Learning-Induced and Stathmin-Dependent Changes in Microtubule Stability Are Critical for Memory and Disrupted in Ageing

Total Page:16

File Type:pdf, Size:1020Kb

Learning-Induced and Stathmin-Dependent Changes in Microtubule Stability Are Critical for Memory and Disrupted in Ageing ARTICLE Received 11 Dec 2013 | Accepted 13 Jun 2014 | Published 10 Jul 2014 DOI: 10.1038/ncomms5389 Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing Shusaku Uchida1,2,*, Guillaume Martel1,*, Alice Pavlowsky3, Shuichi Takizawa1, Charles Hevi1, Yoshifumi Watanabe2, Eric R. Kandel4, Juan Marcos Alarcon3 & Gleb P. Shumyatsky1 Changes in the stability of microtubules regulate many biological processes, but their role in memory remains unclear. Here we show that learning causes biphasic changes in the microtubule-associated network in the hippocampus. In the early phase, stathmin is dephosphorylated, enhancing its microtubule-destabilizing activity by promoting stathmin- tubulin binding, whereas in the late phase these processes are reversed leading to an increase in microtubule/KIF5-mediated localization of the GluA2 subunit of AMPA receptors at synaptic sites. A microtubule stabilizer paclitaxel decreases or increases memory when applied at the early or late phases, respectively. Stathmin mutations disrupt changes in microtubule stability, GluA2 localization, synaptic plasticity and memory. Aged wild-type mice show impairments in stathmin levels, changes in microtubule stability and GluA2 localization. Blocking GluA2 endocytosis rescues memory deficits in stathmin mutant and aged wild-type mice. These findings demonstrate a role for microtubules in memory in young adult and aged individuals. 1 Department of Genetics, Rutgers University, Room 322 Life Sciences Building,145 Bevier Road, Piscataway, New Jersey 08854, USA. 2 Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan. 3 Department of Pathology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York 11203, USA. 4 Department of Neuroscience, Columbia University, Howard Hughes Medical Institute, Kavli Institute for Brain Science, 1051 Riverside Drive, New York, New York 10032, USA. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to G.P.S. (email: [email protected]). NATURE COMMUNICATIONS | 5:4389 | DOI: 10.1038/ncomms5389 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5389 n the brain, following neuronal activity there is an increase in (Fig. 1a and Supplementary Fig. 2). To confirm that the observed synaptic transport, which results in the strengthening of changes were specific to associative learning, we examined the Isynaptic connections, and ultimately in memory formation1. effects of exposure to the context only (no shock) or the Among the many mechanisms mediating synaptic transport, immediate shock deficit on stathmin phosphorylation cytoskeletal structures—actin filaments and microtubules—play a (Supplementary Fig. 3). In mice exposed to context only or to major role in motor-driven import and export2. Actin filaments the immediate shock, phosphorylation of stathmin at Ser25 and are known to be dynamic and present in dendritic spines, where Ser38 was rapidly decreased 30–60 min following the exposure, they play an essential role in synaptic function and memory but no changes in phospho-stathmin levels were observed at 8 h. formation3. Microtubule dynamics have been described in cell In contrast, there was no effect of either the context only or the division, axonal pathfinding during development and axonal immediate shock on stathmin phosphorylation at Ser16. growth and regeneration. In contrast, in mature neurons, We examined whether the changes in stathmin phosphoryla- microtubules are generally viewed as stable non-dynamic tion following learning regulate stathmin–tubulin binding, which structures present in dendritic shafts but not in dendritic in turn may affect microtubule stability. Using co-immunopre- spines. Intriguingly, recent work in hippocampal primary cipitation on the synaptosomal fractions of the dentate gyrus, we neuronal cultures indicates that microtubules can also be found that stathmin binding to a-tubulin, a major component of dynamically regulated during neuronal activity by moving from microtubules, increased in the first 30 min but decreased the the dendritic shaft to the dendritic spines and affecting synaptic following 8 h after training (Fig. 1b). In mice exposed to context structure and function4–9. Despite this new information, the role only, stathmin binding to a-tubulin was increased 30 min, but not of changes in microtubule stability in memory formation remains 8 h, following the exposure (Supplementary Fig. 4). These data unclear. suggest that during associative learning, stathmin may regulate Microtubule assembly from heterodimers of a-andb-tubulins microtubule stability by changing it’s affinity to a-tubulin. involves interaction with microtubule-associated proteins. One of these proteins, stathmin, binds tubulin heterodimers and prevents Changes in microtubule stability following learning.To microtubule assembly, thus controlling microtubule dynamics10,11. examine microtubule stability following learning, we measured When phosphorylated, stathmin releases tubulin dimers allowing the levels of the detyrosinated tubulin, a marker of stable microtubules to be formed12,13. Stathmin has been linked to fear, microtubules, and tyrosinated tubulin, a marker of labile micro- cognition and aging in rodent and human studies14–19,suggesting tubules22–24. We found biphasic changes in tyrosinated and the involvement of microtubule dynamics in memory. detyrosinated tubulin in the synaptosomal fractions of the dentate Therefore, we set out to examine the role of stathmin-regulated gyrus: detyrosinated tubulin levels were decreased 30–60 min and control of microtubule stability in memory formation by focusing increased 8 h following contextual fear conditioning, whereas on learning-induced changes, because activity-dependent signalling tyrosinated tubulin levels were changed in the opposite direction is a hallmark of neuronal function20,21. Our approach reveals that (Fig. 1c and Supplementary Fig. 5). Similar to the changes by regulating microtubule stability and dendritic transport of the in stathmin phosphorylation, exposure to context only GluA2 subunit of AMPA-type glutamate receptors (AMPARs), (Supplementary Fig. 6a) or immediate shock (Supplementary stathmin controls synaptic plasticity and memory consolidation. Fig. 6b) led to a reduction of the detyrosinated tubulin and an Furthermore, we observe that aged wild-type (WT) mice, in increase in tyrosinated tubulin 0.5 h, but not 8 h, following the addition to memory deficits, display deficits in stathmin levels, exposure. These results suggest that the increase in microtubule learning-dependent changes in microtubule stability and GluA2 stability at 8 h is specific to associative learning. These results dendritic transport along microtubules. Our combined approach further suggest that microtubules become unstable 0.5–1 h and demonstrates that learning-induced and stathmin-mediated hyperstable 8 h following learning, and the increase in phospho- changes in microtubule stability control GluA2 dendritic stathmin and subsequent microtubule hyperstability may be transport, synaptic plasticity and memory formation, pointing to involved in memory consolidation. a new learning-dependent intracellular signalling pathway. Memory can be enhanced by increasing microtubule stability. Results We investigated whether pharmacological manipulation of the Stathmin activity is regulated by learning. We first examined increase in microtubule stability following learning affects expression of stathmin protein in adult mice and found it memory. We used paclitaxel or nocodazole to stabilize or desta- to be present in the brain and testis (Supplementary Fig. 1a). bilize microtubules, respectively. The drugs were injected into the In the brain, stathmin is located in the hippocampus, prefrontal dentate gyrus area of WT mice 8 h following fear conditioning, cortex, amygdala, striatum, hypothalamus and cerebellum and memory was tested 24 h after training (Fig. 1d). Nocodazole (Supplementary Fig. 1b). Stathmin is strongly expressed in the injections decreased (Fig. 1e), while paclitaxel injections increased dentate gyrus with lesser expression in the CA3 and CA1 memory (Fig. 1f). To rule out the possibility that nocodazole (Supplementary Fig. 1c). In the dentate gyrus, stathmin was injections disrupted freezing in a non-associative manner, we found not only in the whole-cell extracts but also in the synap- injected nocodazole into the dentate gyrus area of WT mice in tosomal fraction (Supplementary Fig. 1d). Based on this obser- home cage 24 h after they were subjected to contextual fear vation, we focused our work on the dentate gyrus synaptosomes. conditioning (Supplementary Fig. 7). Their freezing responses To examine whether stathmin phosphorylation is regulated by were measured 48 h after training. There were no differences in learning, synaptosomal fractions from the dentate gyrus were freezing between mice injected with nocodazole and vehicle, thus isolated at several time points (5, 15 and 30 min, and 1, 2, 8 or suggesting that the nocodazole treatment alone did not disrupt 24 h) from mice subjected to single-shock contextual fear freezing. These pharmacological experiments demonstrate that conditioning. Compared with naive mice, phosphorylation
Recommended publications
  • Universidade Estadual De Campinas Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA CAMPINAS 2016 1 VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular na área de concentração de Bioquímica. Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in the area of Biochemistry. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA E ORIENTADA PELO DANIEL MARTINS-DE-SOUZA. Orientador: Daniel Martins-de-Souza CAMPINAS 2016 2 Agência(s) de fomento e nº(s) de processo(s): CNPq, 151787/2F2014-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Saia-Cereda, Verônica Aparecida Monteiro, 1988- Sa21p O proteoma do corpo caloso da esquizofrenia / Verônica Aparecida Monteiro Saia Cereda. – Campinas, SP : [s.n.], 2016. Orientador: Daniel Martins de Souza. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Esquizofrenia. 2. Espectrometria de massas. 3. Corpo caloso.
    [Show full text]
  • UCSD MOLECULE PAGES Doi:10.6072/H0.MP.A002549.01 Volume 1, Issue 2, 2012 Copyright UC Press, All Rights Reserved
    UCSD MOLECULE PAGES doi:10.6072/H0.MP.A002549.01 Volume 1, Issue 2, 2012 Copyright UC Press, All rights reserved. Review Article Open Access WAVE2 Tadaomi Takenawa1, Shiro Suetsugu2, Daisuke Yamazaki3, Shusaku Kurisu1 WASP family verprolin-homologous protein 2 (WAVE2, also called WASF2) was originally identified by its sequence similarity at the carboxy-terminal VCA (verprolin, cofilin/central, acidic) domain with Wiskott-Aldrich syndrome protein (WASP) and N-WASP (neural WASP). In mammals, WAVE2 is ubiquitously expressed, and its two paralogs, WAVE1 (also called suppressor of cAMP receptor 1, SCAR1) and WAVE3, are predominantly expressed in the brain. The VCA domain of WASP and WAVE family proteins can activate the actin-related protein 2/3 (Arp2/3) complex, a major actin nucleator in cells. Proteins that can activate the Arp2/3 complex are now collectively known as nucleation-promoting factors (NPFs), and the WASP and WAVE families are a founding class of NPFs. The WAVE family has an amino-terminal WAVE homology domain (WHD domain, also called the SCAR homology domain, SHD) followed by the proline-rich region that interacts with various Src-homology 3 (SH3) domain proteins. The VCA domain located at the C-terminus. WAVE2, like WAVE1 and WAVE3, constitutively forms a huge heteropentameric protein complex (the WANP complex), binding through its WHD domain with Abi-1 (or its paralogs, Abi-2 and Abi-3), HSPC300 (also called Brick1), Nap1 (also called Hem-2 and NCKAP1), Sra1 (also called p140Sra1 and CYFIP1; its paralog is PIR121 or CYFIP2). The WANP complex is recruited to the plasma membrane by cooperative action of activated Rac GTPases and acidic phosphoinositides.
    [Show full text]
  • Conserved Microtubule–Actin Interactions in Cell Movement and Morphogenesis
    REVIEW Conserved microtubule–actin interactions in cell movement and morphogenesis Olga C. Rodriguez, Andrew W. Schaefer, Craig A. Mandato, Paul Forscher, William M. Bement and Clare M. Waterman-Storer Interactions between microtubules and actin are a basic phenomenon that underlies many fundamental processes in which dynamic cellular asymmetries need to be established and maintained. These are processes as diverse as cell motility, neuronal pathfinding, cellular wound healing, cell division and cortical flow. Microtubules and actin exhibit two mechanistic classes of interactions — regulatory and structural. These interactions comprise at least three conserved ‘mechanochemical activity modules’ that perform similar roles in these diverse cell functions. Over the past 35 years, great progress has been made towards under- crosstalk occurs in processes that require dynamic cellular asymme- standing the roles of the microtubule and actin cytoskeletal filament tries to be established or maintained to allow rapid intracellular reor- systems in mechanical cellular processes such as dynamic shape ganization or changes in shape or direction in response to stimuli. change, shape maintenance and intracellular organelle movement. Furthermore, the widespread occurrence of these interactions under- These functions are attributed to the ability of polarized cytoskeletal scores their importance for life, as they occur in diverse cell types polymers to assemble and disassemble rapidly, and to interact with including epithelia, neurons, fibroblasts, oocytes and early embryos, binding proteins and molecular motors that mediate their regulated and across species from yeast to humans. Thus, defining the mecha- movement and/or assembly into higher order structures, such as radial nisms by which actin and microtubules interact is key to understand- arrays or bundles.
    [Show full text]
  • Absence of NEFL in Patient-Specific Neurons in Early-Onset Charcot-Marie-Tooth Neuropathy Markus T
    ARTICLE OPEN ACCESS Absence of NEFL in patient-specific neurons in early-onset Charcot-Marie-Tooth neuropathy Markus T. Sainio, MSc, Emil Ylikallio, MD, PhD, Laura M¨aenp¨a¨a, MSc, Jenni Lahtela, PhD, Pirkko Mattila, PhD, Correspondence Mari Auranen, MD, PhD, Johanna Palmio, MD, PhD, and Henna Tyynismaa, PhD Dr. Tyynismaa [email protected] Neurol Genet 2018;4:e244. doi:10.1212/NXG.0000000000000244 Abstract Objective We used patient-specific neuronal cultures to characterize the molecular genetic mechanism of recessive nonsense mutations in neurofilament light (NEFL) underlying early-onset Charcot- Marie-Tooth (CMT) disease. Methods Motor neurons were differentiated from induced pluripotent stem cells of a patient with early- onset CMT carrying a novel homozygous nonsense mutation in NEFL. Quantitative PCR, protein analytics, immunocytochemistry, electron microscopy, and single-cell transcriptomics were used to investigate patient and control neurons. Results We show that the recessive nonsense mutation causes a nearly total loss of NEFL messenger RNA (mRNA), leading to the complete absence of NEFL protein in patient’s cultured neurons. Yet the cultured neurons were able to differentiate and form neuronal networks and neuro- filaments. Single-neuron gene expression fingerprinting pinpointed NEFL as the most down- regulated gene in the patient neurons and provided data of intermediate filament transcript abundancy and dynamics in cultured neurons. Blocking of nonsense-mediated decay partially rescued the loss of NEFL mRNA. Conclusions The strict neuronal specificity of neurofilament has hindered the mechanistic studies of re- cessive NEFL nonsense mutations. Here, we show that such mutation leads to the absence of NEFL, causing childhood-onset neuropathy through a loss-of-function mechanism.
    [Show full text]
  • Stathmin Is Overexpressed in Malignant Mesothelioma
    ANTICANCER RESEARCH 27: 39-44 (2007) Stathmin is Overexpressed in Malignant Mesothelioma JAE Y. KIM1, CHANSONETTE HARVARD1, LIANG YOU1, ZHIDONG XU1, KRISTOPHER KUCHENBECKER1, RICK BAEHNER2 and DAVID JABLONS1 1Thoracic Oncology Laboratory, UCSF Comprehensive Cancer Center, San Francisco, CA 94115; 2Department of Pathology, UCSF, San Francisco, CA 94115, U.S.A. Abstract. Background: Malignant pleural mesothelioma is a unclear (7, 8). Unlike many other epithelial cancers, the highly aggressive cancer, with low overall survival. The activation of ras genes and inactivation of Rb and p53 genes pathogenesis of mesothelioma is poorly understood. The aim of do not seem to be necessary for the development of this study was to identify potential genes overexpressed in mesothelioma (9, 10). Alterations of several molecular mesothelioma. Materials and Methods: A cDNA microarray was pathways, including epidermal growth factor receptor, cell used to identify potential genes that are activated in mesothelioma cycle regulatory genes, and developmental pathways have cell lines. Overexpression of stathmin, a cytosolic protein that been linked to mesothelioma (11, 12). There is also regulates microtubule dynamics, was found. RT-PCR, Western evidence that Simian virus 40 (SV40) may contribute to the blot, and immunohistochemistry were used to confirm develop of mesothelioma, but the exact genetic alterations overexpression in both cell lines and tumor samples. Results: leading to mesothelioma remain unknown (11, 13). Using RT-PCR and Western blot, stathmin overexpression was The aim of this study was to identify potential genes confirmed in seven mesothelioma cell lines. Increased stathmin involved in the pathogenesis of mesothelioma. protein expression was also found in seven out of eight mesothelioma tumor samples.
    [Show full text]
  • Microtubule-Associated Protein Tau (Molecular Pathology/Neurodegenerative Disease/Neurofibriliary Tangles) M
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 4051-4055, June 1988 Medical Sciences Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: Identification as the microtubule-associated protein tau (molecular pathology/neurodegenerative disease/neurofibriliary tangles) M. GOEDERT*, C. M. WISCHIK*t, R. A. CROWTHER*, J. E. WALKER*, AND A. KLUG* *Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and tDepartment of Psychiatry, University of Cambridge Clinical School, Hills Road, Cambridge CB2 2QQ, United Kingdom Contributed by A. Klug, March 1, 1988 ABSTRACT Screening of cDNA libraries prepared from (21). This task is made all the more difficult because there is the frontal cortex ofan zheimer disease patient and from fetal no functional or physiological assay for the protein(s) of the human brain has led to isolation of the cDNA for a core protein PHF. The only identification so far possible is the morphol- of the paired helical fiament of Alzheimer disease. The partial ogy of the PHFs at the electron microscope level, and here amino acid sequence of this core protein was used to design we would accept only experiments on isolated individual synthetic oligonucleotide probes. The cDNA encodes a protein of filaments, not on neurofibrillary tangles (in which other 352 amino acids that contains a characteristic amino acid repeat material might be occluded). One thus needs a label or marker in its carboxyl-terminal half. This protein is highly homologous for the PHF itself, which can at the same time be used to to the sequence ofthe mouse microtubule-assoiated protein tau follow the steps of the biochemical purification.
    [Show full text]
  • Neurofilaments: Neurobiological Foundations for Biomarker Applications
    Neurofilaments: neurobiological foundations for biomarker applications Arie R. Gafson1, Nicolas R. Barthelmy2*, Pascale Bomont3*, Roxana O. Carare4*, Heather D. Durham5*, Jean-Pierre Julien6,7*, Jens Kuhle8*, David Leppert8*, Ralph A. Nixon9,10,11,12*, Roy Weller4*, Henrik Zetterberg13,14,15,16*, Paul M. Matthews1,17 1 Department of Brain Sciences, Imperial College, London, UK 2 Department of Neurology, Washington University School of Medicine, St Louis, MO, USA 3 a ATIP-Avenir team, INM, INSERM , Montpellier university , Montpellier , France. 4 Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom 5 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada 6 Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada. 7 CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada 8 Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland. 9 Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA. 10Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, 11 Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA. 12Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA 13 University College London Queen Square Institute of Neurology, London, UK 14 UK Dementia Research Institute at University College London 15 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden 16 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden 17 UK Dementia Research Institute at Imperial College, London * Co-authors ordered alphabetically Address for correspondence: Prof.
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]
  • The Role of the Rho Gtpases in Neuronal Development
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The role of the Rho GTPases in neuronal development Eve-Ellen Govek,1,2, Sarah E. Newey,1 and Linda Van Aelst1,2,3 1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA; 2Molecular and Cellular Biology Program, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA Our brain serves as a center for cognitive function and and an inactive GDP-bound state. Their activity is de- neurons within the brain relay and store information termined by the ratio of GTP to GDP in the cell and can about our surroundings and experiences. Modulation of be influenced by a number of different regulatory mol- this complex neuronal circuitry allows us to process that ecules. Guanine nucleotide exchange factors (GEFs) ac- information and respond appropriately. Proper develop- tivate GTPases by enhancing the exchange of bound ment of neurons is therefore vital to the mental health of GDP for GTP (Schmidt and Hall 2002); GTPase activat- an individual, and perturbations in their signaling or ing proteins (GAPs) act as negative regulators of GTPases morphology are likely to result in cognitive impairment. by enhancing the intrinsic rate of GTP hydrolysis of a The development of a neuron requires a series of steps GTPase (Bernards 2003; Bernards and Settleman 2004); that begins with migration from its birth place and ini- and guanine nucleotide dissociation inhibitors (GDIs) tiation of process outgrowth, and ultimately leads to dif- prevent exchange of GDP for GTP and also inhibit the ferentiation and the formation of connections that allow intrinsic GTPase activity of GTP-bound GTPases (Zalc- it to communicate with appropriate targets.
    [Show full text]
  • Early Growth Response 1 Regulates Hematopoietic Support and Proliferation in Human Primary Bone Marrow Stromal Cells
    Hematopoiesis SUPPLEMENTARY APPENDIX Early growth response 1 regulates hematopoietic support and proliferation in human primary bone marrow stromal cells Hongzhe Li, 1,2 Hooi-Ching Lim, 1,2 Dimitra Zacharaki, 1,2 Xiaojie Xian, 2,3 Keane J.G. Kenswil, 4 Sandro Bräunig, 1,2 Marc H.G.P. Raaijmakers, 4 Niels-Bjarne Woods, 2,3 Jenny Hansson, 1,2 and Stefan Scheding 1,2,5 1Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden; 2Lund Stem Cell Center, Depart - ment of Laboratory Medicine, Lund University, Lund, Sweden; 3Division of Molecular Medicine and Gene Therapy, Department of Labora - tory Medicine, Lund University, Lund, Sweden; 4Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands and 5Department of Hematology, Skåne University Hospital Lund, Skåne, Sweden ©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2019.216648 Received: January 14, 2019. Accepted: July 19, 2019. Pre-published: August 1, 2019. Correspondence: STEFAN SCHEDING - [email protected] Li et al.: Supplemental data 1. Supplemental Materials and Methods BM-MNC isolation Bone marrow mononuclear cells (BM-MNC) from BM aspiration samples were isolated by density gradient centrifugation (LSM 1077 Lymphocyte, PAA, Pasching, Austria) either with or without prior incubation with RosetteSep Human Mesenchymal Stem Cell Enrichment Cocktail (STEMCELL Technologies, Vancouver, Canada) for lineage depletion (CD3, CD14, CD19, CD38, CD66b, glycophorin A). BM-MNCs from fetal long bones and adult hip bones were isolated as reported previously 1 by gently crushing bones (femora, tibiae, fibulae, humeri, radii and ulna) in PBS+0.5% FCS subsequent passing of the cell suspension through a 40-µm filter.
    [Show full text]
  • The Relationship Between Intermediate Filaments and Microfilaments Before and During the Formation of Desmosomes and Adherens-Ty
    Published May 1, 1987 The Relationship between Intermediate Filaments and Microfilaments before and during the Formation of Desmosomes and Adherens-type Junctions in Mouse Epidermal Keratinocytes Kathleen J. Green, Benjamin Geiger,* Jonathan C. R. Jones, John C. Talian, and Robert D. Goldman Department of Cell Biology and Anatomy, Northwestern University Medical School, Chicago, Illinois 60611; and * Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot, Israel Abstract. Actin, keratin, vinculin and desmoplakin ermost of the concentric MFB. Individual IF often organization were studied in primary mouse keratino- splay out, becoming interwoven into these MFB in the cytes before and during Ca2+-induced cell contact forma- region of cell-substrate contact. In the first 30 min af- tion. Double-label fluorescence shows that in cells cul- ter the Ca 2+ switch, areas of submembranous dense Downloaded from tured in low Ca 2÷ medium, keratin-containing inter- material (identified as adherens junctions), which are mediate filament bundles (IFB) and desmoplakin- associated with the perpendicular MFB, can be seen at containing spots are both concentrated towards the cell newly formed cell-ceU contact sites. By 1-2 h, IFB- center in a region bounded by a series of concentric desmosomal component complexes are aligned with microfilament bundles (MFB). Within 5-30 min after the perpendicular MFB as the complexes become jcb.rupress.org raising Ca 2+ levels, a discontinuous actin/vinculin-rich, redistributed to cell-cell interfaces. Cytochalasin D submembranous zone of fluorescence appears at cell- treatment causes the redistribution of actin into numer- cell interfaces. This zone is usually associated with ous patches; keratin-containing Lr:B undergo a con- short, perpendicular MFB, which become wider and comitant redistribution, forming foci that coincide with longer with time.
    [Show full text]
  • Gene Expression Signatures and Biomarkers of Noninvasive And
    Oncogene (2006) 25, 2328–2338 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc ORIGINAL ARTICLE Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics GM Nagaraja1, M Othman2, BP Fox1, R Alsaber1, CM Pellegrino3, Y Zeng2, R Khanna2, P Tamburini3, A Swaroop2 and RP Kandpal1 1Department of Biological Sciences, Fordham University, Bronx, NY, USA; 2Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA and 3Bayer Corporation, West Haven, CT, USA We have characterized comprehensive transcript and Keywords: representational difference analysis; micro- proteomic profiles of cell lines corresponding to normal arrays; proteomics; breast carcinoma; biomarkers; breast (MCF10A), noninvasive breast cancer (MCF7) and copper homeostasis invasive breast cancer (MDA-MB-231). The transcript profiles were first analysed by a modified protocol for representational difference analysis (RDA) of cDNAs between MCF7 and MDA-MB-231 cells. The majority of genes identified by RDA showed nearly complete con- Introduction cordance withmicroarray results, and also led to the identification of some differentially expressed genes such The transformation of a normal cell into a cancer cell as lysyl oxidase, copper transporter ATP7A, EphB6, has been correlated to altered expression of a variety of RUNX2 and a variant of RUNX2. The altered transcripts genes (Perou et al., 2000; Becker et al., 2005). The identified by microarray analysis were involved in cell–cell expression of some of these genes is a direct result of or cell–matrix interaction, Rho signaling, calcium home- sequence mutation, whereas other changes occur due to ostasis and copper-binding/sensitive activities.
    [Show full text]