Exoplanet Recycling in Massive White-Dwarf Debris Discs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Planetary Systems Imager for TMT Astro2020 APC White Paper Optical and Infrared Observations from the Ground Corresponding Author: Michael P
The Planetary Systems Imager for TMT Astro2020 APC White Paper Optical and Infrared Observations from the Ground Corresponding Author: Michael P. Fitzgerald (University of California, Los Angeles; mpfi[email protected]) Co-authors: Diego) Vanessa Bailey (Jet Propulsion Laboratory) Takayuki Kotani (Astrobiology Center/NAOJ) Christoph Baranec (University of Hawaii) David Lafreniere` (Universite´ de Montreal)´ Natasha Batalha (University of California Santa Michael Liu (University of Hawaii) Cruz) Julien Lozi (Subaru) Bjorn¨ Benneke (Universite´ de Montreal)´ Jessica R. Lu (University of California, Berkeley) Charles Beichman (California Institute of Jared Males (University of Arizona) Technology) Mark Marley (NASA Ames Research Center) Timothy Brandt (University of California, Santa Christian Marois (NRC Canada) Barbara) Dimitri Mawet (California Institute of Jeffrey Chilcote (Notre Dame) Technology/JPL) Mark Chun (University of Hawaii) Benjamin Mazin (University of California Santa Ian Crossfield (MIT) Barbara) Thayne Currie (NASA Ames Research Center) Maxwell Millar-Blanchaer (Jet Propulsion Kristina Davis (University of California Santa Laboratory) Barbara) Soumen Mondal (SN Bose National Centre for Richard Dekany (California Institute of Technology) Basic Sciences) Jacques-Robert Delorme (California Institute of Naoshi Murakami (Hokkaido University) Technology) Ruth Murray-Clay (University of California, Santa Ruobing Dong (University of Victoria) Cruz) Rene Doyon (Universite´ de Montreal)´ Norio Narita (Astrobiology Center) Courtney Dressing -
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
100 Closest Stars Designation R.A
100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79, -
A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra
A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Diamond-Lowe, Hannah Zoe. 2020. A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365825 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra A DISSERTATION PRESENTED BY HANNAH ZOE DIAMOND-LOWE TO THE DEPARTMENT OF ASTRONOMY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE SUBJECT OF ASTRONOMY HARVARD UNIVERSITY CAMBRIDGE,MASSACHUSETTS MAY 2020 c 2020 HANNAH ZOE DIAMOND-LOWE.ALL RIGHTS RESERVED. ii Dissertation Advisor: David Charbonneau Hannah Zoe Diamond-Lowe A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra ABSTRACT Decades of ground-based, space-based, and in some cases in situ measurements of the Solar System terrestrial planets Mercury, Venus, Earth, and Mars have provided in- depth insight into their atmospheres, yet we know almost nothing about the atmospheres of terrestrial planets orbiting other stars. -
Arxiv:2003.01140V2 [Astro-Ph.EP] 8 Oct 2020 with Kepler (Borucki Et Al
Astronomy & Astrophysics manuscript no. manuscript ©ESO 2021 August 5, 2021 The CARMENES search for exoplanets around M dwarfs Two planets on opposite sides of the radius gap transiting the nearby M dwarf LTT 3780 G. Nowak1;2, R. Luque1;2, H. Parviainen1;2, E. Pallé1;2, K. Molaverdikhani3, V.J. S. Béjar1;2, J. Lillo-Box4, C. Rodríguez-López5, J. A. Caballero4, M. Zechmeister6, V.M. Passegger7;8, C. Cifuentes4, A. Schweitzer8, N. Narita1;9;10;11, B. Cale12, N. Espinoza13, F. Murgas1;2, D. Hidalgo1;2, M. R. Zapatero Osorio14, F. J. Pozuelos15;16, F. J. Aceituno5, P.J. Amado5, K. Barkaoui16;17, D. Barrado14, F. F. Bauer5, Z. Benkhaldoun17, D. A. Caldwell18;19, N. Casasayas Barris1;2, P. Chaturvedi20, G. Chen21, K. A. Collins22, K. I. Collins12, M. Cortés-Contreras4, I. J. M. Crossfield23, J. P. de León24, E. Díez Alonso25, S. Dreizler6, M. El Mufti12, E. Esparza-Borges2, Z. Essack26;27, A. Fukui28, E. Gaidos29, M. Gillon16, E. J. Gonzales30;31, P. Guerra32, A. Hatzes20, Th. Henning3, E. Herrero33, K. Hesse34, T. Hirano35, S. B. Howell19, S. V. Jeffers6, E. Jehin15, J. M. Jenkins19, A. Kaminski36, J. Kemmer36, J. F. Kielkopf37, D. Kossakowski3, T. Kotani9;11, M. Kürster3, M. Lafarga38;33, D. W. Latham22, N. Law39, J. J. Lissauer19, N. Lodieu1;2, A. Madrigal-Aguado2, A. W. Mann39, B. Massey40, R. A. Matson41, E. Matthews42, P.Montañés-Rodríguez1;2, D. Montes43, J. C. Morales38;33, M. Mori24, E. Nagel20, M. Oshagh6;1;2, S. Pedraz44, P. Plavchan12, D. Pollacco45;46, A. Quirrenbach36, S. Reffert36, A. Reiners6, I. -
Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55 -
Observing Exoplanets
Observing Exoplanets Olivier Guyon University of Arizona Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan, National Institutes for Natural Sciences (NINS) Nov 29, 2017 My Background Astronomer / Optical scientist at University of Arizona and Subaru Telescope (National Astronomical Observatory of Japan, Telescope located in Hawaii) I develop instrumentation to find and study exoplanet, for ground-based telescopes and space missions My interest is focused on habitable planets and search for life outside our solar system At Subaru Telescope, I lead the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. 2 ALL known Planets until 1989 Approximately 10% of stars have a potentially habitable planet 200 billion stars in our galaxy → approximately 20 billion habitable planets Imagine 200 explorers, each spending 20s on each habitable planet, 24hr a day, 7 days a week. It would take >60yr to explore all habitable planets in our galaxy alone. x 100,000,000,000 galaxies in the observable universe Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L. For constant stellar flux, distance to star scales as L1/2 Examples: Sun → habitable zone is at ~1 AU Rigel (B type star) Proxima Centauri (M type star) Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L. -
Is H Lb Dg !Fourseeking Oj T", I C 00 Oar Ets Ischoolposts; WEEK Through Totally Toelecttwo AI Compiled Bu Th
• '".; • , Q .#.'F' AJf g,. .},.Ito;t.?;'; fi84.'( 4# ~.::;~ ;, 'y. ze .. f q 4:' P ... Zj,;""IC1U1U1M¥1.11.;:II¥II}I;@."o,l!IijlltJllltQI., 1,IlIINI, ~I, j""1I..1JIj411l!'!,~...1A'.'•."7"1i!.'r;; 'llI"l!.1",',"'i#;;~_t+' il ., . ~' ,I'" .~ ':.,1, AI! tne News of All the Point" Every Thursu.y Mol'ftin9 rosse Pointe ews Cov~rage . Complete News of All the Pointes Vol, 32-No. 23 Entered u ~ Clul Mat.. a, THURSDA:r,-jiTNE $6.00 Per Year the Po$t Oftiae at Detroit, Il1l111l,Ul GROSSE-POINTE,_____________________MICHIGAN, • .. _IO~1971--- I~ Per Copy ------)O.--P----Tages- wo--5--'\:IC-t'-lons----S'-t'ec Ion 0 ne --._------- ----------- ---- -_._--- .._--- -_._ .. _--- -------""""'---------- HEADLINES is h lB dG !FourSeeking oJ t", I C 00 oar ets iSchoolPosts; WEEK Through Totally ToElectTwo AI Compiled bU th. Incumbents Arnold Fuchs GrOll' Pohu. N11M Peaceful Meeting and Calvin Sllndberg Opposed by Huette- Thanday, June 3 Ed '" man and Warner 'DETROlf MAY HAVE a ucators Hear Reports on Legislation and Bids for I dly.wide garbage strike on New Roadway and Sidewalk at North High Two members will be July 1. Union Jeaders and School Without Argument elecled trustees on the elty officials agrfil that a ------ . Grosse Pointe Board of breakthrough in negotiations By P~pper Whitelaw,. Education next Monday, is unlikely. An important issue The Grosse POinte Board of Education met on June 14. The trustteships lJ\ the negotiations is alleged Mon~ay, June 7, in Parcells Middle School. Tl1e are for four year terms radal job discrimination by meetmg was set ahead one week due to the election which run from July 1, the city government. -
Open Batalha-Dissertation.Pdf
The Pennsylvania State University The Graduate School Eberly College of Science A SYNERGISTIC APPROACH TO INTERPRETING PLANETARY ATMOSPHERES A Dissertation in Astronomy and Astrophysics by Natasha E. Batalha © 2017 Natasha E. Batalha Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2017 The dissertation of Natasha E. Batalha was reviewed and approved∗ by the following: Steinn Sigurdsson Professor of Astronomy and Astrophysics Dissertation Co-Advisor, Co-Chair of Committee James Kasting Professor of Geosciences Dissertation Co-Advisor, Co-Chair of Committee Jason Wright Professor of Astronomy and Astrophysics Eric Ford Professor of Astronomy and Astrophysics Chris Forest Professor of Meteorology Avi Mandell NASA Goddard Space Flight Center, Research Scientist Special Signatory Michael Eracleous Professor of Astronomy and Astrophysics Graduate Program Chair ∗Signatures are on file in the Graduate School. ii Abstract We will soon have the technological capability to measure the atmospheric compo- sition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet’s atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets. -
Una Aproximación Física Al Universo Local De Nebadon
4 1 0 2 local Nebadon de Santiago RodríguezSantiago Hernández Una aproximación física al universo (160.1) 14:5.11 La curiosidad — el espíritu de investigación, el estímulo del descubrimiento, el impulso a la exploración — forma parte de la dotación innata y divina de las criaturas evolutivas del espacio. Tabla de contenido 1.-Descripción científica de nuestro entorno cósmico. ............................................................................. 3 1.1 Lo que nuestros ojos ven. ................................................................................................................ 3 1.2 Lo que la ciencia establece ............................................................................................................... 4 2.-Descripción del LU de nuestro entorno cósmico. ................................................................................ 10 2.1 Universo Maestro ........................................................................................................................... 10 2.2 Gran Universo. Nivel Espacial Superunivesal ................................................................................. 13 2.3 Orvonton. El Séptimo Superuniverso. ............................................................................................ 14 2.4 En el interior de Orvonton. En la Vía Láctea. ................................................................................. 18 2.5 En el interior de Orvonton. Splandon el 5º Sector Mayor ............................................................ 19 -
Jason A. Dittmann 51 Pegasi B Postdoctoral Fellow
Jason A. Dittmann 51 Pegasi b Postdoctoral Fellow Contact Massachusetts Institute of Technology MIT Kavli Institute: 37-438f 617-258-5928 (office) 70 Vassar St. 520-820-0928 (cell) Cambridge, MA 02139 [email protected] Education Harvard University, Cambridge, MA PhD, Astronomy and Astrophysics, May 2016 Advisor: David Charbonneau, PhD • University of Arizona, Tucson, AZ BS, Astronomy, Physics, May 2010 Advisor: Laird Close, PhD • Recent 51 Pegasi b Postdoctoral Fellow July 2017 – Present Research Earth and Planetary Science Department, MIT Positions Faculty Contact: Sara Seager Postdoctoral Researcher Feb 2017 – June 2017 Kavli Institute, MIT Supervisor: Sarah Ballard Postdoctoral Researcher July 2016 – Jan 2017 Center for Astrophysics, Harvard University Supervisor: David Charbonneau Research Assistant Sep 2010 – May 2016 Center for Astrophysics, Harvard University Advisors: David Charbonneau Publication 16 first and second authored publications Summary 22 additional co-authored publications 1 first-authored publication in Nature 1 co-authored publication in Nature Selected 51 Pegasi b Postdoctoral Fellowship 2017 – Present Awards and Pierce Fellowship 2010 – 2013 Honors Certificate of Distinction in Teaching 2012 Best Project Award, Physics Ugrd. Research Symp. 2009 Best Undergraduate Research (Steward Observatory) 2009 – 2010 Grants Principal Investigator, Hubble Space Telescope 2017, 10 orbits Awarded “Initial Reconaissance of a Transiting Rocky (maximum award) Planet in a Nearby M-Dwarf’s Habitable Zone” Principal Investigator, -
Download This Article in PDF Format
A&A 631, A7 (2019) https://doi.org/10.1051/0004-6361/201935922 Astronomy & © ESO 2019 Astrophysics Pebbles versus planetesimals: the case of Trappist-1 G. A. L. Coleman, A. Leleu?, Y. Alibert, and W. Benz Physikalisches Institut, Universität Bern, Gesellschaftsstr. 6, 3012 Bern, Switzerland e-mail: [email protected] Received 20 May 2019 / Accepted 11 August 2019 ABSTRACT We present a study into the formation of planetary systems around low mass stars similar to Trappist-1, through the accretion of either planetesimals or pebbles. The aim is to determine if the currently observed systems around low mass stars could favour one scenario over the other. To determine these differences, we ran numerous N-body simulations, coupled to a thermally evolving viscous 1D disc model, and including prescriptions for planet migration, photoevaporation, and pebble and planetesimal dynamics. We mainly examine the differences between the pebble and planetesimal accretion scenarios, but we also look at the influences of disc mass, size of planetesimals, and the percentage of solids locked up within pebbles. When comparing the resulting planetary systems to Trappist-1, we find that a wide range of initial conditions for both the pebble and planetesimal accretion scenarios can form planetary systems similar to Trappist-1, in terms of planet mass, periods, and resonant configurations. Typically these planets formed exterior to the water iceline and migrated in resonant convoys into the inner region close to the central star. When comparing the planetary systems formed through pebble accretion to those formed through planetesimal accretion, we find a large number of similarities, including average planet masses, eccentricities, inclinations, and period ratios.