Open John Quindlen Thesis.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF AEROSPACE ENGINEERING DESIGN AND TRIM OPTIMATION OF A FLYING WING UAV JOHN F. QUINDLEN Spring 2010 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Aerospace Engineering with honors in Aerospace Engineering Reviewed and approved* by the following: Jack W. Langelaan Assistant Professor Thesis Supervisor Mark D. Maughmer Professor Honors Advisor George A Lesieutre Professor Head of Aerospace Engineering * Signatures are on file in the Schreyer Honors College. i ABSTRACT Camber changing plain flaps offer tailless sailplanes two potential benefits: a lower minimum speed, ideal for climbing in thermals, and a higher lift to drag ratio to improve glideslope in between thermals. With these two goals in mind, an inboard plain flap is designed for an existing flying wing unmanned aerial vehicles (UAV). The flap places new demands on the aircraft autopilot which must be alleviated with a new flap module. In order to do so, the aerodynamic derivatives of the original aircraft are linearized. Then an inboard flap is designed to require little change in elevon deflection to trim the aircraft for any flap deflection. Next, a nonlinear longitudinal dynamics model is created using the new linearized aerodynamic derivatives of the flapped aircraft. These nonlinear dynamics are then linearized to find the transfer functions of airspeed to pitch angle and pitch angle to elevon deflection. From these two equations of motion, an airspeed controller is designed and optimized using root locus method for a proportional-integral (PI) controller and a proportional-integral-derivative (PID) controller. Just as expected, the inboard flap improves the aircraft performance. After implementing the flap, the lift to drag ratio of the flapped aircraft improves slightly versus the original aircraft. The new configuration offers an average increase in lift to drag ratio of 1% at cruise from 10 m/s to 15 m/s with a maximum improvement of 2% at 12 m/s. Likewise, the aircraft sees roughly a 22% decrease in minimum airspeed at a 15° angle of attack using a 28° flap deflection versus the original aircraft at the same angle of attack. Further simulation results of the new flapped configuration are then analyzed and compared with the original aircraft. The flap module performs well within the cruise range but is of limited effectiveness at either end of the airspeed range. ii TABLE OF CONTENTS LIST OF FIGURES .................................................................................................................iv LIST OF TABLES...................................................................................................................vi ACKNOWLEDGEMENTS.....................................................................................................vii Chapter 1 Introduction ............................................................................................................1 Unmodified Zagi Aircraft ................................................................................................2 Aircraft Configuration......................................................................................................3 Chapter 2 Flap Design ............................................................................................................5 Flap Optimization ............................................................................................................8 Aircraft Configuration......................................................................................................11 Flap Scheduling................................................................................................................12 Chapter 3 Nonlinear Longitudinal Dynamics Modeling.........................................................18 Aerodynamic Coefficients ...............................................................................................19 Nonlinear Dynamics ........................................................................................................21 Nonlinear Kinematics ......................................................................................................22 Chapter 4 Airspeed Control ....................................................................................................25 Transfer Functions ...........................................................................................................25 Controllers........................................................................................................................26 Implementation ................................................................................................................26 Chapter 5 Flap Module ...........................................................................................................28 Flap and Elevon Scheduling.............................................................................................28 Overall Architecture.........................................................................................................30 Chapter 6 Simulation Results..................................................................................................31 Cruise Range....................................................................................................................31 Low Speed........................................................................................................................35 High Speed.......................................................................................................................39 Challenges........................................................................................................................43 Chapter 7 Conclusion..............................................................................................................45 References................................................................................................................................48 Appendix A Aircraft Parameters ............................................................................................49 iii Appendix B Nomenclature .....................................................................................................50 iv LIST OF FIGURES Figure 1-1: Zagi-5C thermal/hand launched R/C glider. Source: Trick R/C.........................3 Figure 1-2: Top-view of the unmodified Zagi configuration..................................................4 Figure 2-1: Straight trailing-edge flap configuration..............................................................6 Figure 2-2: Constant flap chord to section chord ratio flap configuration..............................7 Figure 2-3: Constant chord flap configuration........................................................................7 Figure 2-4: The SWIFT flying wing sailplane equipped with a self-trimming flap. Source: Kroo and Beckman, Stanford University............................................................9 Figure 2-5: Top-view of the new Zagi configuration. .............................................................12 Figure 2-6: Process used to calculate aircraft parameters for flap scheduling........................13 Figure 2-7: L/D against airspeed for a range of flap deflections. ...........................................14 Figure 2-8: Best L/D versus airspeed for original and flapped Zagi........................................15 Figure 2-9: Minimum airspeed versus flap deflection for the original and flapped Zagi. .......16 Figure 2-10: Optimal flap deflection against airspeed for minimum speed, best L/D, and the polynomial fit for those two criteria...........................................................................17 Figure 3-1: Architecture of the nonlinear longitudinal dynamics model................................18 Figure 3-2: Architecture of the aerodynamic coefficients block. ...........................................20 Figure 3-3: Architecture of the nonlinear dynamics block. ....................................................22 Figure 3-4: Architecture of the nonlinear kinematics block. ..................................................24 Figure 4-1: Airspeed control architecture with PI and PID controllers. .................................27 Figure 5-1: Flap and elevon scheduling block........................................................................29 Figure 5-2: Overall control architecture of the entire flap module. ........................................30 Figure 6-1: Airspeed versus time plot with a 1 m/s increment and decrement in desired airspeed at cruise..............................................................................................................32 v Figure 6-2: Pitch angle versus time plot with a 1 m/s increment and decrement in desired airspeed at cruise. ................................................................................................32 Figure 6-3: Flap deflection versus time plot with a 1 m/s increment and decrement in desired airspeed at cruise. ................................................................................................33 Figure 6-4: Elevon deflection required to trim versus time plot with a 1 m/s increment and decrement in desired airspeed at cruise.....................................................................33 Figure 6-5: Glideslope plot with a 1 m/s increment and decrement in desired airspeed at cruise. ...............................................................................................................................34