Open John Quindlen Thesis.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open John Quindlen Thesis.Pdf THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF AEROSPACE ENGINEERING DESIGN AND TRIM OPTIMATION OF A FLYING WING UAV JOHN F. QUINDLEN Spring 2010 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Aerospace Engineering with honors in Aerospace Engineering Reviewed and approved* by the following: Jack W. Langelaan Assistant Professor Thesis Supervisor Mark D. Maughmer Professor Honors Advisor George A Lesieutre Professor Head of Aerospace Engineering * Signatures are on file in the Schreyer Honors College. i ABSTRACT Camber changing plain flaps offer tailless sailplanes two potential benefits: a lower minimum speed, ideal for climbing in thermals, and a higher lift to drag ratio to improve glideslope in between thermals. With these two goals in mind, an inboard plain flap is designed for an existing flying wing unmanned aerial vehicles (UAV). The flap places new demands on the aircraft autopilot which must be alleviated with a new flap module. In order to do so, the aerodynamic derivatives of the original aircraft are linearized. Then an inboard flap is designed to require little change in elevon deflection to trim the aircraft for any flap deflection. Next, a nonlinear longitudinal dynamics model is created using the new linearized aerodynamic derivatives of the flapped aircraft. These nonlinear dynamics are then linearized to find the transfer functions of airspeed to pitch angle and pitch angle to elevon deflection. From these two equations of motion, an airspeed controller is designed and optimized using root locus method for a proportional-integral (PI) controller and a proportional-integral-derivative (PID) controller. Just as expected, the inboard flap improves the aircraft performance. After implementing the flap, the lift to drag ratio of the flapped aircraft improves slightly versus the original aircraft. The new configuration offers an average increase in lift to drag ratio of 1% at cruise from 10 m/s to 15 m/s with a maximum improvement of 2% at 12 m/s. Likewise, the aircraft sees roughly a 22% decrease in minimum airspeed at a 15° angle of attack using a 28° flap deflection versus the original aircraft at the same angle of attack. Further simulation results of the new flapped configuration are then analyzed and compared with the original aircraft. The flap module performs well within the cruise range but is of limited effectiveness at either end of the airspeed range. ii TABLE OF CONTENTS LIST OF FIGURES .................................................................................................................iv LIST OF TABLES...................................................................................................................vi ACKNOWLEDGEMENTS.....................................................................................................vii Chapter 1 Introduction ............................................................................................................1 Unmodified Zagi Aircraft ................................................................................................2 Aircraft Configuration......................................................................................................3 Chapter 2 Flap Design ............................................................................................................5 Flap Optimization ............................................................................................................8 Aircraft Configuration......................................................................................................11 Flap Scheduling................................................................................................................12 Chapter 3 Nonlinear Longitudinal Dynamics Modeling.........................................................18 Aerodynamic Coefficients ...............................................................................................19 Nonlinear Dynamics ........................................................................................................21 Nonlinear Kinematics ......................................................................................................22 Chapter 4 Airspeed Control ....................................................................................................25 Transfer Functions ...........................................................................................................25 Controllers........................................................................................................................26 Implementation ................................................................................................................26 Chapter 5 Flap Module ...........................................................................................................28 Flap and Elevon Scheduling.............................................................................................28 Overall Architecture.........................................................................................................30 Chapter 6 Simulation Results..................................................................................................31 Cruise Range....................................................................................................................31 Low Speed........................................................................................................................35 High Speed.......................................................................................................................39 Challenges........................................................................................................................43 Chapter 7 Conclusion..............................................................................................................45 References................................................................................................................................48 Appendix A Aircraft Parameters ............................................................................................49 iii Appendix B Nomenclature .....................................................................................................50 iv LIST OF FIGURES Figure 1-1: Zagi-5C thermal/hand launched R/C glider. Source: Trick R/C.........................3 Figure 1-2: Top-view of the unmodified Zagi configuration..................................................4 Figure 2-1: Straight trailing-edge flap configuration..............................................................6 Figure 2-2: Constant flap chord to section chord ratio flap configuration..............................7 Figure 2-3: Constant chord flap configuration........................................................................7 Figure 2-4: The SWIFT flying wing sailplane equipped with a self-trimming flap. Source: Kroo and Beckman, Stanford University............................................................9 Figure 2-5: Top-view of the new Zagi configuration. .............................................................12 Figure 2-6: Process used to calculate aircraft parameters for flap scheduling........................13 Figure 2-7: L/D against airspeed for a range of flap deflections. ...........................................14 Figure 2-8: Best L/D versus airspeed for original and flapped Zagi........................................15 Figure 2-9: Minimum airspeed versus flap deflection for the original and flapped Zagi. .......16 Figure 2-10: Optimal flap deflection against airspeed for minimum speed, best L/D, and the polynomial fit for those two criteria...........................................................................17 Figure 3-1: Architecture of the nonlinear longitudinal dynamics model................................18 Figure 3-2: Architecture of the aerodynamic coefficients block. ...........................................20 Figure 3-3: Architecture of the nonlinear dynamics block. ....................................................22 Figure 3-4: Architecture of the nonlinear kinematics block. ..................................................24 Figure 4-1: Airspeed control architecture with PI and PID controllers. .................................27 Figure 5-1: Flap and elevon scheduling block........................................................................29 Figure 5-2: Overall control architecture of the entire flap module. ........................................30 Figure 6-1: Airspeed versus time plot with a 1 m/s increment and decrement in desired airspeed at cruise..............................................................................................................32 v Figure 6-2: Pitch angle versus time plot with a 1 m/s increment and decrement in desired airspeed at cruise. ................................................................................................32 Figure 6-3: Flap deflection versus time plot with a 1 m/s increment and decrement in desired airspeed at cruise. ................................................................................................33 Figure 6-4: Elevon deflection required to trim versus time plot with a 1 m/s increment and decrement in desired airspeed at cruise.....................................................................33 Figure 6-5: Glideslope plot with a 1 m/s increment and decrement in desired airspeed at cruise. ...............................................................................................................................34
Recommended publications
  • Flying Wing Concept for Medium Size Airplane
    ICAS 2002 CONGRESS FLYING WING CONCEPT FOR MEDIUM SIZE AIRPLANE Tjoetjoek Eko Pambagjo*, Kazuhiro Nakahashi†, Kisa Matsushima‡ Department of Aeronautics and Space Engineering Tohoku University, Japan Keywords: blended-wing-body, inverse design Abstract The flying wing is regarded as an alternate This paper describes a study on an alternate configuration to reduce drag and structural configuration for medium size airplane. weight. Since flying wing possesses no fuselage Blended-Wing-Body concept, which basically is it may have smaller wetted area than the a flying wing configuration, is applied to conventional airplane. In the conventional airplane for up to 224 passengers. airplane the primary function of the wing is to An aerodynamic design tools system is produce the lift force. In the flying wing proposed to realize such configuration. The configuration the wing has to carry the payload design tools comprise of Takanashi’s inverse and provides the necessary stability and control method, constrained target pressure as well as produce the lift. The fuselage has to specification method and RAPID method. The create lift without much penalty on the drag. At study shows that the combination of those three the same time the fuselage has to keep the cabin design methods works well. size comfortable for passengers. In the past years several flying wings have been designed and flown successfully. The 1 Introduction Horten, Northrop bombers and AVRO are The trend of airplane concept changes among of those examples. However the from time to time. Speed, size and range are application of the flying wing concepts were so among of the design parameters.
    [Show full text]
  • Fly-By-Wire - Wikipedia, the Free Encyclopedia 11-8-20 下午5:33 Fly-By-Wire from Wikipedia, the Free Encyclopedia
    Fly-by-wire - Wikipedia, the free encyclopedia 11-8-20 下午5:33 Fly-by-wire From Wikipedia, the free encyclopedia Fly-by-wire (FBW) is a system that replaces the Fly-by-wire conventional manual flight controls of an aircraft with an electronic interface. The movements of flight controls are converted to electronic signals transmitted by wires (hence the fly-by-wire term), and flight control computers determine how to move the actuators at each control surface to provide the ordered response. The fly-by-wire system also allows automatic signals sent by the aircraft's computers to perform functions without the pilot's input, as in systems that automatically help stabilize the aircraft.[1] Contents Green colored flight control wiring of a test aircraft 1 Development 1.1 Basic operation 1.1.1 Command 1.1.2 Automatic Stability Systems 1.2 Safety and redundancy 1.3 Weight saving 1.4 History 2 Analog systems 3 Digital systems 3.1 Applications 3.2 Legislation 3.3 Redundancy 3.4 Airbus/Boeing 4 Engine digital control 5 Further developments 5.1 Fly-by-optics 5.2 Power-by-wire 5.3 Fly-by-wireless 5.4 Intelligent Flight Control System 6 See also 7 References 8 External links Development http://en.wikipedia.org/wiki/Fly-by-wire Page 1 of 9 Fly-by-wire - Wikipedia, the free encyclopedia 11-8-20 下午5:33 Mechanical and hydro-mechanical flight control systems are relatively heavy and require careful routing of flight control cables through the aircraft by systems of pulleys, cranks, tension cables and hydraulic pipes.
    [Show full text]
  • 2021-03 Pearcey Newby and the Vulcan V2.Pdf
    Journal of Aeronautical History Paper 2021/03 Pearcey, Newby, and the Vulcan S C Liddle Vulcan to the Sky Trust ABSTRACT In 1955 flight testing of the prototype Avro Vulcan showed that the aircraft’s buffet boundary was unacceptably close to the design cruise condition. The Vulcan’s status as one of the two definitive carrier aircraft for Britain’s independent nuclear deterrent meant that a strong connection existed between the manufacturer and appropriate governmental research institutions, in this case the Royal Aircraft Establishment (RAE) and the National Physical Laboratory (NPL). A solution was rapidly implemented using an extended and drooped wing leading edge, designed and high-speed wind-tunnel tested by K W Newby of RAE, subsequently being fitted to the scaled test version of the Vulcan, the Avro 707A. Newby’s aerodynamic solution exploited a leading edge supersonic-expansion, isentropic compression* effect that was being investigated at the time by researchers at NPL, including H H Pearcey. The latter would come to be associated with this ‘peaky’ pressure distribution and would later credit the Vulcan implementation as a key validation of the concept, which would soon after be used to improve the cruise efficiency of early British jet transports such as the Trident, VC10, and BAC 1-11. In turn, these concepts were exploited further in the Hawker-Siddeley design for the A300B, ultimately the basis of Britain’s status as the centre of excellence for wing design in Airbus. Abbreviations BS Bristol Siddeley L Lift D Drag M Mach number CL Lift Coefficient NPL National Physical Laboratory Cp Pressure coefficient RAE Royal Aircraft Establishment Cp.te Pressure coefficient at trailing edge RAF Royal Air Force c Chord Re Reynolds number G Load factor t Thickness HS Hawker Siddeley WT Wind tunnel HP Handley Page α Angle of Attack When the airflow past an aerofoil accelerates its pressure and temperature drop, and vice versa.
    [Show full text]
  • Horten Ho 229 V3 All Wood Short Kit
    Horten Ho 229 V3 All Wood Short Kit a Radio Controlled Model in 1/8 Scale Design by Gary Hethcoat Copyright 2007 Aviation Research P.O. Box 9192, San Jose, CA 95157 http://www.wingsontheweb.com Email: [email protected] Phone: 408-660-0943 Table of Contents 1 General Building Notes ......................................................................................................................... 4 1.1 Getting Help .................................................................................................................................. 4 1.2 Laser Cut Parts .............................................................................................................................. 4 1.3 Electronics ..................................................................................................................................... 4 1.4 Building Options ........................................................................................................................... 4 1.4.1 Removable Outer Wing Panels .............................................................................................. 4 1.4.2 Drag Rudders ......................................................................................................................... 4 1.4.3 Retracts .................................................................................................................................. 5 1.4.4 Frise Style Elevons ...............................................................................................................
    [Show full text]
  • Actuator Saturation Analysis of a Fly-By-Wire Control System for a Delta-Canard Aircraft
    DEGREE PROJECT IN VEHICLE ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Actuator Saturation Analysis of a Fly-By-Wire Control System for a Delta-Canard Aircraft ERIK LJUDÉN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Author Erik Ljudén <[email protected]> School of Engineering Sciences KTH Royal Institute of Technology Place Linköping, Sweden Saab Examiner Ulf Ringertz Stockholm KTH Royal Institute of Technology Supervisor Peter Jason Linköping Saab Abstract Actuator saturation is a well studied subject regarding control theory. However, little research exist regarding aircraft behavior during actuator saturation. This paper aims to identify flight mechanical parameters that can be useful when analyzing actuator saturation. The studied aircraft is an unstable delta-canard aircraft. By varying the aircraft’s center-of- gravity and applying a square wave input in pitch, saturated actuators have been found and investigated closer using moment coefficients as well as other flight mechanical parameters. The studied flight mechanical parameters has proven to be highly relevant when analyzing actuator saturation, and a simple connection between saturated actuators and moment coefficients has been found. One can for example look for sudden changes in the moment coefficients during saturated actuators in order to find potentially dangerous flight cases. In addition, the studied parameters can be used for robustness analysis, but needs to be further investigated. Lastly, the studied pitch square wave input shows no risk of aircraft departure with saturated elevons during flight, provided non-saturated canards, and that the free-stream velocity is high enough to be flyable. i Sammanfattning Styrdonsmättning är ett välstuderat ämne inom kontrollteorin.
    [Show full text]
  • Stabilizer PLUS 7-Channel Receiver Essential Instructions
    Lemon RX Stabilizer PLUS Receiver – Essential Instructions v1.1 Lemon RX Stabilizer PLUS 7-Channel Receiver Essential Instructions Contents Introducing the Lemon StabPLUS ............................................................................................................ 2 Functions ........................................................................................................................................................ 2 Transmitter Requirements .............................................................................................................................. 2 Servos and Power Sources .............................................................................................................................. 3 Setting up the StabPLUS ......................................................................................................................... 4 Installation ...................................................................................................................................................... 4 Binding ............................................................................................................................................................ 5 Setting Failsafe ................................................................................................................................................ 5 Test Flying .............................................................................................................................................. 6 Preparing
    [Show full text]
  • 09 Stability and Control
    Aircraft Design Lecture 9: Stability and Control G. Dimitriadis Introduction to Aircraft Design Stability and Control H Aircraft stability deals with the ability to keep an aircraft in the air in the chosen flight attitude. H Aircraft control deals with the ability to change the flight direction and attitude of an aircraft. H Both these issues must be investigated during the preliminary design process. Introduction to Aircraft Design Design criteria? H Stability and control are not design criteria H In other words, civil aircraft are not designed specifically for stability and control H They are designed for performance. H Once a preliminary design that meets the performance criteria is created, then its stability is assessed and its control is designed. Introduction to Aircraft Design Flight Mechanics H Stability and control are collectively referred to as flight mechanics H The study of the mechanics and dynamics of flight is the means by which : – We can design an airplane to accomplish efficiently a specific task – We can make the task of the pilot easier by ensuring good handling qualities – We can avoid unwanted or unexpected phenomena that can be encountered in flight Introduction to Aircraft Design Aircraft description Flight Control Pilot System Airplane Response Task The pilot has direct control only of the Flight Control System. However, he can tailor his inputs to the FCS by observing the airplane’s response while always keeping an eye on the task at hand. Introduction to Aircraft Design Control Surfaces H Aircraft control
    [Show full text]
  • 10CAG/10CHG/10CG-2.4Ghz 10-CHANNEL RADIO CONTROL SYSTEM
    10CAG/10CHG/10CG-2.4GHz 10-CHANNEL RADIO CONTROL SYSTEM INSTRUCTION MANUAL Technical updates and additional programming examples available at: http://www.futaba-rc.com/faq Entire Contents ©Copyright 2009 1M23N21007 TABLE OF CONTENTS INTRODUCTION ........................................................... 3 Curve, Prog. mixes 5-8 ............................................. 71 Additional Technical Help, Support and Service ........ 3 GYA gyro mixing (GYRO SENSE) ............................... 73 $SSOLFDWLRQ([SRUWDQG0RGL¿FDWLRQ ........................ 4 Other Equipment ....................................................... 74 Meaning of Special Markings ..................................... 5 Safety Precautions (do not operate without reading) .. 5 Introduction to the 10CG ............................................ 7 GLIDER (GLID(1A+1F)(2A+1F)(2A+2F)) FUNCTIONS . 75 &RQWHQWVDQG7HFKQLFDO6SHFL¿FDWLRQV........................ 9 Table of contents........................................................ 75 Accessories ............................................................... 10 Getting Started with a Basic 4-CH Glider ................ 76 Transmitter Controls & GLIDER-SPECIFIC BASIC MENU FUNCTIONS ........ 78 6ZLWFK,GHQWL¿FDWLRQ$VVLJQPHQWV ............................. 11 Model type (PARAMETER submenu) ........................... 78 Charging the Ni-Cd Batteries ................................... 15 MOTOR CUT ................................................................ 79 Stick Adjustments ....................................................
    [Show full text]
  • Bob Loschke and Ken Dyson Interview by Peter Westwick
    Ken Dyson and Robert Loschke interview by Peter Westwick, 9 January 2012. WESTWICK: I'm sitting here with Ken Dyson and Bob Loschke on January 9th, 2012. Instead of the usual approach of going back and doing extended career oral histories, we're going to do a more focused one capitalizing on these two gentlemen's shared experiences, especially on Have Blue and the F-117A and Stealth. Maybe by way of getting into the conversation, if you could each just share how you made your way into the Have Blue and Stealth program. Ken, maybe start with you. Around 1976 you started working on classified programs. You're up at Edwards doing F-15 test piloting, still in the U.S. Air Force. And as a U.S. Air Force test pilot is when you got involved with the program? DYSON: That's right. I don't know if you want to start with me. Bob was aboard it before I was. But you can go ahead and lead with me if you want. WESTWICK: So let's start with Bob then. This is Bob's voice. LOSCHKE: I first started in what became the Have Blue program in about 1974. The S-3A program had just been winding down. I'd been involved in the control system on that airplane. It was a carrier-based ASW aircraft. I had had some previous contact with Ben Rich on some other work, and he recalled that I had done control system things, so he requested that I come over to the Skunk Works at that point and help them make a proposal.
    [Show full text]
  • On the Handling Qualities of Two Flying Wing Aircraft Configurations
    aerospace Article On the Handling Qualities of Two Flying Wing Aircraft Configurations Luís M. B. C. Campos 1,† and Joaquim M. G. Marques 2,*,† 1 CCTAE, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; [email protected] 2 CCTAE, IDMEC, Escola de Ciências e Tecnologia, Departamento de Mecatrónica, Colégio Luís António Verney, Universidade de Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The coupling of the longitudinal and lateral stability modes of an aeroplane is considered in two cases: (i) weak coupling, when the changes in the frequency and damping of the phugoid, short period, dutch roll, and helical modes are small, i.e., the square of the deviation is negligible compared to the square of the uncoupled value; (ii) strong coupling, when the coupled values may differ significantly from the uncoupled values. This allows a comparison of three values for the frequency and damping of each mode: (i) exact, i.e., fully coupled; (ii) with the approximation of weak coupling; (iii) with the assumption of decoupling. The comparison of these three values allows an assessment of the importance of coupling effects. The method is applied to two flying wing designs, concerning all modes in a total of eighteen flight conditions. It turns out that lateral-longitudinal coupling is small in all cases, and thus classical handling qualities criteria can be applied. The handling qualities are considered for all modes, namely the phugoid, short period, dutch roll, spiral, and roll modes.
    [Show full text]
  • Four Servo Elevon Mixing with Y-Cable
    Four Servo Elevon Mixing with Y-Cable On the Hercules, we have split the elevons in half, making four small elevons for the following reasons: 1. We want the aileron or roll movement only on the wingtips where it is the most effective and doesn’t destabilize the wing and cause increased drag. 2. We want elevator movement across the entire wing so that the wing does not have any “dead areas” without reflex on the elevons. If you have a different radio than the DX6i, you may have a different programming sequence, but this will hopefully give you the concepts you need. The goal is for all of the surfaces move up and down together for elevator, while only the tips will move for ailerons. Below the instructions are a couple commonly asked questions about the Hercules and the four-servo setup. Install the four elevon servos in the wing 1. Install each servo close to the center of each of the elevon they will control. 2. Make sure they are close enough that the push rods will reach the servo horn on the flap. 3. Do not mount servos directly behind the motor where split rudders may be installed. 4. Servo arms should point sideways, towards the wingtips, except for the R center elevator. 5. Connect the 2 inside servos with a “Y” connector. 6. Add servo extension wires as needed so the outside servos can reach the receiver. Plug the servos into the receiver in the following order. 1. R tip elevon is plugged into the receiver’s #6 slot that may be called Aux #1 or Flap 2.
    [Show full text]
  • Flight Test Results of the F-8 Digital Fly-By-Wire (DFBW) Control System
    FLIGHT TEST EXPERIENCE WITH THE F-8 DIGITAL FLY-BY-WIRE SYSTEM Kenneth J. Szalai NASA Flight Research Center SUMMARY Flight test results of the F-8 digital fly-by-wire (DFBW) control system are presented and the implications for application to active control technolo& (ACT) are discussed. The F-8 DFBW system has several of the attributes of proposed ACT systems, so the flight test experience is helpful in assessing the capabiliyies of those systems. Topics of discussion include the predicted and actual flight performance of the control system, assessments of aircraft flying qualities and other piloting factors, software management and control, and operational experience. I INTRODUCTION i In May 1972 the flight testing of the F-8 DFBW aircraft began. This aircraft, which used Apollo guidance and navigation system hardware, was the first to rely on a DFBW system for primary flight control. The design and development of the F-8 DFBW control system are described in references 1 to 3. This paper presents the major flight test results for the control system. A detailed description of the system's software development and verification is given in reference 4, and the backup control actuation systems are described in reference 5. The primary objectives of the flight tests were to evaluate the performance of the digital flight control system and to acquire operating experience with it. The program also served to determine whether the long-advertised advantages and capabilities of DFBW control systems could be realized. Many of these advantages, such as software flexibility, system reliability, and computational ability, make a DFBW system a logical candidate for active control technology applications.
    [Show full text]