using anti-CCR5 and P-selectin A61P 35/04 (2006.01) therapies developed for other indications.
    [Show full text]
  • Application of Ligand Based Pharmacophore Modeling and Chemical Database Mining
    Available online a t www.derpharmachemica.com Scholars Research Library Der Pharma Chemica, 2015, 7(4):123-148 (http://derpharmachemica.com/archive.html) ISSN 0975-413X CODEN (USA): PCHHAX In-silico identification of novel Topoisomerase-I inhibitors: Application of ligand based pharmacophore modeling and chemical database mining Supriya Singh 1, Sarvesh Paliwal 1, Anubhuti Pandey 1, Sucheta Das 1 and Rajeev Singh 2* 1Department of Pharmacy, Banasthali University, Tonk, Rajasthan, India 2Material/ Organometallics Research Laboratory, Room No. 15, Department of Chemistry, ARSD, University of Delhi, New Delhi, India _____________________________________________________________________________________________ ABSTRACT In recent year’s topoisomerase I inhibitors like indenoisoquinolines have become important new lead for rational design of anticancer drugs due to their greater physiological and DNA-enzyme cleavage complexes stabilities. As a starting point a complete pharmacophore based 3D-QSAR study was performed on a series of 104 indenoisoquinolines and their derivatives. The best pharmacophore model consisted of one Hydrophobe (HY), one Positive Ionizable (PI) and one Ring Aromatic (RA) charecterstics which are a necessary requirement for good topoisomerase I inhibitory activity. The model was validated using Fischer randomization test and by internal and external data set of 38 and 27 compounds, respectively exhibiting r2 of 0.663 and 0.66. The validated pharmacophore model was used to screen NCI and Maybridge database resulting in identification of 21 novel topoisomerase I inhibitors. Since all the 21 compounds obeyed Lipinski’s rule of five, it is envisaged that these structurally diverse compounds have great potential for their development as anti-cancer agents. Keywords: DNA, Enzyme, QSAR, Database, NCI, Maybridge _____________________________________________________________________________________________ INTRODUCTION Cancer is the leading cause of mortality in most countries after cardiovascular disease.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2006) – Supplement 1 (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2006) – Supplement 1 (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABACAVIR 136470-78-5 ACEXAMIC ACID 57-08-9 ABAFUNGIN 129639-79-8 ACICLOVIR 59277-89-3 ABAMECTIN 65195-55-3 ACIFRAN 72420-38-3 ABANOQUIL 90402-40-7 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABCIXIMAB 143653-53-6 ACITEMATE 101197-99-3 ABECARNIL 111841-85-1 ACITRETIN 55079-83-9 ABIRATERONE 154229-19-3 ACIVICIN 42228-92-2 ABITESARTAN 137882-98-5 ACLANTATE 39633-62-0 ABLUKAST 96566-25-5 ACLARUBICIN 57576-44-0 ABUNIDAZOLE 91017-58-2 ACLATONIUM NAPADISILATE 55077-30-0 ACADESINE 2627-69-2 ACODAZOLE 79152-85-5 ACAMPROSATE 77337-76-9 ACONIAZIDE 13410-86-1 ACAPRAZINE 55485-20-6 ACOXATRINE 748-44-7 ACARBOSE 56180-94-0 ACREOZAST 123548-56-1 ACEBROCHOL 514-50-1 ACRIDOREX 47487-22-9 ACEBURIC
    [Show full text]
  • Multistage Delivery of Active Agents
    111111111111111111111111111111111111111111111111111111111111111111111111111111 (12) United States Patent (io) Patent No.: US 10,143,658 B2 Ferrari et al. (45) Date of Patent: Dec. 4, 2018 (54) MULTISTAGE DELIVERY OF ACTIVE 6,355,270 B1 * 3/2002 Ferrari ................. A61K 9/0097 AGENTS 424/185.1 6,395,302 B1 * 5/2002 Hennink et al........ A61K 9/127 (71) Applicants:Board of Regents of the University of 264/4.1 2003/0059386 Al* 3/2003 Sumian ................ A61K 8/0241 Texas System, Austin, TX (US); The 424/70.1 Ohio State University Research 2003/0114366 Al* 6/2003 Martin ................. A61K 9/0097 Foundation, Columbus, OH (US) 424/489 2005/0178287 Al* 8/2005 Anderson ............ A61K 8/0241 (72) Inventors: Mauro Ferrari, Houston, TX (US); 106/31.03 Ennio Tasciotti, Houston, TX (US); 2008/0280140 Al 11/2008 Ferrari et al. Jason Sakamoto, Houston, TX (US) FOREIGN PATENT DOCUMENTS (73) Assignees: Board of Regents of the University of EP 855179 7/1998 Texas System, Austin, TX (US); The WO WO 2007/120248 10/2007 Ohio State University Research WO WO 2008/054874 5/2008 Foundation, Columbus, OH (US) WO WO 2008054874 A2 * 5/2008 ............... A61K 8/11 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. Akerman et al., "Nanocrystal targeting in vivo," Proc. Nad. Acad. Sci. USA, Oct. 1, 2002, 99(20):12617-12621. (21) Appl. No.: 14/725,570 Alley et al., "Feasibility of Drug Screening with Panels of Human tumor Cell Lines Using a Microculture Tetrazolium Assay," Cancer (22) Filed: May 29, 2015 Research, Feb.
    [Show full text]
  • WO 2018/096100 Al 31 May 2018 (31.05.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/096100 Al 31 May 2018 (31.05.2018) W !P O PCT (51) International Patent Classification: A61K 31/05 (2006.01) A61K 31/7068 (2006.01) A61K 31/164 (2006.01) A61K 33/24 (2006.01) A61K 31/352 (2006.01) A61K 45/06 (2006.01) A61K 31/473 {2006.01) A61P 21/00 (2006.01) A61K 31/5375 (2006.01) A61P 43/00 (2006.01) (21) International Application Number: PCT/EP2017/080353 (22) International Filing Date: 24 November 201 7 (24. 11.201 7) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 16200498.0 24 November 20 16 (24. 11.20 16) EP (71) Applicant: AOP ORPHAN PHARMACEUTICALS AG [AT/AT]; WilhelminenstraBe 91/11 f, 1160 Vienna (AT). (72) Inventors: KOHL, Agnes; WilhelminenstraBe 91/11 f, 1160 Vienna (AT). LENHARD, Ralf; WilhelminenstraBe 91/11 f, 1160 Vienna (AT). (74) Agent: LOD3L, Manuela et al; REDL Life Science Patent Attorneys, Donau-City-StraBe 11, 1220 Vienna (AT). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]