Estrogen Receptor Beta Is a Negative Regulator of Mammary Cell Proliferation Xiaozheng Song University of Vermont

Total Page:16

File Type:pdf, Size:1020Kb

Estrogen Receptor Beta Is a Negative Regulator of Mammary Cell Proliferation Xiaozheng Song University of Vermont University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2014 Estrogen Receptor Beta Is A Negative Regulator Of Mammary Cell Proliferation Xiaozheng Song University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Animal Sciences Commons, and the Molecular Biology Commons Recommended Citation Song, Xiaozheng, "Estrogen Receptor Beta Is A Negative Regulator Of Mammary Cell Proliferation" (2014). Graduate College Dissertations and Theses. 259. https://scholarworks.uvm.edu/graddis/259 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. ESTROGEN RECEPTOR BETA IS A NEGATIVE REGULATOR OF MAMMARY CELL PROLIFERATION A Dissertation Presented by Xiaozheng Song to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Animal Science October, 2014 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, specializing in Animal Science. Dissertation Examination Committee: ____________________________________ Advisor Zhongzong Pan Ph.D. ____________________________________ Co-Advisor Andre-Denis Wright Ph.D. ____________________________________ Rona Delay, Ph.D. ____________________________________ David Kerr, Ph.D. ____________________________________ Chairperson Karen M. Lounsbury, Ph. D. ____________________________________ Dean, Graduate College Cynthia J. Forehand, Ph.D. Date: May 5, 2014 ABSTRACT The mammary gland cell growth and differentiation are under the control of both systemic hormones and locally produced growth factors. Among all these important hormones and growth factors, estrogen plays a central role in mammary gland development. The biological function of estrogen is mediated by estrogen receptor α (ERα) and estrogen receptor β (ERβ). Both ERα and ERβ are expressed in the mammary gland, but with distinct expression patterns. In the mammary gland, ERα has been proved to be the estrogen receptor that mediates the mitogenic function of estrogen. However the function of ERβ in mammary cell proliferation is less understood and there remains some controversy. Accumulating evidence indicates that ERβ, unlike ERα, is a negative regulator of mammary epithelial cell proliferation. In this dissertation, ERα and ERβ were evaluated for their expression patterns in the mammary gland. In the proestrus phase, ERα was detected in about 20% of mammary epithelial cells; in the diestrus phase, no ERα staining was detected in the mammary gland. ERβ was expressed in more than 50% of mammary epithelial cells and ERβ staining was detected in some stromal cells in the proestrus phase. In the diestrus phase, ERβ staining cells were very limited and the staining intensity was very weak. These data suggest that the expression levels of both ERα and ERβ undergo dynamic changes during the estrous cycle. In the ovariectomised (OVX) rats, both ERα and ERβ were detected in more than 50% of mammary epithelial cells. Compared with the ovary-intact rats, the mammary gland of the OVX rats showed more cells with ER expression, but the staining intensity was weaker. Taken together, the expression of ERα and ERβ is regulated by estrogen in normal mammary gland, while without estrogen stimulation in the OVX rats, more mammary cells showed ER expression, but at a lower level in these cells. The effects of ERα and ERβ on mammary cell proliferation were studied by two different approaches, activation of endogenous ERα and ERβ via selective agonists, and overexpression of ERα and ERβ via lentiviral infection. In the first approach, we used ERα and ERβ selective agonists, propylpyrazole-triol (PPT) and diarylpropionitrile (DPN) respectively, to activate endogenous ERα and ERβ in the OVX rats. We found that ERβ selective agonist DPN counteracts the proliferative effect of ERα selective agonist PPT in the mammary gland. In the second approach, ERα and ERβ were ectopically overexpressed in the mammary gland of mature virgin rats by lentivirus infection. We found that ERβ overexpression significantly decreased mammary cell proliferation rate in both the proestrus and diestrus phases, indicating that ERβ, unlike ERα, is a negative regulator for mammary cell proliferation. Collectively, these data supports that in contrast to ERα, ERβ activation or overexpression is able to inhibit mammary cell proliferation. CITATION Material from this dissertation has been published in the following form: Song, X. and Z.-Z. Pan.. (2012). "Estrogen receptor-beta agonist diarylpropionitrile counteracts the estrogenic activity of estrogen receptor-alpha agonist propylpyrazole-triol in the mammary gland of ovariectomized Sprague Dawley rats." The Journal of Steroid Biochemistry and Molecular Biology 130(1–2): 26-35. ii ACKNOWLEDGEMENTS First, I would like to express my deepest appreciation to my advisor Dr. Zhongzong Pan for all the support, encouragement, trust, effort and patience he had given me through my Ph.D. study. Without his detailed guidance and persistent help, I would not have been able to complete my work in this thesis. I would like to thank the rest of my thesis committee: Dr. Karen M. Lounsbury, Dr. Rona Delay, Dr. David Kerr for their scientific advice, insightful discussions and support over the past few years. A special thanks goes to Dr. Andre-Denis Wright for his support and guidance in the last year. I would like to thank the lab members I have worked with, Huining and Yili for their great comments and suggestions. I also appreciate all the help and advice I got from other faculty members and graduate students at the Department of Animal Science. I would like to especially thank the TA coordinator Frances Kinghorn and Jeffrey White for helping me to become a good teaching assistant. I also thank Janet Schwarz, the technician of the Microscopy Imaging Center, for teaching me how to use the microtome and microscopes and for technical suggestions. iii Finally, I would like to thank my family and friends for their endless love and caring. I especially thank my wife for being a true and great supporter and for standing by me with unconditional love over the past 11 years of my life. iv TABLE OF CONTENTS CITATION ........................................................................................................... ii ACKNOWLEDGEMENTS ................................................................................ iii LIST OF FIGURES ........................................................................................... xii CHAPTER 1: Introduction .................................................................................. 1 Estrogen ............................................................................................................... 1 Estrogen Biosynthesis ....................................................................................... 1 Estrogen Transport and Metabolism ................................................................. 3 Estrogen Receptors .............................................................................................. 4 The Discovery of Estrogen Receptors .............................................................. 4 The Structure of Estrogen Receptors ................................................................ 5 The Expression of Estrogen Receptors ............................................................. 7 The Coregulators of Estrogen Receptors .......................................................... 8 Coactivators .................................................................................................... 8 Corepressors ................................................................................................. 10 v Mechanisms of Estrogen Action ........................................................................ 11 Classical Ligand Dependent Pathway ............................................................ 11 Ligand Independent Pathway ......................................................................... 11 ERE Independent Pathway ............................................................................. 12 Nongenomic Pathway ..................................................................................... 13 Physiological Action of Estrogens ..................................................................... 14 Estrogen Action on the Ovary ........................................................................ 14 Estrogen Action on the Fallopian Tube .......................................................... 15 Estrogen Action on the Uterus ........................................................................ 16 Estrogen Action on the Cervix ....................................................................... 18 Estrogen Action on the Vagina ....................................................................... 18 Effect of Estrogen on the Menstrual Cycle..................................................... 20 Estrogen Action in the Male Reproductive System ........................................ 21 Estrogen Action in the Brain .........................................................................
Recommended publications
  • Pharmacological Activation of Estrogen Receptors-Α and -Β Differentially Modulates Keratinocyte Differentiation with Functional Impact on Wound Healing
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 37: 21-28, 2016 Pharmacological activation of estrogen receptors-α and -β differentially modulates keratinocyte differentiation with functional impact on wound healing VLASTA PERŽEĽOVÁ1,2*, FRANTIŠEK SABOL3*, TOMÁŠ VASILENKO4,5, MARTIN NOVOTNÝ5,6, IVAN KOVÁČ5,7, MARTIN SLEZÁK5, JÁN ĎURKÁČ5, MARTIN HOLLÝ5, MARTINA PILÁTOVÁ2, PAVOL SZABO8, LENKA VARINSKÁ1, ZUZANA ČRIEPOKOVÁ2, TOMÁŠ KUČERA9, HERBERT KALTNER10, SABINE ANDRÉ10, HANS-JOACHIM GABIUS10, PAVEL MUČAJI11, KAREL SMETANA Jr8 and PETER GÁL1,5,8,11 1Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University; 2Department of Pathological Anatomy and Physiology, University of Veterinary Medicine and Pharmacy; 3Department of Heart Surgery, East-Slovak Institute of Cardiovascular Diseases and Pavol Jozef Šafárik University; 4Department of Surgery, Košice-Šaca Hospital and Pavol Jozef Šafárik University; 5Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases; 6Department of Pathological Physiology, Faculty of Medicine, Pavol Jozef Šafárik University; 72nd Department of Surgery, Louis Pasteur University Hospital and Pavol Jozef Šarfárik University, Košice, Slovak Republic; Institutes of 8Anatomy and 9Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic; 10Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany; 11Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University,
    [Show full text]
  • TE INI (19 ) United States (12 ) Patent Application Publication ( 10) Pub
    US 20200187851A1TE INI (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No .: US 2020/0187851 A1 Offenbacher et al. (43 ) Pub . Date : Jun . 18 , 2020 ( 54 ) PERIODONTAL DISEASE STRATIFICATION (52 ) U.S. CI. AND USES THEREOF CPC A61B 5/4552 (2013.01 ) ; G16H 20/10 ( 71) Applicant: The University of North Carolina at ( 2018.01) ; A61B 5/7275 ( 2013.01) ; A61B Chapel Hill , Chapel Hill , NC (US ) 5/7264 ( 2013.01 ) ( 72 ) Inventors: Steven Offenbacher, Chapel Hill , NC (US ) ; Thiago Morelli , Durham , NC ( 57 ) ABSTRACT (US ) ; Kevin Lee Moss, Graham , NC ( US ) ; James Douglas Beck , Chapel Described herein are methods of classifying periodontal Hill , NC (US ) patients and individual teeth . For example , disclosed is a method of diagnosing periodontal disease and / or risk of ( 21) Appl. No .: 16 /713,874 tooth loss in a subject that involves classifying teeth into one of 7 classes of periodontal disease. The method can include ( 22 ) Filed : Dec. 13 , 2019 the step of performing a dental examination on a patient and Related U.S. Application Data determining a periodontal profile class ( PPC ) . The method can further include the step of determining for each tooth a ( 60 ) Provisional application No.62 / 780,675 , filed on Dec. Tooth Profile Class ( TPC ) . The PPC and TPC can be used 17 , 2018 together to generate a composite risk score for an individual, which is referred to herein as the Index of Periodontal Risk Publication Classification ( IPR ) . In some embodiments , each stage of the disclosed (51 ) Int. Cl. PPC system is characterized by unique single nucleotide A61B 5/00 ( 2006.01 ) polymorphisms (SNPs ) associated with unique pathways , G16H 20/10 ( 2006.01 ) identifying unique druggable targets for each stage .
    [Show full text]
  • New Insights for Hormone Therapy in Perimenopausal Women Neuroprotection
    Chapter 12 New Insights for Hormone Therapy in Perimenopausal Women Neuroprotection Manuela Cristina Russu and Alexandra Cristina Antonescu Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.74332 Abstract Perimenopause is a mandatory period in women’s life, when the medical staff may initiate hormone therapy with sex steroids for the delay of brain aging and neurodegenerative diseases, during the so-called “window of opportunity.” Animals’ models are helpful to sustain the still controversial results of human clinical observational and/or randomized controlled studies. Estrogens, progesterone, and androgens, with their nuclear and mem- brane receptors, genes, and epigenetics, with their connections to cholinergic, GABAergic, serotoninergic, and glutamatergic systems are involved in women’snormalbrainorin brain’s pathology. The sex steroids are active through direct and/or indirect mechanisms to modulate and/or to protect brain plasticity, and vessels network, fuel metabolism—glucose, ketones, ATP, to reduce insulin resistance, and inflammation of the aging brain through blood-brain barrier disruption, microglial aberrant activation, and neural cell survival/loss. Keywords: perimenopause, “window” of opportunity, neuroprotection, sex steroid hormones 1. Introduction The months/years of perimenopause represent an important moment during women’saging, when sex steroids and their receptors decline are evident in the hippocampal and cortical neu- rons, after estrogen exposure during the reproductive years. The sex steroid hormones decline is associated/acts synergic to other factors as hypertension, diabetes, hypoxia/obstructive sleep apnea, obesity, vitamin B12/folate deficiency, depression, and traumatic brain injury to promote diverse pathological mechanisms involved in brain aging, memory impairment, and AD.
    [Show full text]
  • Modulation of Responses to Stress by Estradiol Benzoate and Selective Estrogen Receptor Agonists
    253 Modulation of responses to stress by estradiol benzoate and selective estrogen receptor agonists Lidia I Serova, Heather A Harris1, Shreekrishna Maharjan and Esther L Sabban Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA 1Women’s Health and Musculoskeletal Biology, Wyeth Research, Collegeville, Pennsylvania 19426, USA (Correspondence should be addressed to E L Sabban; Email: [email protected]) Abstract Previously,pretreatment with estradiol benzoate (EB) was found IMO, indicating an ERa (ESR1)-, but not ERb (ESR2)-, to modulate the response of hypothalamic–pituitary–adrenal mediated mechanism. In the locus coeruleus (LC), the rise in (HPA) axis and gene expression in several catecholaminergic dopamine-b-hydroxylase (Dbh) mRNA with both stress neuronal locations in ovariectomized (OVX) rats exposed to paradigms was abrogated in EB- or PPT-injected animals. single immobilization stress (IMO). Here, we investigated the However, WAY-200070 blocked the response of DBH mRNA role of estrogen receptor (ER) subtypes, using selective agonists to single IMO but not to repeated IMO. In the nucleus of the for ERa (propyl pyrazole triol, PPT) or ERb (WAY-200070) in solitary tract (NTS), the rise in tyrosine hydroxylase and DBH two major central noradrenergic systems and the HPA axis after mRNAs with both IMOs was absent, or greatly attenuated, in exposure to single and repeated IMO.OVX female rats received EB- or PPT-treated rats. In most cases, WAY-200070 inhibited 21 daily injections of either EB (25 mg/kg), PPT (10 mg/kg), the response to single IMO but not to repeated IMO.The results WAY-200070 (10 mg/kg), or vehicle.
    [Show full text]
  • Estriol Therapy for Autoimmune and Neurodegenerative Diseases and Disorders
    (19) TZZ¥Z__T (11) EP 3 045 177 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 20.07.2016 Bulletin 2016/29 A61K 31/565 (2006.01) A61K 31/566 (2006.01) A61K 31/568 (2006.01) A61K 45/06 (2006.01) (2006.01) (2006.01) (21) Application number: 16000349.7 A61K 31/785 A61P 25/00 (22) Date of filing: 26.09.2006 (84) Designated Contracting States: (72) Inventor: Voskuhl, Rhonda R. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Angeles, CA 90024 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR (74) Representative: Müller-Boré & Partner Patentanwälte PartG mbB (30) Priority: 26.09.2005 US 720972 P Friedenheimer Brücke 21 26.07.2006 US 833527 P 80639 München (DE) (62) Document number(s) of the earlier application(s) in Remarks: accordance with Art. 76 EPC: This application was filed on 11-02-2016 as a 13005320.0 / 2 698 167 divisional application to the application mentioned 06815626.4 / 1 929 291 under INID code 62. (71) Applicant: The Regents of the University of California Oakland, CA 94607 (US) (54) ESTRIOL THERAPY FOR AUTOIMMUNE AND NEURODEGENERATIVE DISEASES AND DISORDERS (57) The present invention relates to a dosage from comprising estriol and glatiramer acetate polymer-1 for use in the treatment of multiple sclerosis (MS), as well as to a kit comprising estriol and glatiramer acetate polymer-1. EP 3 045 177 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 045 177 A1 Description [0001] This invention was made with Government support under Grant No.
    [Show full text]
  • Inhibitory Effect of 17Β‑Estradiol on Triglyceride Synthesis in Skeletal Muscle Cells Is Dependent on ESR1 and Not ESR2
    MOLECULAR MEDICINE REPORTS 19: 5087-5096, 2019 Inhibitory effect of 17β‑estradiol on triglyceride synthesis in skeletal muscle cells is dependent on ESR1 and not ESR2 QUAN LIU1*, RUI LI1*, GUANJUN CHEN2, JIANMING WANG3, BINGFENG HU1, CHAOFEI LI4, XIAOHUAN ZHU5 and YUNXIA LU4,6 1Department of Clinical Pharmacy, Class 2014, School of Pharmacy; 2Center of Scientific Research, Anhui Medical University, Hefei, Anhui 230032; 3Dalian Maple International School, Dalian, Liaoning 116100; 4The Comprehensive Laboratory, Anhui Medical University; 5Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University; 6Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China Received July 13, 2018; Accepted March 13, 2019 DOI: 10.3892/mmr.2019.10189 Abstract. The present study aimed to investigate the inhibitory note, treatment with E2 restored the expression levels of the effects and the mechanisms underlying 17β-estradiol (E2) aforementioned factors. In C2C12 cells, treatment with E2 or effects on triglyceride synthesis and insulin resistance PPT reversed the alterations induced by treatment with PA. In in skeletal muscle tissues and cells. Ovariectomy (OVX) contrast, pretreatment with DPN did not influence the effect was performed on 6-month-old female rats treated with or of PA. Collectively, E2 was able to interact with ESR1, thus without E2. Subsequently, various serum biochemical markers activating the CD36-PPARα pathway, decreasing the level of were measured. Additionally, pathological alterations of TG in the muscles and improving insulin resistance in skeletal the uterus, liver and skeletal muscle were analyzed, and muscles and C2C12 cells. the content of triglycerides (TG) in muscle was detected.
    [Show full text]
  • Decreases Breast Cancer Cell Survival by Regulating the IRE1&Sol
    Oncogene (2015) 34, 4130–4141 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc ORIGINAL ARTICLE ERβ decreases breast cancer cell survival by regulating the IRE1/XBP-1 pathway G Rajapaksa1, F Nikolos1, I Bado1, R Clarke2, J-Å Gustafsson1 and C Thomas1 Unfolded protein response (UPR) is an adaptive reaction that allows cancer cells to survive endoplasmic reticulum (EnR) stress that is often induced in the tumor microenvironment because of inadequate vascularization. Previous studies report an association between activation of the UPR and reduced sensitivity to antiestrogens and chemotherapeutics in estrogen receptor α (ERα)- positive and triple-negative breast cancers, respectively. ERα has been shown to regulate the expression of a key mediator of the EnR stress response, the X-box-binding protein-1 (XBP-1). Although network prediction models have associated ERβ with the EnR stress response, its role as regulator of the UPR has not been experimentally tested. Here, upregulation of wild-type ERβ (ERβ1) or treatment with ERβ agonists enhanced apoptosis in breast cancer cells in the presence of pharmacological inducers of EnR stress. Targeting the BCL-2 to the EnR of the ERβ1-expressing cells prevented the apoptosis induced by EnR stress but not by non-EnR stress apoptotic stimuli indicating that ERβ1 promotes EnR stress-regulated apoptosis. Downregulation of inositol-requiring kinase 1α (IRE1α) and decreased splicing of XBP-1 were associated with the decreased survival of the EnR-stressed ERβ1-expressing cells. ERβ1 was found to repress the IRE1 pathway of the UPR by inducing degradation of IRE1α.
    [Show full text]
  • Estradiol Replacement Therapy Regulates Innate Immune Response
    International Immunopharmacology 72 (2019) 504–510 Contents lists available at ScienceDirect International Immunopharmacology journal homepage: www.elsevier.com/locate/intimp Estradiol replacement therapy regulates innate immune response in ovariectomized arthritic mice T ⁎ Ayda Henriques Schneidera,b,1, Alexandre Kanashiroc, ,1, Sabrina Graziani Veloso Dutraa, Raquel do Nascimento de Souzaa, Flávio Protásio Verasb, Fernando de Queiroz Cunhab, ⁎ Luis Ulload, André Souza Mecawia,e, Luis Carlos Reisa, David do Carmo Malvara, a Department of Physiological Sciences, Multicentric Program of Post-Graduation in Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465/Km 07, 23897-000 Seropédica, RJ, Brazil b Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil c Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirao Preto, Brazil d Department of Surgery, Center of Immunology and Inflammation, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA e Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, Rua Botucatu, 862, CEP 04023-062 São Paulo, SP, Brazil ARTICLE INFO ABSTRACT Keywords: Neuroendocrine changes are essential factors contributing to the progression and development of rheumatoid Arthritis arthritis. However, the role of estrogen in the innate immunity during arthritis development is still controversial. Estrogen Here, we evaluated the effect of estrous cycle, ovariectomy, estradiol replacement therapy and treatment with fl In ammation estrogen receptor (ER)α and ERβ specific agonists on joint edema formation, neutrophil recruitment, and ar- Neutrophil ticular levels of cytokines/chemokines in murine zymosan-induced arthritis.
    [Show full text]
  • Targeting Estrogen Receptor Subtypes (Era and Erb) with Selective ER Modulators in Ovarian Cancer
    KK-L CHAN and others Estrogen receptor subtypes in 221:2 325–336 Research ovarian cancer Targeting estrogen receptor subtypes (ERa and ERb) with selective ER modulators in ovarian cancer Karen Kar-Loen Chan, Thomas Ho-Yin Leung, David Wai Chan, Na Wei, Correspondence Grace Tak-Yi Lau, Stephanie Si Liu, Michelle K-Y Siu and Hextan Yuen-Sheung Ngan should be addressed to K K-L Chan Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Email 6/F Professorial Block, Queen Mary Hospital, Pokfulam, Hong Kong [email protected] Abstract Ovarian cancer cells express both estrogen receptor a (ERa) and ERb, and hormonal therapy is Key Words an attractive treatment option because of its relatively few side effects. However, estrogen " estrogen receptors was previously shown to have opposite effects in tumors expressing ERa compared with ERb, " SERMS indicating that the two receptor subtypes may have opposing effects. This may explain the " ovarian cancer modest response to nonselective estrogen inhibition in clinical practice. In this study, we " hormonal treatment aimed to investigate the effect of selectively targeting each ER subtype on ovarian cancer growth. Ovarian cancer cell lines SKOV3 and OV2008, expressing both ER subtypes, were treated with highly selective ER modulators. Sodium 30-(1-(phenylaminocarbonyl)-3,4- Journal of Endocrinology tetrazolium)-bis(4-methoxy-6-nitro) benzene sulfonic acid hydrate (XTT) assay revealed that treatment with 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H- pyrazole dihydrochloride (MPP) (ERa antagonist) or 2,3-bis(4-hydroxy-phenyl)-propionitrile (DPN) (ERb agonist) significantly suppressed cell growth in both cell lines.
    [Show full text]
  • Sfn2015 Items of Interest
    Presentations and Posters of Interest Society for Neuroscience Meeting (2015) 34.01/A100. Estradiol rapidly attenuates ORL-1 receptor-mediated inhibition of proopiomelanocortin neurons via Gq-coupled, membrane-initiated signaling *K. M. CONDE1, C. MEZA2, M. KELLY3, K. SINCHAK4, E. WAGNER2; 1Grad. Col. of Biomed. Sci., 2Col. of Osteo. Med. of the Pacific, Western Univ. of Hlth. Sci., Pomona, CA; 3 Dept. of Physiol. & Pharmacol., Oregon Hlth. and Sci. Univ., Portland, OR; 4California State University, Long Beach, Long Beach, CA Ovarian estrogens act through multiple receptor signaling mechanisms that converge on hypothalamic arcuate nucleus (ARH) proopiomelanocortin (POMC) neurons. A subpopulation of these neurons project to the medial preoptic nucleus (MPN) to regulate lordosis. Orphanin FQ/nociception (OFQ/N) via its opioid-like receptor (ORL-1) regulates lordosis through direct actions on these MPN-projecting POMC neurons. Based o an ever-burgeoning precedence for fast steroid actions, we explored whether estradiol excites ARH POMC neurons by rapidly attenuating inhibitory ORL-1 signaling in these cells. Experiments were carried out in hypothalamic slices prepared from ovariectomized female rats injected one-week prior with the retrograde tracer Fluorogold into the MPN. During electrophysiologic recordings, cells were held at or near -60 mV. Post-hoc identification of neuronal phenotype was determined via immunohistofluorescence. In vehicle-treated slices OFQ/N caused a robust outward current/hyperpolarization via activation of GIRK channels. This OFQ/N-induced outward current was attenuated by 17-β estradiol (E2, 100nM). The 17α enantiomer of E2 had n effect. The OFQ/N-induced response was also attenuated by an equimolar concentration of E2 conjugated to BSA.
    [Show full text]
  • In Silico Prediction of Heliannuol A, B, C, D, and E Compounds on Estrogen Receptor Β Agonists
    Indonesian Journal of Cancer Chemoprevention, February 2021 ISSN: 2088–0197 e-ISSN: 2355-8989 In Silico Prediction of Heliannuol A, B, C, D, and E Compounds on Estrogen Receptor β Agonists Roihatul Mutiah, Alif Firman Firdausy, Yen Yen Ari Indrawijaya, Hibbatullah* Department of Pharmacy, Faculty of Medical and Health Sciences, Maulana Malik Ibrahim State Islamic University of Malang, Indonesia Abstract Heliannuols has a benzoxepine ring that produces anticancer activity by the inhibition mechanism of phosphoinositide 3 kinases (PI3K). Heliannuols are a compound that can be found in the leaves of sunflower Helianthus( annuus L.). The purpose of this study is to predict interactions, toxicity, physicochemical, and pharmacokinetics of Heliannuol A, B, C, D, and E based in silico as candidate anticancer drugs. Estrogen receptor beta (ERβ) is a new potential therapy for glioma with an antiproliferative effect. Ligands agonist ERβ have the potential activity to inhibit the proliferation of glioma cells and the discovery of this ligand has opened new therapy through the ERβ to prolong survival in cancer patients. Prediction of physicochemical properties based on Lipinski rules and penetrate in the blood-brain barrier. Receptor validation shows that 2I0G(A) has a smaller RMSD value than 2I0G(B), receptor validation is valid if the RMSD value less than 2. The result of molecular docking shows that Heliannuols comply with Lipinski rules and have low toxicity. Heliannuols also have a similar amino acid with comparison drug (Erteberel), but the rerank score of Erteberel still lower than Heliannuols. Keywords: Helianthus annuus, Heliannuols, estrogen receptor β (ERβ), in silico, toxicity. INTRODUCTION using HPLC with hexane and ethyl acetate solvents (Macias, et al., 1994; Macias, et al., 2000; Macias, Sunflower plant (Helianthus annuus L.) has et al., 2002).
    [Show full text]
  • G Protein-Coupled Estrogen Receptor in Cancer and Stromal Cells: Functions and Novel Therapeutic Perspectives
    cells Review G Protein-Coupled Estrogen Receptor in Cancer and Stromal Cells: Functions and Novel Therapeutic Perspectives Richard A. Pepermans 1, Geetanjali Sharma 1,2 and Eric R. Prossnitz 1,2,3,* 1 Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; [email protected] (R.A.P.); [email protected] (G.S.) 2 Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA 3 University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA * Correspondence: [email protected]; Tel.: +1-505-272-5647 Abstract: Estrogen is involved in numerous physiological and pathophysiological systems. Its role in driving estrogen receptor-expressing breast cancers is well established, but it also has important roles in a number of other cancers, acting both on tumor cells directly as well as in the function of multiple cells of the tumor microenvironment, including fibroblasts, immune cells, and adipocytes, which can greatly impact carcinogenesis. One of its receptors, the G protein-coupled estrogen receptor (GPER), has gained much interest over the last decade in both health and disease. Increasing evidence shows that GPER contributes to clinically observed endocrine therapy resistance in breast cancer while also playing a complex role in a number of other cancers. Recent discoveries regarding the targeting of GPER in combination with immune checkpoint inhibition, particularly in melanoma, have led to the initiation of the first Phase I clinical trial for the GPER-selective agonist G-1.
    [Show full text]