A Glossary of Hydrogeological Terms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redox Models in Chemistry
Redox models in chemistry A depiction of the conceptions held by secondary school students of redox reactions Lise-Lotte Österlund Department of Chemistry 901 87 Umeå Umeå 2010 Copyright©Lise-Lotte Österlund ISBN: 978-91-7459-053-1 ISSN: 1652-5051 Cover picture: Photographer, Lise-Lotte Österlund Printed by: VMC, KBC, Umeå University Umeå, Sweden 2010 T0 my family Abstract According to previous research, students show difficulties in learning redox reactions. By the historical development different redox models exist to explain redox reactions, the oxygen model, the hydrogen model, the electron model and the oxidation number model. This thesis reports about three studies concerning conceptions held by secondary school students of redox reactions. A textbook analysis is also included in the thesis. The first study was an investigation of the students’ use of redox models in inorganic contexts, their use of the activity series of metals, and the students’ ability to transfer redox knowledge. Then the students’ work with an open- ended biochemical task, where the students had access of the textbook was studied. The students talk about redox reactions, the questions raised by the students, what resources used to answer the questions and what kind of talk developed were investigated. A textbook analysis based on chemistry books from Sweden and one book from England was performed. The redox models used as well as the dealing with redox related learning difficulties was studied. Finally, the students’ conceptions about redox in inorganic, organic and biochemistry after completed chemistry courses were studied. The results show that the students were able to use the electron model as a tool to explain inorganic redox reactions and the mutuality of oxidation and reduction was fundamental. -
Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background -
Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth
Subscriber access provided by RES CENTER OF ECO ENVIR SCI Article Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth Metals on Cobalt#Cerium Composite Oxide Catalysts for N2O Decomposition Li Xue, Hong He, Chang Liu, Changbin Zhang, and Bo Zhang Environ. Sci. Technol., 2009, 43 (3), 890-895 • DOI: 10.1021/es801867y • Publication Date (Web): 05 January 2009 Downloaded from http://pubs.acs.org on January 31, 2009 More About This Article Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Environ. Sci. Technol. 2009, 43, 890–895 Promotion Effects and Mechanism such as Fe-ZSM-5 are more active in the selective catalytic reduction (SCR) of N2O by hydrocarbons than in the - ° of Alkali Metals and Alkaline Earth decomposition of N2O in a temperature range of 300 400 C (3). In recent years, it has been found that various mixed Metals on Cobalt-Cerium oxide catalysts, such as calcined hydrotalcite and spinel oxide, showed relatively high activities. Composite Oxide Catalysts for N2O One of the most active oxide catalysts is a mixed oxide containing cobalt spinel. Calcined hydrotalcites containing Decomposition cobalt, such as Co-Al-HT (9-12) and Co-Rh-Al-HT (9, 11), have been reported to be very efficient for the decomposition 2+ LI XUE, HONG HE,* CHANG LIU, of N2O. -
Carbon – Science and Technology
© Applied Science Innovations Pvt. Ltd., India Carbon – Sci. Tech. 1 (2010) 139 - 143 Carbon – Science and Technology ASI ISSN 0974 – 0546 http://www.applied-science-innovations.com ARTICLE Received :29/03/2010, Accepted :02/09/2010 ----------------------------------------------------------------------------------------------------------------------------- Ablation morphologies of different types of carbon in carbon/carbon composites Jian Yin, Hongbo Zhang, Xiang Xiong, Jinlv Zuo State Key Laboratory of Powder Metallurgy, Central South University, Lushan South Road, Changsha, China. --------------------------------------------------------------------------------------------------------------------------------------- 1. Introduction : Carbon/carbon (C/C) composites the ablation morphology and formation mechanism of combine good mechanical properties and designable each types of carbon. capabilities of composites and excellent ultrahigh temperature properties of carbon materials. They have In this study, ablation morphologies of resin-based low densities, high specific strength, good thermal carbon, carbon fibers, pyrolytic carbon with smooth stability, high thermal conductivity, low thermal laminar structure and rough laminar structure has been expansion coefficient and excellent ablation properties investigated in detail and their formation mechanisms [1]. As C/C composites show excellent characteristics were discussed. in both structural design and functional application, 2 Experimental : they have become one of the most competitive high temperature materials widely used in aviation and 2.1 Preparation of C/C composites : Bulk needled polyacrylonitrile (PAN) carbon fiber felts spacecraft industry [2 - 4]. In particular, they are were used as reinforcements. Three kinds of C/C considered to be the most suitable materials for solid composites, labeled as sample A, B and C, were rocket motor nozzles. prepared. Sample A is a C/C composite mainly with C/C composites are composed of carbon fibers and smooth laminar pyrolytic carbon, sample B is a C/C carbon matrices. -
Geophysics (3 Credits) Spring 2018
GEO 3010 – Geophysics (3 credits) Spring 2018 Lecture: FASB 250, 10:45-11:35 am, M & W Lab: FASB 250, 2:00-5:00 pm, M or W Instructor: Fan-Chi Lin (Assistant Professor, Dept. of Geology & Geophysics) Office: FASB 271 Phone: 801-581-4373 Email: [email protected] Office Hours: M, W 11:45 am - 1:00 pm. Please feel free to email me if you would like to make an appointment to meet at a different time. Teaching Assistants: Elizabeth Berg ([email protected]) FASB 288 Yadong Wang ([email protected]) FASB 288 Office Hours: T, H 1:00-3:00 pm Website: http://noise.earth.utah.edu/GEO3010/ Course Description: Prerequisite: MATH 1220 (Calculus II). Co-requisite: GEO 3080 (Earth Materials I). Recommended Prerequisite: PHYS 2220 (Phycs For Scien. & Eng. II). Fulfills Quantitative Intensive BS. Applications of physical principles to solid-earth dynamics and solid-earth structure, at both the scale of global tectonics and the smaller scale of subsurface exploration. Acquisition, modeling, and interpretation of seismic, gravity, magnetic, and electrical data in the context of exploration, geological engineering, and environmental problems. Two lectures, one lab weekly. 1. Policies Grades: Final grades are based on following weights: • Homework (25 %) • Labs (25 %) • Exam 1-3 (10% each) • Final (20 %) Homework: There will be approximately 6 homework sets. Homework must be turned in by 5 pm of the day they are due. 10 % will be marked off for each day they are late. Homework will not be accepted 3 days after the due day. Geophysics – GEO 3010 1 Labs: Do not miss labs! In general you will not have a chance to make up missed labs. -
Conceptual Understanding of Osmosis and Diffusion by Australian First-Year Biology Students
International Journal of Innovation in Science and Mathematics Education, 27(9), 17-33, 2019 Conceptual Understanding of Osmosis and Diffusion by Australian First-year Biology Students Nicole B. Reinkea, Mary Kynna and Ann L. Parkinsona Corresponding author: Nicole B. Reinke ([email protected]) aSchool of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs QLD 4576, Australia Keywords: biology, osmosis, diffusion, conceptual assessment, misconception Abstract Osmosis and diffusion are essential foundation concepts for first-year biology students as they are a key to understanding much of the biology curriculum. However, mastering these concepts can be challenging due to their interdisciplinary and abstract nature. Even at their simplest level, osmosis and diffusion require the learner to imagine processes they cannot see. In addition, many students begin university with flawed beliefs about these two concepts which will impede learning in related areas. The aim of this study was to explore misconceptions around osmosis and diffusion held by first-year cell biology students at an Australian regional university. The 18- item Osmosis and Diffusion Conceptual Assessment was completed by 767 students. From the results, four key misconceptions were identified: approximately half of the participants believed dissolved substances will eventually settle out of a solution; approximately one quarter thought that water will always reach equal levels; one quarter believed that all things expand and contract with temperature; and nearly one third of students believed molecules only move with the addition of external force. Greater attention to identifying and rectifying common misconceptions when teaching first-year students will improve their conceptual understanding of these concepts and benefit their learning in subsequent science subjects. -
Circle Reverse Osmosis System
CIRCLE REVERSE OSMOSIS SYSTEM KEY FEATURES Water Saving Technology – Patented technology eliminates backpressure The RC100 conforms to common in conventional RO systems making the Circle up to 10 times more NSF/ANSI 42, 53 and efficient than existing products. 58 for the reduction of Saves You Money – Conventional RO systems waste up to 24 gallons of Aesthetic Chlorine, Taste water per every 1 gallon of filtered water produced. The Circle only wastes and Odor, Cyst, VOCs, an average of 2.1 gallons of water per 1 gallon of filtered water produced, Fluoride, Pentavalent Arsenic, Barium, Radium 226/228, Cadmium, Hexavalent saving you water and money over the life of the product!. Chromium, Trivalent Chromium, Lead, RO Filter Auto Flushing – Significantly extends life of RO filter. Copper, Selenium and TDS as verified Chrome Faucet Included – With integrated LED filter change indicator. and substantiated by test data. The RC100 conforms to NSF/ANSI 372 for Space Saving Compact Design – Integrated rapid refill tank means more low lead compliance. space under the sink. SPECIFICATIONS Product Name H2O+ Circle Reverse Osmosis Water Filtration System Model / SKU RC100 Installation Undercounter Sediment Filter, Pre-Carbon Plus Filter, Post Carbon Block Filter (RF-20): 6 months Filters & Lifespan RO Membrane Filter (RF-40): 24 months Tank Capacity 6 Liters (refills fully in less than one hour) Dimensions 9.25” (W) x 16.5” (H) x 13.75” (D) Net weight 14.6 lbs Min/Max Operating Pressure 40 psi – 120 psi (275Kpa – 827Kpa) Min/Max Water Feed Temp 41º F – 95º F (5º C – 35º C) Faucet Flow Rate 0.26 – 0.37 gallons per minute (gpm) at incoming water pressure of 20–100 psi Rated Service Flow 0.07 gallons per minute (gpm) Warranty One Year Warranty PO Box 470085, San Francisco CA, 94147–0085 brondell.com 888-542-3355. -
2.1.5 Stress-Strain Relation for Anisotropic Materials
,/... + -:\ 2.1.5Stress-strain Relation for AnisotropicMaterials The generalizedHook's law relatingthe stressesto strainscan be writtenin the form U2, 13,30-32]: o,=C,,€, (i,i =1,2,.........,6) Where: o, - Stress('ompttnents C,, - Elasticity matrix e,-Straincomponents The material properties (elasticity matrix, Cr) has thirty-six constants,stress-strain relations in the materialcoordinates are: [30] O1 LI CT6 a, l O2 03_ a, -t ....(2-6) T23 1/ )1 T32 1/1l 'Vt) Tt2 C16 c66 I The relations in equation (3-6) are referred to as characterizing anisotropicmaterials since there are no planes of symmetry for the materialproperties. An alternativename for suchanisotropic material is a triclinic material. If there is one plane of material property symmetry,the stress- strainrelations reduce to: -'+1-/ ) o1 c| ct2 ct3 0 0 crc €l o2 c12 c22 c23 0 0 c26 a: ct3 C23 ci3 0 0 c36 o-\ o3 ....(2-7) 723 000cqqc450 y)1 T3l 000c4sc5s0 Y3l T1a ct6 c26 c36 0 0 c66 1/t) Where the plane of symmetryis z:0. Such a material is termed monoclinicwhich containstfirfen independentelastic constants. If there are two brthogonalplanes of material property symmetry for a material,symmetry will existrelative to a third mutuallyorthogonal plane. The stress-strainrelations in coordinatesaligned with principal material directionswhich are parallel to the intersectionsof the three orthogonalplanes of materialsymmetry, are'. Ol ctl ct2ctl000 tl O2 Ct2 c22c23000 a./ o3 ct3 c23c33000 * o-\ ....(2-8) T23 0 00c4400 y)1 yll 731 0 000css0 712 0 0000cr'e 1/1) 'lt"' -' , :t i' ,/ Suchmaterial is calledorthotropic material.,There is no interaction betweennormal StreSSeS ot r 02, 03) andanisotropic materials. -
Identifying the Elastic Isotropy of Architectured Materials Based On
Identifying the elastic isotropy of architectured materials based on deep learning method Anran Wei a, Jie Xiong b, Weidong Yang c, Fenglin Guo a, d, * a Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China b Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China c School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China d State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China * Corresponding author, E-mail: [email protected] Abstract: With the achievement on the additive manufacturing, the mechanical properties of architectured materials can be precisely designed by tailoring microstructures. As one of the primary design objectives, the elastic isotropy is of great significance for many engineering applications. However, the prevailing experimental and numerical methods are normally too costly and time-consuming to determine the elastic isotropy of architectured materials with tens of thousands of possible microstructures in design space. The quick mechanical characterization is thus desired for the advanced design of architectured materials. Here, a deep learning-based approach is developed as a portable and efficient tool to identify the elastic isotropy of architectured materials directly from the images of their representative microstructures with arbitrary component distributions. The measure of elastic isotropy for architectured materials is derived firstly in this paper to construct a database with associated images of microstructures. Then a convolutional neural network is trained with the database. It is found that the convolutional neural network shows good performance on the isotropy identification. -
On the Use of Discrete Fourier Transform for Solving Biperiodic Boundary Value Problem of Biharmonic Equation in the Unit Rectangle
On the Use of Discrete Fourier Transform for Solving Biperiodic Boundary Value Problem of Biharmonic Equation in the Unit Rectangle Agah D. Garnadi 31 December 2017 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University Jl. Meranti, Kampus IPB Darmaga, Bogor, 16680 Indonesia Abstract This note is addressed to solving biperiodic boundary value prob- lem of biharmonic equation in the unit rectangle. First, we describe the necessary tools, which is discrete Fourier transform for one di- mensional periodic sequence, and then extended the results to 2- dimensional biperiodic sequence. Next, we use the discrete Fourier transform 2-dimensional biperiodic sequence to solve discretization of the biperiodic boundary value problem of Biharmonic Equation. MSC: 15A09; 35K35; 41A15; 41A29; 94A12. Key words: Biharmonic equation, biperiodic boundary value problem, discrete Fourier transform, Partial differential equations, Interpola- tion. 1 Introduction This note is an extension of a work by Henrici [2] on fast solver for Poisson equation to biperiodic boundary value problem of biharmonic equation. This 1 note is organized as follows, in the first part we address the tools needed to solve the problem, i.e. introducing discrete Fourier transform (DFT) follows Henrici's work [2]. The second part, we apply the tools already described in the first part to solve discretization of biperiodic boundary value problem of biharmonic equation in the unit rectangle. The need to solve discretization of biharmonic equation is motivated by its occurence in some applications such as elasticity and fluid flows [1, 4], and recently in image inpainting [3]. Note that the work of Henrici [2] on fast solver for biperiodic Poisson equation can be seen as solving harmonic inpainting. -
Non-Clastic Sedimentary Rocks by Cindy Grigg
Non-Clastic Sedimentary Rocks By Cindy Grigg 1 Rocks can be put into three main groups. They are grouped by how the rocks formed. Sedimentary (sed-uh-MEN-tuh-ree) rocks are formed on or near Earth's surface. Sedimentary rocks are sorted into other groups. They can be sorted as clastic or non-clastic. This group tells something about the rocks' beginning and what they formed from. 2 Non-clastic rocks are created when water evaporates or from the remains of plants and animals. Limestone is a non-clastic sedimentary rock. Limestone is made of the mineral calcite. It often contains fossils. Limestone formed in the ocean from the shells and skeletons of dead sea creatures. Some of the fossils in limestone are too small to be seen without a microscope. Chalk is a type of limestone that is usually white. It consists almost entirely of the shells of tiny dead sea creatures. Limestone is a common building material. 3 Coal is another non-clastic rock. It formed from the dead remains of plants. Millions of years ago, plants fell into swamps. They were covered with layers of sediment and did not rot. Over millions of years, as the remains were buried deeper under more and more layers of sediment, they were changed by pressure into coal. Coal is commonly used as fuel in power plants to make electricity. 4 Evaporite rocks formed when minerals such as gypsum and halite (rock salt) were left behind as water evaporated from oceans and lakes. Evaporite is common in desert areas, where evaporation is high, such as the Great Salt Lake in Utah. -
Density and Specific Weight Estimation for the Liquids and Solid Materials
Laboratory experiments Experiment no 2 – Density and specific weight estimation for the liquids and solid materials. 1. Theory Density is a physical property shared by all forms of matter (solids, liquids, and gases). In this lab investigation, we are mainly concerned with determining the density of solid objects; both regular-shaped and irregular-shaped. In general regular-shaped solid objects are those that have straight sides that can be measured using a metric ruler. These shapes include but are not limited to cubes and rectangular prisms. In general, irregular-shaped solid objects are those that do not have straight sides that cannot be measured with a metric ruler or slide caliper. The density of a material is defined as its mass per unit volume. The symbol of density is ρ (the Greek letter rho). m kg (1) V m3 The specific weight (also known as the unit weight) is the weight per unit volume of a material. The symbol of specific weight is γ (the Greek letter Gamma). W N (2) V m3 On the surface of the Earth, the weight W of an object is related to its mass m by: W = m · g, (3) where g is the acceleration due to the Earth's gravity, equal to about 9.81 ms-2. Using eq. 1, 2 and 3 we will obtain dependence between specific weight of the body and its density: g (4) Apparatus: Vernier caliper, balance with specific gravity platform (additional table in our case), 250 ml graduate beaker. Unknowns: a) Various solid samples (regular and irregular shaped) b) Light liquid sample (alcohol-water mixture) or heavy liquid sample (salt-water mixture).