On Stealthy Wings

Total Page:16

File Type:pdf, Size:1020Kb

On Stealthy Wings The B-2 is built for penetration. It will be a while before a Soviet long-range radar is good enough to detect it. On Stealthy Wings BY JEFFREY P. RHODES AERONAUTICS EDITOR HE Air Force has removed limited to 500 invited guests (includ- T some of the secrecy that had ing thirteen members of Congress), veiled the Northrop B-2 Stealth approximately 2,000 employees of bomber. In ceremonies at Palmdale, Northrop and its subcontractors Calif., on November 22, the rollout who work at Air Force Plant 42 of the B-2 gave the public its first (many of whom had not seen the look at the flying wing, which has completed airplane), and sixty rep- been in development for nearly ten resentatives from the media. Two years. hundred plant and Air Force securi- Air Force Secretary Edward C. ty guards, some tending police dogs Aldridge, Jr., one of the principal around the aircraft, were present. speakers at the ceremony, said that The ceremonies were beamed live the B-2 "represents a stabilizing via satellite TV to other Northrop and system in time of crisis and [is] an subcontractor plants, as well as to essential component of our strategic several Air Force organizations that nuclear force as we progress down have already played, or will play, a the path of nuclear arms reduc- part in the B-2's development. tions" and that the bomber "would Fifteenth Air Force band played promote deterrence." an original composition titled The Secretary explained that the "Stealth Fanfare" as the gray-and- aircraft will begin flying soon and black airplane was towed out of its that, since "we are not just going to hangar. Guests were kept almost fly [the B-2] at night or in remote lo- 200 feet away and were not allowed cations," the supersecret bomber to see the aft end of the B-2. The aft would have been seen anyway. An- end incorporates features that mask other, unspoken, reason for the roll- the plane's infrared (or heat) sig- out was to show Congress and the nature and help it avoid detection by public what they're getting for their enemy radar. money. Security was tight, as many de- Knowns and Unknowns tails about the program are still clas- "This aircraft combines all the sified. Attendance at the rollout was best attributes of a penetrating AIR FORCE Magazine / February 1989 43 bomber—long range, efficient The B-2, which looks something Beams that do find the B-2 will be cruise, heavy payload, all-altitude like a manta ray, has a wingspan of absorbed by the aircraft's structure penetration capability, accurate de- approximately 172 feet. It is roughly of what is believed to be carbon livery, and reliability and maintain- sixty-nine feet long and seventeen fiber or other composite materials. ability," said Air Force Chief of feet high. "The airplane is not invisible," Staff Gen. Larry D. Welch, who The B-2's wingspan, interesting- noted Secretary Aldridge. "It's just was also one of the speakers at the ly, is the same as that of the Air that radars can't see it until it's at ceremony. "Added to that is the Force's first flying wings, the Nor- close range. And we don't antici- greatly enhanced effectiveness and throp XB-35 and YB-49. These air- pate the Soviets developing a [long- versatility provided by its Stealth craft, which first flew in 1946 and range radar] system in the near fu- characteristics." 1947, were regarded as ahead of ture that will be able to see it. The The B-2 will have a crew of only their time. Both encountered many B-2 has a very low [radar cross sec- two, but there are provisions for a problems in flight. Only a handful of tion] that will allow it to get to any third crew member if needed "for these planes was built, and both target it needs to." Those targets whatever reasons," said Secretary YB-49 prototypes eventually include mobile missiles and high- Aldridge. The cockpit is believed to crashed. The B-2 is longer (by six- value command and control cen- have flat-panel displays and is teen feet) than the earlier flying ters. thought to be controlled by fighter- wings. The airplane has an in-flight re- type sticks, rather than yokes or The B-2's four engines are Gener- fueling receptacle. The flying wing wheels. al Electric F118-GE-100s, nonafter- shape is very fuel-efficient, how- All weapons carriage will be inter- burning derivatives of the F110 used ever, so the B-2 will need less tanker nal, with the stores attached to the in the Air Force's F-16 and the support than B-52s or B-lBs do. Ex- Boeing-built advanced applications Navy's F- 14A (Plus) and F- 14D air- perts have estimated the unrefueled rotary launcher. Elimination of ex- craft. The engine is in the 19,000- range of the B-2 at between 6,000 ternal carriage will greatly reduce pound-thrust class. The B-2 will be and 7,500 nautical miles. drag and will also improve the B-2's subsonic. The absence of a super- Although guests at the rollout ability to avoid radar detection. The sonic "footprint" will enhance its were prohibited from viewing the plane's primary payload will be nu- ability to slip into a target area un- B-2's aft end, Aviation Week maga- clear weapons (missiles and/or grav- noticed. zine enterprisingly obtained aerial ity bombs), but the B-2 will have a The B-2's main aids in avoiding photographs without the Air conventional capability. The weap- detection are its shape and the ma- Force's cooperation. These photos ons payload is classified, but is terials it is made of. Since the B-2 show the trailing edges of the saw- known to be less than the 134,000- has no sharp edges or vertical sur- toothed wing to be fitted with long pound designed payload of the faces exposed during flight, radar control surfaces that could act as B-1B. beams have nothing to bounce off. elevons (elevator/ailerons) or flap- 44 AIR FORCE Magazine / February 1989 erons (flap/ailerons) for directional vanced Systems Co., LTV Aircraft ity. Crew chiefs and line mainte- and lift control. Products Group, and General Elec- nance troops were consulted about Asked if the plane made use of tric's Engine Group). access to components, and Air "fly-by-light," or fiber-optic control The other major subcontractors Force Logistics Command officials linkages, which are impervious to (Link Flight Simulation Corp., provided input on sustainability. electromagnetic interference, Sec- Hughes Radar Systems Group, and retary Aldridge replied with an em- Boeing Military Airplane Co.) and Eliminating Contrails phatic, "I'm not going to answer more than forty known subcontrac- The B-2 was originally conceived that." The B-2's huge main landing tors (see box, p. 46) were also in as a high-altitude bomber, and that gear doors may also function as an constant contact with Northrop. created the problem of eliminating empennage and provide some later- The network resulted in a ninety- contrails, which would give the air- al stability for the aircraft, especial- seven percent success rate for first- plane's position away to mankind's ly in crosswind takeoffs and land- time fit of tubing, fluid systems, and oldest sensor—the human eye. ings. mechanical systems. This com- At the rollout, though, Secretary pares with a sixty percent success Aldridge announced that "the con- The B-2 Program rate for a conventional design pro- trail problem has been solved, but "The B-2 is the first computer-age cess. Northrop invested more than I'm not going to tell you how." Two airplane," said Thomas V. Jones, $1 billion in the system, which in- possible solutions: a fuel additive, Northrop's chairman of the board cludes 400 terminals and thirty or a baffle system on the rear of and chief executive officer, "but the computer graphics rooms at the the aircraft that mixes cold air with airplane wasn't built by computers. company's 3,300,000-square-foot the hot engine exhaust to eliminate The Northrop B-2 looks particularly sinister in this head-on shot, taken at the rollout ceremo- nies at Palmdale, Calif. The B-2's wingspan of approximately 172 feet is roughly thirteen feet shorter than that of a B-52. At sixty-nine feet long and seventeen feet high, the B-2 is about six feet longer than an F-15 and the same height as an FB-111. And computers didn't replace peo- Pico Rivera, Calif., facility (where the formation of the telltale vapor ple. Computers brought people to- the B-2 was designed and engi- trails. gether and gave them the tools they neered) alone. Sometime around 1983, a reas- needed to make the most of their The avionics system has already sessment of the threats the B-2 individual skills and imagination." been tested for 44,000 hours. Engi- would encounter resulted in a re- Indeed, the B-2 is the first aircraft neering development testing took design (mostly in the carry-through to be designed and built with a another 16,000 hours, and the flight- structure, where the wing halves three-dimensional integrated data- control system has logged 9,000 meet in the center of the aircraft and base. This computer network elec- hours on the test bench.
Recommended publications
  • Flying Wing Concept for Medium Size Airplane
    ICAS 2002 CONGRESS FLYING WING CONCEPT FOR MEDIUM SIZE AIRPLANE Tjoetjoek Eko Pambagjo*, Kazuhiro Nakahashi†, Kisa Matsushima‡ Department of Aeronautics and Space Engineering Tohoku University, Japan Keywords: blended-wing-body, inverse design Abstract The flying wing is regarded as an alternate This paper describes a study on an alternate configuration to reduce drag and structural configuration for medium size airplane. weight. Since flying wing possesses no fuselage Blended-Wing-Body concept, which basically is it may have smaller wetted area than the a flying wing configuration, is applied to conventional airplane. In the conventional airplane for up to 224 passengers. airplane the primary function of the wing is to An aerodynamic design tools system is produce the lift force. In the flying wing proposed to realize such configuration. The configuration the wing has to carry the payload design tools comprise of Takanashi’s inverse and provides the necessary stability and control method, constrained target pressure as well as produce the lift. The fuselage has to specification method and RAPID method. The create lift without much penalty on the drag. At study shows that the combination of those three the same time the fuselage has to keep the cabin design methods works well. size comfortable for passengers. In the past years several flying wings have been designed and flown successfully. The 1 Introduction Horten, Northrop bombers and AVRO are The trend of airplane concept changes among of those examples. However the from time to time. Speed, size and range are application of the flying wing concepts were so among of the design parameters.
    [Show full text]
  • Fly-By-Wire - Wikipedia, the Free Encyclopedia 11-8-20 下午5:33 Fly-By-Wire from Wikipedia, the Free Encyclopedia
    Fly-by-wire - Wikipedia, the free encyclopedia 11-8-20 下午5:33 Fly-by-wire From Wikipedia, the free encyclopedia Fly-by-wire (FBW) is a system that replaces the Fly-by-wire conventional manual flight controls of an aircraft with an electronic interface. The movements of flight controls are converted to electronic signals transmitted by wires (hence the fly-by-wire term), and flight control computers determine how to move the actuators at each control surface to provide the ordered response. The fly-by-wire system also allows automatic signals sent by the aircraft's computers to perform functions without the pilot's input, as in systems that automatically help stabilize the aircraft.[1] Contents Green colored flight control wiring of a test aircraft 1 Development 1.1 Basic operation 1.1.1 Command 1.1.2 Automatic Stability Systems 1.2 Safety and redundancy 1.3 Weight saving 1.4 History 2 Analog systems 3 Digital systems 3.1 Applications 3.2 Legislation 3.3 Redundancy 3.4 Airbus/Boeing 4 Engine digital control 5 Further developments 5.1 Fly-by-optics 5.2 Power-by-wire 5.3 Fly-by-wireless 5.4 Intelligent Flight Control System 6 See also 7 References 8 External links Development http://en.wikipedia.org/wiki/Fly-by-wire Page 1 of 9 Fly-by-wire - Wikipedia, the free encyclopedia 11-8-20 下午5:33 Mechanical and hydro-mechanical flight control systems are relatively heavy and require careful routing of flight control cables through the aircraft by systems of pulleys, cranks, tension cables and hydraulic pipes.
    [Show full text]
  • 2021-03 Pearcey Newby and the Vulcan V2.Pdf
    Journal of Aeronautical History Paper 2021/03 Pearcey, Newby, and the Vulcan S C Liddle Vulcan to the Sky Trust ABSTRACT In 1955 flight testing of the prototype Avro Vulcan showed that the aircraft’s buffet boundary was unacceptably close to the design cruise condition. The Vulcan’s status as one of the two definitive carrier aircraft for Britain’s independent nuclear deterrent meant that a strong connection existed between the manufacturer and appropriate governmental research institutions, in this case the Royal Aircraft Establishment (RAE) and the National Physical Laboratory (NPL). A solution was rapidly implemented using an extended and drooped wing leading edge, designed and high-speed wind-tunnel tested by K W Newby of RAE, subsequently being fitted to the scaled test version of the Vulcan, the Avro 707A. Newby’s aerodynamic solution exploited a leading edge supersonic-expansion, isentropic compression* effect that was being investigated at the time by researchers at NPL, including H H Pearcey. The latter would come to be associated with this ‘peaky’ pressure distribution and would later credit the Vulcan implementation as a key validation of the concept, which would soon after be used to improve the cruise efficiency of early British jet transports such as the Trident, VC10, and BAC 1-11. In turn, these concepts were exploited further in the Hawker-Siddeley design for the A300B, ultimately the basis of Britain’s status as the centre of excellence for wing design in Airbus. Abbreviations BS Bristol Siddeley L Lift D Drag M Mach number CL Lift Coefficient NPL National Physical Laboratory Cp Pressure coefficient RAE Royal Aircraft Establishment Cp.te Pressure coefficient at trailing edge RAF Royal Air Force c Chord Re Reynolds number G Load factor t Thickness HS Hawker Siddeley WT Wind tunnel HP Handley Page α Angle of Attack When the airflow past an aerofoil accelerates its pressure and temperature drop, and vice versa.
    [Show full text]
  • Horten Ho 229 V3 All Wood Short Kit
    Horten Ho 229 V3 All Wood Short Kit a Radio Controlled Model in 1/8 Scale Design by Gary Hethcoat Copyright 2007 Aviation Research P.O. Box 9192, San Jose, CA 95157 http://www.wingsontheweb.com Email: [email protected] Phone: 408-660-0943 Table of Contents 1 General Building Notes ......................................................................................................................... 4 1.1 Getting Help .................................................................................................................................. 4 1.2 Laser Cut Parts .............................................................................................................................. 4 1.3 Electronics ..................................................................................................................................... 4 1.4 Building Options ........................................................................................................................... 4 1.4.1 Removable Outer Wing Panels .............................................................................................. 4 1.4.2 Drag Rudders ......................................................................................................................... 4 1.4.3 Retracts .................................................................................................................................. 5 1.4.4 Frise Style Elevons ...............................................................................................................
    [Show full text]
  • On the Handling Qualities of Two Flying Wing Aircraft Configurations
    aerospace Article On the Handling Qualities of Two Flying Wing Aircraft Configurations Luís M. B. C. Campos 1,† and Joaquim M. G. Marques 2,*,† 1 CCTAE, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; [email protected] 2 CCTAE, IDMEC, Escola de Ciências e Tecnologia, Departamento de Mecatrónica, Colégio Luís António Verney, Universidade de Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The coupling of the longitudinal and lateral stability modes of an aeroplane is considered in two cases: (i) weak coupling, when the changes in the frequency and damping of the phugoid, short period, dutch roll, and helical modes are small, i.e., the square of the deviation is negligible compared to the square of the uncoupled value; (ii) strong coupling, when the coupled values may differ significantly from the uncoupled values. This allows a comparison of three values for the frequency and damping of each mode: (i) exact, i.e., fully coupled; (ii) with the approximation of weak coupling; (iii) with the assumption of decoupling. The comparison of these three values allows an assessment of the importance of coupling effects. The method is applied to two flying wing designs, concerning all modes in a total of eighteen flight conditions. It turns out that lateral-longitudinal coupling is small in all cases, and thus classical handling qualities criteria can be applied. The handling qualities are considered for all modes, namely the phugoid, short period, dutch roll, spiral, and roll modes.
    [Show full text]
  • Flight Dynamics of the Flying Wing
    26TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FLIGHT DYNAMICS OF THE FLYING WING S. D’Urso* and R. Martinez-Val *Universita Federico II, Naples, Italy **Universidad Politecnica de Madrid, Spain Keywords: flying wing, stability, performances Abstract years. But this tremendous demand will occur in an epoch of continued pressure to achieve Flying wings are one of the most promising significant reductions in both direct operating concepts for the future of commercial aviation, cost and environmental impact. regarding the market, technology and Commercial airplanes have evolved from environmental driving factors. The research uncomfortable converted bombers after World reported here is part of a long term project on War I into what is currently called the the 300 seats category flying wings. In several conventional layout, appeared six decades ago. previously published works the feasibility, This ubiquitous arrangement is characterised by efficient performance and airport compatibility a slender fuselage mated to a high aspect ratio of the concept have been assessed. The present wing, with aft-mounted empennage and pod- paper concentrates on the flight dynamic mounted engines under the wing [6]. A variant aspects of the aircraft, which have been with engines attached to the rear fuselage has scarcely analysed in open literature. The results also been used, mainly in business and regional obtained show that the flying wing jets. However, it seems that this paradigmatic configuration can be dynamically stable; configuration is approaching an asymptote however, the longitudinal and lateral- around the size of A380 [7, 8]. directional oscillations decay so slowly that a The ever changing market and technology stability augmentation system would be required scenario is strongly leading to new designs and to assure an acceptable dynamic response of the concepts: three-surface layout, joined wings, aircraft.
    [Show full text]
  • Fixed-Wing Micro Air Vehicles with Hovering Capabilities
    UNCLASSIFIED/UNLIMITED Fixed-Wing Micro Air Vehicles with Hovering Capabilities Boris Bataillé, Damien Poinsot, Chinnapat Thipyopas and Jean-Marc Moschetta SUPAERO & ONERA 10, Avenue Edouard Belin 31055 TOULOUSE FRANCE [email protected] / [email protected] / [email protected] / [email protected] URBAN SURVEILLANCE USING A FIXED WING MAV Fixed-wing micro air vehicles (MAV) are very attractive for outdoor surveillance missions since they generally offer better payload and endurance capabilities than rotorcraft or flapping-wing vehicles of equal size. They are generally less challenging to control than helicopter in outdoor environment. However, high wing loading associated with stringent dimension constraints requires high cruise speeds for fixed-wing MAVs and it has been difficult so far to achieve good performances at low-speed flight using fixed-wing configurations. The present paper investigates the possibility to improve the aerodynamic performance of classical fixed-wing MAV concepts so that high cruise speed is maintained for covertness and stable hover flight is achieved to allow building intrusion and indoor surveillance. Monoplane wing plan forms are compared with biplane concepts using low-speed wind tunnel measurements and numerical calculations including viscous effects. Wind-tunnel measurements including the influence of counter-rotating propellers indicate that a biplane-twin propeller MAV configuration can drastically increase low-speed and high-speed aerodynamic performances over the classical monoplane fixed-wing concept. Control in hover flight can highly benefit from the effect of counter-rotating propellers as demonstrated by flight tests. After describing the flight dynamics model including the prop wash effect over control surfaces, a control strategy is presented to achieve autonomous transition between forward flight and hover flight.
    [Show full text]
  • Issue 4416, September 2015
    Issue 4416, September 2015 Next club meeting: September 28th, 2015, 7:00 pm, Golden Coral Alta Mere Blvd & Camp Bowie Blvd Presidents Corner : by Tom Blakeney Hello, fellow Thunderbirds. field inspected by our landlords, the US Army Corps of Engineers. Ken called to report that we had passed our I am just back from a business trip to Washington, DC. I inspection with flying colors and that the Corps was was lucky enough to have a few free hours to visit both impressed by how well we were taking care of the property. parts of the National Air and Space Museum. A must see Thanks go out to Ken and all the hard working for any airplane fanatic. Thunderbirds that help keep our field a showplace to be very proud of. The year is zipping by. Just three more meetings before the Christmas Party and we are in the midst of the busy fall There is a great electric fly in coming up on October 3-4 event season. that I go to every year to New Waverly, TX, BEST (Best Electrics in South Texas) is a well done and well attended Upcoming Thunderbird events include the Senior Pattern event with a lot of low key fun flying, a great raffle and a event this coming weekend in Sept 26-27 and the Texas super group of folks. Try to make it down if you can. Electric eXpo on Nov 7. See you at the meeting Monday night, Sept 28 at 7PM at While I was out of town I received a call from Ken Knotts, the Golden Corral on Alta Mere near Highway 80 who related that we had had our first request to have our West/Camp Bowie.
    [Show full text]
  • The Death of Jack Northrop's Flying Wing Bombers
    Clipped Wings: The DeathLESSONS of Jack LEARNEDNorthrop’s Flying Wing Bombers CLIPPED WINGS: THE DEATH OF JACK NORTHROP’S FLYING WING BOMBERS Dr. Bud Baker One of the mysteries in defense acquisition has concerned the fate of the Northrop Flying Wing bombers, canceled by the Air Force more than 50 years ago. Aviation experts have long suspected that the 1949 cancellations were motivated more by politics than by the Wings’ technical shortcomings. However, public records, declassified Air Force documents, and personal interviews — never before published — reveals that the cancellation of the Flying Wings was a sound decision, based on budgetary, technical, and strategic realities; and the issues addressed here are as pertinent to defense acquisition today as they were 50 years ago. Like today, decision makers struggled to balance cost, schedule, and technical performance. They also had to deal with shrinking defense budgets, a declining defense industrial base, and a world situation in which the only constant was change. Nearly all the interviewees for this research — including Secretary (and Senator) Symington, Generals LeMay, Norstad, and Quesada — are gone now, but their recollections here serve to make clear what really happened to the predecessors of today’s B-2 bomber. The lessons of the Flying Wings remain pertinent today. ore than 50 years ago, a series of their own technical shortcomings? Or of remarkable aircraft took to were they pawns in a high-stakes politi- M the skies of America. These cal power play, as Jack Northrop con- huge all-wing bombers were the product tended? This article will answer those of the genius John Knudsen Northrop, and questions.
    [Show full text]
  • Design and Structural Optimization of a Flying Wing of Low Aspect Ratio Based on Flight Loads
    Forschungsbericht DLR-FB-2020-20 Design and Structural Optimization of a Flying Wing of Low Aspect Ratio Based on Flight Loads Arne Voß Deutsches Zentrum für Luft- und Raumfahrt Institut für Aeroelastik Göttingen Design and Structural Optimization of a Flying Wing of Low Aspect Ratio Based on Flight Loads vorgelegt von M.Sc. Arne Voß an der Faktultät V – Verkehrs- und Maschinensysteme der Technischen Universität Berlin zur Erlangung des akademischen Grads Doktor der Ingenieurwissenschaften - Dr. Ing. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr.-Ing. Flávio Silvestre Gutachter: Prof. Dr.-Ing. Andreas Bardenhagen Prof. Dr.-Ing. Wolf-Reiner Krüger Prof. Dr.-Ing. Hartmut Zingel Tag der wissenschaftlichen Aussprache: 19. Februar 2020 Berlin 2020 Abstract Abstract The design process for new aircraft configurations is complex, very costly and many disciplines are involved, like aerodynamics, structure, loads analysis, aeroelasticity, flight mechanics and weights. Their task is to substantiate the selected design, based on physically meaningful simulations and analyses. Modifications are much more costly at a later stage of the design process. Thus, the preliminary design should be as good as possible to avoid any “surprises” at a later stage. Therefore, it is very useful to include load requirements from the certification specifications already in the preliminary design. In addition, flying wings have some unique characteristics that need to be considered. These are a differentiating factor with respect to classical, wing-fuselage-empennage configurations. The aim of this thesis is to include these requirements as good and as early as possible. This is a trade-off, because the corresponding analyses require a detailed knowledge and models, which become available only later during the design process.
    [Show full text]
  • Design, Build and Fly a Flying Wing by Ahmed A. Hamada
    Athens Journal of Technology and Engineering - Volume 5, Issue 3 – Pages 223-250 Design, Build and Fly a Flying Wing By Ahmed A. Hamada Abdelrahman A. Sultan† Mohamed M. Abdelrahman‡ This research represents one of the graduation projects for the final year of undergraduate students in Aerospace Engineering Department for the academic year 2015-2016. The objective of the present paper is to design, build and test a flying wing. The purpose of this work is to describe the methodology and decision making involved in the process of designing a flying wing. First, the design is based on the design theories and followed by performance, stability analysis, and motion simulation. The wind-tunnel tests are performed to compare theoretical results based on design with the experimental measured results. Finally, a real flight test is performed to achieve the objective of the project. Keywords: CFD, Flight Simulation, Flying Wing, Performance, Stability, UAV, Winglets, Wind Tunnel Test. Introduction A flying wing is a tailless fixed-wing aircraft that has no definite fuselage. Theoretically, flying wings have the most efficient aircraft configurations from the aerodynamic point of view and structural weight. An advantage of the tailless aircraft is the high lift to drag ratio. The main disadvantage of the flying wings is the lack of stability which has to be compensated by adding more design restrictions to the wing design. However, it is a good opportunity to dive into the flying wing design process with all its problems and challenges. The design methodology follows an engineering design process starting by setting the target mission specifications of the design.
    [Show full text]
  • Control of a Swept Wing Tailless Aircraft Through Wing Morphing
    Graduate Theses, Dissertations, and Problem Reports 2007 Control of a swept wing tailless aircraft through wing morphing Richard W. Guiler West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Guiler, Richard W., "Control of a swept wing tailless aircraft through wing morphing" (2007). Graduate Theses, Dissertations, and Problem Reports. 2779. https://researchrepository.wvu.edu/etd/2779 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. CONTROL OF A SWEPT WING TAILLESS AIRCRAFT THROUGH WING MORPHING by Richard W. Guiler Dissertation submitted to the College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Aerospace Engineering Approved by Wade Huebsch, PhD., Committee Chairperson John Loth, PhD. Gary Morris, PhD. John Kuhlman, PhD. Jens Madsen, PhD. Department of Mechanical and Aerospace Engineering Morgantown, West Virginia 2007 Keywords: Morphing Aircraft Structures, Tailless Aircraft, Horten, Wing Twist, Blended Wing Body and Aircraft Controls Copyright 2007 Richard W.
    [Show full text]