Integrative Genomics Identifies Distinct Molecular Classes of Neuroblastoma and Shows That Multiple Genes Are Targeted by Regional Alterations in DNA Copy Number

Total Page:16

File Type:pdf, Size:1020Kb

Integrative Genomics Identifies Distinct Molecular Classes of Neuroblastoma and Shows That Multiple Genes Are Targeted by Regional Alterations in DNA Copy Number Research Article Integrative Genomics Identifies Distinct Molecular Classes of Neuroblastoma and Shows That Multiple Genes Are Targeted by Regional Alterations in DNA Copy Number Qun Wang,1 Sharon Diskin,1,4 Eric Rappaport,1 Edward Attiyeh,1 Yael Mosse,1 Daniel Shue,1 Eric Seiser,1 Jayanti Jagannathan,1 Suzanne Shusterman,5 Manisha Bansal,1 Deepa Khazi,1 Cynthia Winter,1 Erin Okawa,1 Gregory Grant,4 Avital Cnaan,2 Huaqing Zhao,2 Nai-Kong Cheung,6 William Gerald,6 Wendy London,7 Katherine K. Matthay,8 Garrett M. Brodeur,1 and John M. Maris1,3 Divisions of 1Oncology and 2Biostatistics, Children’s Hospital of Philadelphia and Department of Pediatrics and 3Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine; 4Center for Bioinformatics, University of Pennsylvania, Philadelphia, Pennsylvania; 5Department of Pediatric Oncology, Dana-Farber Cancer Institute and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; 6Memorial Sloan-Kettering Cancer Center, New York, New York; 7Department of Statistics, University of Florida and Children’s Oncology Group, Gainesville, Florida; and 8University of California at San Francisco School of Medicine, San Francisco, California Abstract also differentially expressed in the independent validation data set, providing a prioritized list of candidate neuro- Neuroblastoma is remarkable for its clinical heterogeneity blastoma suppressor genes. Taken together, these data are and is characterized by genomic alterations that are strongly consistent with the hypotheses that the neuroblastoma tran- correlated with tumor behavior. The specific genes that scriptome is a sensitive marker of underlying tumor biology influence neuroblastoma biology and are targeted by genomic and that chromosomal deletion events in this cancer likely alterations remain largely unknown. We quantified mRNA target multiple genes through alteration in mRNA dosage. expression in a highly annotated series of 101 prospectively Lead positional candidates for neuroblastoma suppressor collected diagnostic neuroblastoma primary tumors using an genes can be inferred from these data, but the potential oligonucleotide-based microarray. Genomic copy number multiplicity of transcripts involved has significant implica- status at the prognostically relevant loci 1p36, 2p24 (MYCN), tions for ongoing gene discovery strategies. 11q23, and 17q23 was determined by PCR and was aberrant in (Cancer Res 2006; 66(12): 6050-62) 26, 20, 40, and 38 cases, respectively. In addition, 72 diagnostic neuroblastoma primary tumors assayed in a different labora- tory were used as an independent validation set. Unsupervised Introduction hierarchical clustering showed that gene expression was Neuroblastoma is an important childhood cancer, as it accounts highly correlated with genomic alterations and clinical for f15% of all pediatric oncology deaths (1). The clinical hallmark markers of tumor behavior. The vast majority of samples of neuroblastoma is heterogeneity, with the likelihood of tumor MYCN with amplification and 1p36 loss of heterozygosity progression varying widely according to age and disease burden at (LOH) clustered together on a terminal node of the sample diagnosis. A large body of data support the hypothesis that the dendrogram, whereas the majority of samples with 11q clinical behavior of human neuroblastoma may be reliably deletion clustered separately and both of these were largely predicted based on the analysis of a panel of prognostic variables distinct from the copy number neutral group of tumors. Genes (reviewed in ref. 2). The Children’s Oncology Group (COG) currently involved in neurodevelopment were broadly overrepresented stratifies patients into low-, intermediate-, or high-risk categories in the more benign tumors, whereas genes involved in RNA based on analysis of well-defined prognostic factors, including processing and cellular proliferation were highly represented patient age at diagnosis (3), International Neuroblastoma Staging in the most malignant cases. By combining transcriptomic System (INSS) stage (4), tumor histopathology (5), DNA index (6), and genomic data, we showed that LOH at 1p and 11q was and MYCN amplification status (7, 8). This stratification system is associated with significantly decreased expression of 122 currently used to assign therapeutic intensity, mandating that (61%) and 88 (27%) of the genes mapping to 1p35-36 and the algorithm be as precise as possible. Clinical experience with all of 11q, respectively, suggesting that multiple genes may be this system suggests that the algorithm is useful, but misclassifi- targeted by LOH events. A total of 71of the 1p35-36genes were cations almost certainly occur resulting in overtreatment or undertreatment (2). Additional tumor-specific prognostic markers may be required to achieve maximal predictive power. A large number of genomic aberrations have been defined in Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/). neuroblastoma, and the pattern of these somatically acquired Presented in part at the 96th Annual Meeting of the AACR, Anaheim, CA, April 16- changes correlate with tumor behavior (9). Amplification of 20, 2005 and the 11th Conference of the Advances in Neuroblastoma, Genoa, Italy, June 16-19, 2004. the MYCN oncogene at 2p24 provides a paradigm for the clinical Requests for reprints: John M. Maris, Division of Oncology, Children’s Hospital of utility of a tumor-specific DNA rearrangement. MYCN amplification Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104-4399. is present in f20% of newly diagnosed tumors and remains a Phone: 215-590-2821; Fax: 215-590-3770; E-mail: [email protected]. I2006 American Association for Cancer Research. powerful biomarker for an aggressive phenotype and poor survival doi:10.1158/0008-5472.CAN-05-4618 probability even in light of modern dose-intensive therapies Cancer Res 2006; 66: (12). June 15, 2006 6050 www.aacrjournals.org Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2006 American Association for Cancer Research. Integrative Genomics of Neuroblastoma (10, 11). Hemizygous deletions and/or loss of heterozygosity (LOH) assessed using Affymetrix GeneChip Test 3 arrays. Statistical modeling of have been defined at multiple genomic regions, including probe set behavior was conducted using Probe Profiler (Corimbia, Berkeley, chromosomal arms 1p, 3p, 4p, 11q, 14q, 16p, and 19q at frequencies CA) as described by the manufacturer. The software implements a model- between 20% and 45% of cases using a variety of techniques based approach for data extraction from probe sets and incorporates quality-control features to detect and correct for the contribution of (2, 12). Likewise, unbalanced gain of 17q material may be the most nonspecific cross-hybridization effects. The model weights probe pairs common genomic aberration in neuroblastoma primary tumors, as based on consistency of performance. Normalization to remove chip- it is present in 50% to 75% of cases. Perhaps most importantly, to-chip variation is accomplished by subtracting the second percentile these events are nonrandom and are clinically relevant, with LOH intensity value and dividing by the interquartile range. A quantitative at 1p36 and 11q being independently prognostic for disease expression score (e-score) is then calculated for each probe set. outcome (13). Despite the clear clinical relevance of these genomic Data from this experiment, including sample annotations, have been aberrations, no definitive neuroblastoma suppressor gene has been deposited in Gene Expression Omnibus database and are available for free identified. at http://www.ncbi.nlm.nih.gov/geo/. Genome-scale profiling technology allows for detailed reassess- Unsupervised clustering. Unsupervised two-way agglomerative hierar- ment of the relationship between DNA aberrations with regional chical clustering with Pearson’s correlation coefficient as a distance metric gene expression (14, 15). Microarray studies in neuroblastoma to was done using GeneSpring 7.0 (Silicon Genetics, Redwood City, CA). Probe sets with low average expression or low variance were excluded in date have mainly focused on defining prognostic signatures or an effort to minimize noise. Specifically, probe sets exhibiting an average identifying genes associated with oncogenic MYCN (16–18). In e-score <50 or an estimated SD <75 were excluded, leaving 2,177 probe sets addition, McArdle et al. correlated global gene expression profiles remaining for cluster analysis. with 11q deletions in a limited number of samples but showed Identification of enriched gene sets. Gene Ontology (GO) annotation the power of this combined approach for gene discovery (19). We was used to characterize the functional relationship of differentially therefore sought to determine regional and global gene expression expressed gene classes between the varying sample classes (23). EASE differences between a large number of samples with and without version 2.0 was selected to examine the GO categories of molecular clinically relevant chromosomal aberrations in primary neuroblas- function, biological process, and cellular component (24). EASE functions tomas. These data were used to further our understanding of the to determine the overrepresentation of GO terms within a given gene list. genetic basis for neuroblastoma heterogeneity and to prioritize For each of the three GO categories, EASE establishes
Recommended publications
  • PRODUCT SPECIFICATION Prest Antigen GJB5
    PrEST Antigen GJB5 Product Datasheet PrEST Antigen PRODUCT SPECIFICATION Product Name PrEST Antigen GJB5 Product Number APrEST78107 Gene Description gap junction protein, beta 5, 31.1kDa Alternative Gene CX31.1 Names Corresponding Anti-GJB5 (HPA038146) Antibodies Description Recombinant protein fragment of Human GJB5 Amino Acid Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: KRCHECLAARKAQAMCTGHHPHGTTSSCKQDDLLSGDLIFLGSDSHPPLL PDRPRDHVKK Fusion Tag N-terminal His6ABP (ABP = Albumin Binding Protein derived from Streptococcal Protein G) Expression Host E. coli Purification IMAC purification Predicted MW 24 kDa including tags Usage Suitable as control in WB and preadsorption assays using indicated corresponding antibodies. Purity >80% by SDS-PAGE and Coomassie blue staining Buffer PBS and 1M Urea, pH 7.4. Unit Size 100 µl Concentration Lot dependent Storage Upon delivery store at -20°C. Avoid repeated freeze/thaw cycles. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Reproductionresearch
    REPRODUCTIONRESEARCH Gap junctions are essential for murine primordial follicle assembly immediately before birth Zhen Teng*, Chao Wang*, Yijing Wang, Kun Huang, Xi Xiang, Wanbao Niu, Lizhao Feng, Lihua Zhao, Hao Yan and Hua Zhang State Key Laboratory of Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China Correspondence should be addressed to C Wang; Email: [email protected] *(Z Teng and C Wang contributed equally to this work) Abstract The reserve of primordial follicles determines the reproductive ability of the female mammal over its reproductive life. The primordial follicle is composed of two types of cells: oocytes and surrounding pre-granulosa cells. However, the underlying mechanism regulating primordial follicle assembly is largely undefined. In this study, we found that gap junction communication (GJC) established between the ovarian cells in the perinatal mouse ovary may be involved in the process. First, gap junction structures between the oocyte and surrounding pre-granulosa cells appear at about 19.0 dpc (days post coitum). As many as 12 gap junction-related genes are upregulated at birth, implying that a complex communication may exist between ovarian cells, because specifically silencing the genes of individual gap junction proteins, such as Gja1, Gja4 or both, has no influence on primordial follicle assembly. On the other hand, non-specific blockers of GJC, such as carbenoxolone (CBX) and 18a-glycyrrhetinic acid (AGA), significantly inhibit mouse primordial follicle assembly. We proved that the temporal window for establishment of GJC in the fetal ovary is from 19.5 dpc to 1 dpp (days postpartum). In addition, the expression of ovarian somatic cell (OSC)-specific genes, such as Notch2, Foxl2 and Irx3, was negatively affected by GJC blockers, whereas oocyte-related genes, such as Ybx2, Nobox and Sohlh1, were hardly affected, implying that the establishment of GJC during this period may be more important to OSCs than to oocytes.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Pirfenidone Is Renoprotective in Diabetic Kidney Disease
    BASIC RESEARCH www.jasn.org Pirfenidone Is Renoprotective in Diabetic Kidney Disease ʈ Satish P. RamachandraRao,*†‡ Yanqing Zhu,‡ Timothy Ravasi,§ Tracy A. McGowan,‡ Irene Toh,‡ Stephen R. Dunn,‡¶ Shinichi Okada,*† Michael A. Shaw,** and Kumar Sharma*†‡ *Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, and ʈ §Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, Scripps NeuroAIDS Preclinical Studies Centre, and †Veterans Administration San Diego Healthcare System, La Jolla, California, ‡Center for Novel Therapies in Kidney Disease, Department of Medicine, ¶Cancer Genomics Facility, Kimmel Cancer Center, and **Proteomics and Mass Spectrometry Core Facility, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania ABSTRACT Although several interventions slow the progression of diabetic nephropathy, current therapies do not halt progression completely. Recent preclinical studies suggested that pirfenidone (PFD) prevents fibrosis in various diseases, but the mechanisms underlying its antifibrotic action are incompletely understood. Here, we evaluated the role of PFD in regulation of the extracellular matrix. In mouse mesangial cells, PFD decreased TGF-␤ promoter activity, reduced TGF-␤ protein secretion, and inhibited TGF-␤–induced Smad2-phosphor- ylation, 3TP-lux promoter activity, and generation of reactive oxygen species. To explore the therapeutic potential of PFD, we administered PFD to 17-wk-old db/db mice for 4 wk. PFD treatment significantly reduced mesangial matrix expansion and expression of renal matrix genes but did not affect albuminuria. Using liquid chromatography with subsequent electrospray ionization tandem mass spectrometry, we iden- tified 21 proteins unique to PFD-treated diabetic kidneys. Analysis of gene ontology and protein–protein interactions of these proteins suggested that PFD may regulate RNA processing.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Effects of Chronic Stress on Prefrontal Cortex Transcriptome in Mice Displaying Different Genetic Backgrounds
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector J Mol Neurosci (2013) 50:33–57 DOI 10.1007/s12031-012-9850-1 Effects of Chronic Stress on Prefrontal Cortex Transcriptome in Mice Displaying Different Genetic Backgrounds Pawel Lisowski & Marek Wieczorek & Joanna Goscik & Grzegorz R. Juszczak & Adrian M. Stankiewicz & Lech Zwierzchowski & Artur H. Swiergiel Received: 14 May 2012 /Accepted: 25 June 2012 /Published online: 27 July 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract There is increasing evidence that depression signaling pathway (Clic6, Drd1a,andPpp1r1b). LA derives from the impact of environmental pressure on transcriptome affected by CMS was associated with genetically susceptible individuals. We analyzed the genes involved in behavioral response to stimulus effects of chronic mild stress (CMS) on prefrontal cor- (Fcer1g, Rasd2, S100a8, S100a9, Crhr1, Grm5,and tex transcriptome of two strains of mice bred for high Prkcc), immune effector processes (Fcer1g, Mpo,and (HA)and low (LA) swim stress-induced analgesia that Igh-VJ558), diacylglycerol binding (Rasgrp1, Dgke, differ in basal transcriptomic profiles and depression- Dgkg,andPrkcc), and long-term depression (Crhr1, like behaviors. We found that CMS affected 96 and 92 Grm5,andPrkcc) and/or coding elements of dendrites genes in HA and LA mice, respectively. Among genes (Crmp1, Cntnap4,andPrkcc) and myelin proteins with the same expression pattern in both strains after (Gpm6a, Mal,andMog). The results indicate significant CMS, we observed robust upregulation of Ttr gene contribution of genetic background to differences in coding transthyretin involved in amyloidosis, seizures, stress response gene expression in the mouse prefrontal stroke-like episodes, or dementia.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Transcriptional Recapitulation and Subversion Of
    Open Access Research2007KaiseretVolume al. 8, Issue 7, Article R131 Transcriptional recapitulation and subversion of embryonic colon comment development by mouse colon tumor models and human colon cancer Sergio Kaiser¤*, Young-Kyu Park¤†, Jeffrey L Franklin†, Richard B Halberg‡, Ming Yu§, Walter J Jessen*, Johannes Freudenberg*, Xiaodi Chen‡, Kevin Haigis¶, Anil G Jegga*, Sue Kong*, Bhuvaneswari Sakthivel*, Huan Xu*, Timothy Reichling¥, Mohammad Azhar#, Gregory P Boivin**, reviews Reade B Roberts§, Anika C Bissahoyo§, Fausto Gonzales††, Greg C Bloom††, Steven Eschrich††, Scott L Carter‡‡, Jeremy E Aronow*, John Kleimeyer*, Michael Kleimeyer*, Vivek Ramaswamy*, Stephen H Settle†, Braden Boone†, Shawn Levy†, Jonathan M Graff§§, Thomas Doetschman#, Joanna Groden¥, William F Dove‡, David W Threadgill§, Timothy J Yeatman††, reports Robert J Coffey Jr† and Bruce J Aronow* Addresses: *Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. †Departments of Medicine, and Cell and Developmental Biology, Vanderbilt University and Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA. ‡McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA. §Department of Genetics and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA. ¶Molecular Pathology Unit and Center for Cancer Research, Massachusetts deposited research General Hospital, Charlestown, MA 02129, USA. ¥Division of Human Cancer Genetics, The Ohio State University College of Medicine, Columbus, Ohio 43210-2207, USA. #Institute for Collaborative BioResearch, University of Arizona, Tucson, AZ 85721-0036, USA. **University of Cincinnati, Department of Pathology and Laboratory Medicine, Cincinnati, OH 45267, USA. ††H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA. ‡‡Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, Massachusetts 02115, USA.
    [Show full text]
  • Supp Figures & Tables.Pdf
    SUPPLEMENTAL FIGURE LEGENDS Supplemental Figure 1. H226 cells express ΔNp63α and functional p53. (A) Western blot of total cell extracts from H226 cells as well as myc tagged p63 isoforms using a pan-p63 antibody and an antibody that specifically recognizes the α-isoforms of p63. (B) FACS analysis of cell cycle profile following staining with propidium iodide. H226 cells were treated with 10uM Nutlin-3, a non-genotoxic activator of p53, for 48 hours. (C) Sulforhodamine B (SRB) assay of cell proliferation following 5 days of knockdown of ΔNp63α and/or p53. (D) Cell cycle profile following 5 days of knockdown of ΔNp63α and/or p53. (E) Apoptotic index of cells following 5 days of knockdown of ΔNp63α. Treatment with 375 µM of the antimetabolite 5-fluorouracil (5FU) for 48 hours serves as a positive control. Cells were stained with annexin V and propidium iodide and analyzed by flow cytometry. Histograms represent the percentage of cells positive for annexin V staining. Supplemental Figure 2. ΔNp63α does not repress 14-3-3σ, GADD45A, NOXA or PUMA in H226 cells. Validation of microarray results by quantitative RT-PCR analysis of additional Class I genes following 12 hours of 10 µM Nutlin-3 treatment, 48 hours of ΔNp63α knockdown, or combination treatment. Supplemental Figure 3. Gene-specific repression by ΔNp63α in diverse cell types. Q-RT-PCR analysis of selected Class I, II, and III target genes following 48 hours of ΔNp63α knockdown in (A) HaCaT cells (immortalized keratinocytes), (B) SCC-13 cells (oral HNSCC), (C) Cal-27 (tongue HNSCC). Supplemental Figure 4.
    [Show full text]