SPA Variable Star Section. Annual Report 2018

Total Page:16

File Type:pdf, Size:1020Kb

SPA Variable Star Section. Annual Report 2018 SPA Variable Star Section. Annual Report 2018. Over the course of 2018, eight members of the SPA Variable Star Section submitted observations. Those members where: Matthew Barrett, David Buehler, Tracie Heywood, Don Matthews, Keith Moseley, Jonathan Shanklin, David Smith and Robert Steele. David Buehler sent some observations from America, Keith Moseley sent in an image of Nova Persei 2018, Don Matthews used a DSLR, attached to a 20cm SCT, to follow long period variables when they were too faint for other members to see visibly. David Smith sent in two light curves of the eclipsing binaries AB Cassiopeiae and AD Andromedae. Tracie Heywood was kind enough to send in a large number of light curves. Z Ursa Majoris. Z Ursa Majoris is one of the more popular stars on our observing program, no doubt, due to the fact that it’s both circumpolar and always visible in binoculars. We have been able to follow Z UMa throughout the entire year. Z UMa has an extreme range of 6.3 – 9.8 and a more usual range of 6.9 – 8.7. However, in February of last year, we saw Z UMa reach an unusually bright maximum of 6.0. This was followed by two more maximum of 6.7 and 6.9; which is more in keeping with the star’s usual range. The period between maxima were about 85 days and 139 days respectively. Both these periods are considerable shorter then the quoted period of six months. The first two minima observed, of 8.8 and 8.7 are consistent with the stars usual brightness range. However, towards the end of the year the star fell to magnitude 9.4. The star seems to be characterised by rapid increases to maxima, followed by a longer decline to minima. RW Bootis. RW Bootis is a semi-regular variable with an extreme range of 6.4 – 9.2. However, it’s usual magnitude range is less then a magnitude (7.9 – 8.7). During 2018, the star varied between 7.8 – 8.7; which is typical behaviour. Given the low amplitude of the star, there is a fair amount of scatter in the light curve, as is to be expected. RW Bootis reached maximum in April, which was followed by a steep decline, followed by an unsteady rise to another maximum at the end of the year. In particular, RW Bootis experienced a prolonged standstill during August; when it remained at around magnitude 8.3. R Coronae Borealis. R CrB has remained in view of binoculars throughout 2018. However, with the star apparently varying by less then one magnitude, there is a lot of scatter in the light curve. Of course, it remains to be seem whether R CrB will remain this bright during 2019, or whether it will experience another fade. R Scuti. R Scuti is another very popular star and the members have managed to observe this star all year round. R Scuti always shows very complex behaviour. In 2018, R Scuti showed an amplitude of between 5.2 and 6.6, which is less then its usual amplitude of between 5.0 and 7.5. The graph shows five maxima, two in the early part of the year, one in February and another in March, and then three more in the latter half of the year. There was a maxima in July, one in September and a final maxima in November. There where three minima, a shallow minima in February and two deeper minima in June and August. AF Cygni.. AF Cygni is a popular semi-regular star, easily found near Delta Cygni in the constellation of Cygnus the Swan. Like all semi-regular stars, it is a red giant which outer layers pulsate; producing variations in brightness. AF Cygni was observed reaching maximum in September; when it reached a usually high maximum of 6.1. This is slightly outside the extreme range of 6.4 to 8.4. There was a slow rise to maximum followed by a rapid decline. T Cephei. T Cephei reach maximum brightness in May of 2018, slightly earlier then the predicted maximum of June. T Cephei remained close to maximum over the course of May and June. This maximum was followed by a slow decline to a minimum in October. R Leonis. R Leonis is a famous long period period, easily located near Regulus. It was first observed, at the beginning of the year, at magnitude 9.0, when it first became visible in binoculars. R Leonis reached maximum brightness in April 2018, when it reached a magnitude of 4.9, which is about as bright as it gets. R Leonis was still visible in binoculars at the end of the year. R Serpentis. R Serpentis is another long period variable. It reached maximum brightness in June and this maximum was characterised by a rapid increase in brightness and a slow decline. R Serpentis reached a maximum brightness of 6.1; which is not as bright as it can get, but still outside its usual range of 6.9 – 13.4. This shows why it’s always interesting to observe long-period variables, as their exact behaviour can never be predicted, and their behaviour will vary from one cycle to the next. R Ursae Majoris. The long period variable star R Ursae Majoris reached maximum in April 2018. R Ursae Majoris reach a maximum brightness of 7.1; which is a typical brightness for this star. R UMa was visible in binoculars for about three months, from March through to June. Don Matthews was instrumental in keeping the star under observation will it was too faint to be seen visually by other memebers. R Ursae Majoris shows a more symmetrical light curve then some other variable stars. S Ursa Majoris. S Ursa Majoris started the year at minimum, with a magnitude of 11.7, reached a maximum brightness of 8.1 in April, before reaching minimum in August with a magnitude of 11.9. By the end of the year, S UMa was back to a magnitude of 8.5. T Ursa Majoris. T Ursa Majoris was followed for a complete cycle of variation over the course of the year. It reached maximum brightness in February and was again at maximum, nine months later, in November. At its brightest, T UMa was at magnitude 8.1, and at its faintest, T UMa had a magnitude of 13.8. Overall, T UMa was fainter then its usual magnitude range of 7.7 – 12.9, would suggest. AD Andromedae and AB Cassiopeiae. David Smith has sent us light curves of two eclipsing binaries: AD Andromedae and AB Cassiopeiae. AD Andromedae is an eclipsing binary of the Beta Lyrae class. It has a magnitude range of 11.2 – 11.82 and a period of 0.986 days. AB Cassiopeiae is an eclipsing variable of the Algol type. It has a magnitude range of 10.1 – 11.85 and a period of 1.36 days. AD Andromedae. AD Cassiopeiae. RZ Cassiopeiae. RZ Cassiopeiae is an eclipsing variable of the Algol type. It has a magnitude range of 6.4 – 7.8 and a period of 1.195 days. Only Tracie Heywood was able to observe an eclipse of RA Cassiopeiae; on January 8th 2018. Tracie Heywood was also able to observe an eclipse of U Cephei on the evening of January 7-8th 2018. U Cephei is an eclipsing binary with a range of 6.7 – 9.3 and a period of 2.493 days. Omicron Ceti (Mira). Mira is the prototype long period variable star. Like all long-period variables, it is a red giant, which pulsates. However, molecules which form within the red giant’s outer layers selectively absorb light, which means that each cycle of variation is different. It has an extreme range of 1.7 – 10.1, but a more usual range of 3.6 – 9.3 and a period of around 11 months. In 2018, Mira was at maximum, with a recorded magnitude of 3.6 and was still, in principle, visible with the naked eye when it disappeared behind the Sun in February. When it was next observed, in October, it was at magnitude nine and quickly rose to a maximum brightness of 3.8 in November. The vice President of the SPA, Robin Scagell., photographed Mira at maximum during the month of November. Nova Persei 2018. During the month of May 2018, a bright nova was briefly visible in the constellation of Perseus. This star was originally designated as V392 Persei and was classified as a dwarf nova. A dwarf nova is an example of a cataclysmic variable, where a white dwarf and a cooler main sequence, or giant, star form a close binary. The white dwarf accretes material from its companion, and as material builds-up on the surface of the white dwarf, temperatures and pressures build until the material is throw-off, coursing the star to increase in brightness. V392 Persei was usually of magnitude 17 and would usually show outbursts of two to three magnitudes. However, on the 30th of April 2018, the Japanese observer Yuji Nakamura observed the star at magnitude 6.2. Nova Persei 2018 would soon peak at magnitude 5.6. On the 2nd of May, Keith Moseley photographed Nova Persei with a Nikon D7000 DSLR and a 135m f/2 Nikon lens, set at f/2.2, for 30s at ISO 800. He noted the nova appeared as unusually red. .
Recommended publications
  • October 2006
    OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area.
    [Show full text]
  • A Fresh Insight Into the Evolutionary Status and Third Body Hypothesis of the Eclipsing Binaries AD Andromedae, AL Camelopardalis, and V338 Herculis
    A&A 539, A129 (2012) Astronomy DOI: 10.1051/0004-6361/201117386 & c ESO 2012 Astrophysics A fresh insight into the evolutionary status and third body hypothesis of the eclipsing binaries AD Andromedae, AL Camelopardalis, and V338 Herculis A. Liakos1,P.Niarchos1, and E. Budding2,3 1 University of Athens, Department of Astrophysics, Astronomy and Mechanics, 157 84 Zografos, Athens, Greece e-mail: [alliakos;pniarcho]@phys.uoa.gr 2 Carter Observatory & School of Chemical and Physical Sciences, Victoria University, Wellington, New Zealand 3 Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand e-mail: [email protected] Received 1 June 2011 / Accepted 11 January 2012 ABSTRACT Aims. We aim to derive the absolute parameters of the components of AD And, AL Cam, and V338 Her, interpret their orbital period changes and discuss their evolutionary status. Methods. New and complete multi-filter light curves of the eclipsing binaries AD And, AL Cam, and V338 Her were obtained and analysed with modern methods. Using all reliably observed times of minimum light, we examined orbital period irregularities using the least squares method. In addition, we acquired new spectroscopic observations during the secondary eclipses for AL Cam and V338 Her. Results. For AL Cam and V338 Her, we derive reliable spectral types for their primary stars. Statistical checks of orbital period analysis for all systems are very reassuring in the cases of V338 Her and AD And, although less so for AL Cam. The LIght-Time Effect (LITE) results are checked by inclusion of a third light option in the photometric analyses.
    [Show full text]
  • Thesis, Anton Pannekoek Institute, Universiteit Van Amsterdam
    UvA-DARE (Digital Academic Repository) The peculiar climates of ultra-hot Jupiters Arcangeli, J. Publication date 2020 Document Version Final published version License Other Link to publication Citation for published version (APA): Arcangeli, J. (2020). The peculiar climates of ultra-hot Jupiters. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:09 Oct 2021 Jacob Arcangeli of Ultra-hot Jupiters The peculiar climates The peculiar climates of Ultra-hot Jupiters Jacob Arcangeli The peculiar climates of Ultra-hot Jupiters Jacob Arcangeli © 2020, Jacob Arcangeli Contact: [email protected] The peculiar climates of Ultra-hot Jupiters Thesis, Anton Pannekoek Institute, Universiteit van Amsterdam Cover by Imogen Arcangeli ([email protected]) Printed by Amsterdam University Press ANTON PANNEKOEK INSTITUTE The research included in this thesis was carried out at the Anton Pannekoek Institute for Astronomy (API) of the University of Amsterdam.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • 29 October 2007 NASA Center for Aerospace Information (CASI)
    29 October 2007 NASA Center for Aerospace Information (CASI) Attention: Acquisitions 7121 Standard Drive Hanover, Maryland 21076-1320 Subject: Annual Report No. 5 Reference: Cooperative Agreement NCC2-1390 Transmitted herewith is one (1) copy of the subject report for the period 1 December 2006 through 30 November 2007, in accordance with the provisions of the above referenced Cooperative Agreement. Pursuant to the regulations applicable to the subject grant, SAO hereby certifies that we have maintained a procedure for compliance with the Patent Rights/New Technology requirements and that there are no reportable inventions/disclosures. Very truly yours, Michael Griffith Contract and Grant Specialist MG/rs Enclosure cc: Ms. Barrie Caldwell, NASA/Ames, MS 241-1, w/encl. Mr. Charles Sobeck, NASA/Ames, MS 244-12, w/encl. Ms. Valarie Woodbury, ONR-Boston, w/encl. ebc: C. Alcock, w/encl. D. Fabricant, w/encl. L. Feldman, w/encl. D. Latham, w/encl. P. Sozanski, w/encl. File NCC2-1390, w/encl. TARGET CHARACTERIZATION AND FOLLOW-UP OBSERVATIONS IN SUPPORT OF THE KEPLER MISSION NCC2-1390 Annual Report No. 5 01 December 2006 to 30 November 2007 Principal Investigator Dr. David W. Latham October 2007 Smithsonian Institution Astrophysical Observatory Cambridge, Massachusetts 02138 The Smithsonian Astrophysical Observatory is a member of the Harvard-Smithsonian Center for Astrophysics TARGET CHARACTERIZATION AND FOLLOW-UP OBSERVATIONS IN SUPPORT OF THE KEPLER MISSION This report covers the period 1 December 2006 to 30 November 2007 The Smithsonian Astrophysical Observatory (SAO) is leading the effort to prepare the Kepler Input Catalog (KIC), which will be used to select the targets actually observed for planetary transits by Kepler.
    [Show full text]
  • Three Editions of the Star Catalogue of Tycho Brahe*
    A&A 516, A28 (2010) Astronomy DOI: 10.1051/0004-6361/201014002 & c ESO 2010 Astrophysics Three editions of the star catalogue of Tycho Brahe Machine-readable versions and comparison with the modern Hipparcos Catalogue F. Verbunt1 andR.H.vanGent2,3 1 Astronomical Institute, Utrecht University, PO Box 80 000, 3508 TA Utrecht, The Netherlands e-mail: [email protected] 2 URU-Explokart, Faculty of Geosciences, Utrecht University, PO Box 80 115, 3508 TC Utrecht, The Netherlands 3 Institute for the History and Foundations of Science, PO Box 80 000, 3508 TA Utrecht, The Netherlands Received 6 January 2010 / Accepted 3 February 2010 ABSTRACT Tycho Brahe completed his catalogue with the positions and magnitudes of 1004 fixed stars in 1598. This catalogue circulated in manuscript form. Brahe edited a shorter version with 777 stars, printed in 1602, and Kepler edited the full catalogue of 1004 stars, printed in 1627. We provide machine-readable versions of the three versions of the catalogue, describe the differences between them and briefly discuss their accuracy on the basis of comparison with modern data from the Hipparcos Catalogue. We also compare our results with earlier analyses by Dreyer (1916, Tychonis Brahe Dani Scripta Astronomica, Vol. II) and Rawlins (1993, DIO, 3, 1), finding good overall agreement. The magnitudes given by Brahe correlate well with modern values, his longitudes and latitudes have error distributions with widths of 2, with excess numbers of stars with larger errors (as compared to Gaussian distributions), in particular for the faintest stars. Errors in positions larger than 10, which comprise about 15% of the entries, are likely due to computing or copying errors.
    [Show full text]
  • UNSC Science and Technology Command
    UNSC Science and Technology Command Earth Survey Catalogue: Official Name/(Common) Star System Distance Coordinates Remarks/Status 18 Scorpii {TCP:p351} 18 Scorpii {Fact} 45.7 LY 16h 15m 37s Diameter: 1,654,100km (1.02R*) {Fact} -08° 22' 06" {Fact} Spectral Class: G2 Va {Fact} Surface Temp.: 5,800K {Fact} 18 Scorpii ?? (Falaknuma) 18 Scorpii {Fact} 45.7 LY 16h 15m 37s UNSC HQ base on world. UNSC {TCP:p351} {Fact} -08° 22' 06" recruitment center in the city of Halkia. {TCP:p355} Constellation: Scorpio 111 Tauri 111 Tauri {Fact} 47.8 LY 05h:24m:25.46s Diameter: 1,654,100km (1.19R*) {Fact} +17° 23' 00.72" {Fact} Spectral Class: F8 V {Fact} Surface Temp.: 6,200K {Fact} Constellation: Taurus 111 Tauri ?? (Victoria) 111 Tauri {Fact} 47.8 LY 05:24:25.4634 UNSC colony. {GoO:p31} {Fact} +17° 23' 00.72" Constellation: Taurus Location of a rebel cell at Camp New Hope in 2531. {GoO:p31} 51 Pegasi {Fact} 51 Pegasi {Fact} 50.1 LY 22h:57m:28s Diameter: 1,668,000km (1.2R*) {Fact} +20° 46' 7.8" {Fact} Spectral Class: G4 (yellow- orange) {Fact} Surface Temp.: Constellation: Pegasus 51 Pegasi-B (Bellerophon) 51 Pegasi 50.1 LY 22h:57m:28s Gas giant planet in the 51 Pegasi {Fact} +20° 46' 7.8" system informally named Bellerophon. Diameter: 196,000km. {Fact} Located on the edge of UNSC territory. {GoO:p15} Its moon, Pegasi Delta, contained a Covenant deuterium/tritium refinery destroyed by covert UNSC forces in 2545. {GoO:p13} Constellation: Pegasus 51 Pegasi-B-1 (Pegasi 51 Pegasi 50.1 LY 22h:57m:28s Moon of the gas giant planet 51 Delta) {GoO:p13} +20° 46' 7.8" Pegasi-B in the 51 Pegasi star Constellation: Pegasus system; a Covenant stronghold on the edge of UNSC territory.
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • Infrared Imaging with COAST
    Infrared Imaging with COAST John Stephen Young St John’s College, Cambridge and Cavendish Astrophysics A dissertation submitted for the degree of Doctor of Philosophy in the University of Cambridge 26 March 1999 iii Preface This dissertation describes work carried out in the Astrophysics Group of the Department of Phys- ics, University of Cambridge, between October 1995 and March 1999. Except where explicit reference is made to the work of others, this dissertation is the result of my own work, and includes nothing which is the outcome of work done in collaboration. No part of this dissertation has been submitted for a degree, diploma, or other qualification at any University. This dissertation does not exceed 60,000 words in length. v Acknowledgements Many people say that this is the only page of a PhD. thesis worth reading. I hope that is not the case here. This is, however, the only page not written in the passive voice, and the only one which might make you smile. Above all, I would like to thank my supervisor, Professor John Baldwin, for always being available to give advice and encouragement, and for assisting with many hours of alignment and even more hours of observing. The shortbread was much appreciated! Many thanks are also due for his reading of this thesis. It has been a pleasure to work with all of the members of the COAST team. None of the work described in this thesis would have been possible without the NICMOS camera built by Martin Beckett. I would like to thank him for taking the time to explain it to me.
    [Show full text]
  • The Milky Way the Milky Way's Neighbourhood
    The Milky Way What Is The Milky Way Galaxy? The.Milky.Way.is.the.galaxy.we.live.in..It.contains.the.Sun.and.at.least.one.hundred.billion.other.stars..Some.modern. measurements.suggest.there.may.be.up.to.500.billion.stars.in.the.galaxy..The.Milky.Way.also.contains.more.than.a.billion. solar.masses’.worth.of.free-floating.clouds.of.interstellar.gas.sprinkled.with.dust,.and.several.hundred.star.clusters.that. contain.anywhere.from.a.few.hundred.to.a.few.million.stars.each. What Kind Of Galaxy Is The Milky Way? Figuring.out.the.shape.of.the.Milky.Way.is,.for.us,.somewhat.like.a.fish.trying.to.figure.out.the.shape.of.the.ocean.. Based.on.careful.observations.and.calculations,.though,.it.appears.that.the.Milky.Way.is.a.barred.spiral.galaxy,.probably. classified.as.a.SBb.or.SBc.on.the.Hubble.tuning.fork.diagram. Where Is The Milky Way In Our Universe’! The.Milky.Way.sits.on.the.outskirts.of.the.Virgo.supercluster..(The.centre.of.the.Virgo.cluster,.the.largest.concentrated. collection.of.matter.in.the.supercluster,.is.about.50.million.light-years.away.).In.a.larger.sense,.the.Milky.Way.is.at.the. centre.of.the.observable.universe..This.is.of.course.nothing.special,.since,.on.the.largest.size.scales,.every.point.in.space. is.expanding.away.from.every.other.point;.every.object.in.the.cosmos.is.at.the.centre.of.its.own.observable.universe.. Within The Milky Way Galaxy, Where Is Earth Located’? Earth.orbits.the.Sun,.which.is.situated.in.the.Orion.Arm,.one.of.the.Milky.Way’s.66.spiral.arms..(Even.though.the.spiral.
    [Show full text]
  • Arxiv:1503.02126V1 [Astro-Ph.SR]
    Journal of Astronomy and Space Science (JASS) .2015...1 : 1 ∼ 9, 2015 Feb c 2015 The Korean Astronomical Society. All Rights Reserved. http://www.kas.org Photometric defocus observations of transiting extrasolar planets T. C. Hinse1,2, Wonyong Han1, Jo-Na Yoon3, Chung-Uk Lee1, Yong-Gi Kim4, Chun-Hwey Kim4 1 Korea Astronomy and Space Science Institute, Daejeon 305-348, Republic of Korea. 2 Armagh Observatory, College Hill, BT61 9DG Armagh, United Kingdom. 3 Chungbuk National University Observatory, Cheongju 361-763, Republic of Korea. 4 Chungbuk National University, Cheongju 361-763, Republic of Korea. ABSTRACT We have carried out photometric follow-up observations of bright transiting extrasolar planets using the CbNUOJ 0.6m telescope. We have tested the possibility of obtaining high photometric precision by applying the telescope defocus technique allowing the use of several hundred seconds in exposure time for a single measurement. We demonstrate that this technique is capable of obtaining a root- mean-square scatter of order sub-millimagnitude over several hours for a V ∼ 10 host star typical for transiting planets detected from ground-based survey facilities. We compare our results with transit observations with the telescope operated in in-focus mode. High photometric precision is obtained due to the collection of a larger amount of photons resulting in a higher signal compared to other random and systematic noise sources. Accurate telescope tracking is likely to further contribute to lowering systematic noise by probing the same pixels on the CCD. Furthermore, a longer exposure time helps reducing the effect of scintillation noise which otherwise has a significant effect for small-aperture telescopes operated in in-focus mode.
    [Show full text]