Sea Cucumber Glycosides: Chemical Structures, Producing Species and Important Biological Properties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redalyc.Proximate Composition of Marine Invertebrates from Tropical
Latin American Journal of Aquatic Research E-ISSN: 0718-560X [email protected] Pontificia Universidad Católica de Valparaíso Chile Diniz, Graciela S.; Barbarino, Elisabete; Oiano-Neto, João; Pacheco, Sidney; Lourenço, Sergio O. Proximate composition of marine invertebrates from tropical coastal waters, with emphasis on the relationship between nitrogen and protein contents Latin American Journal of Aquatic Research, vol. 42, núm. 2, mayo, 2014, pp. 332-352 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Available in: http://www.redalyc.org/articulo.oa?id=175031018005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Lat. Am. J. Aquat. Res., 42(2): 332-352, 2014 Chemical composition of some marine invertebrates 332 1 “Proceedings of the 4to Brazilian Congress of Marine Biology” Sergio O. Lourenço (Guest Editor) DOI: 10.3856/vol42-issue2-fulltext-5 Research Article Proximate composition of marine invertebrates from tropical coastal waters, with emphasis on the relationship between nitrogen and protein contents Graciela S. Diniz1,2, Elisabete Barbarino1, João Oiano-Neto3,4, Sidney Pacheco3 & Sergio O. Lourenço1 1Departamento de Biologia Marinha, Universidade Federal Fluminense Caixa Postal 100644, CEP 24001-970, Niterói, RJ, Brazil 2Instituto Virtual Internacional de Mudanças Globais-UFRJ/IVIG, Universidade Federal do Rio de Janeiro. Rua Pedro Calmon, s/nº, CEP 21945-970, Cidade Universitária, Rio de Janeiro, RJ, Brazil 3Embrapa Agroindústria de Alimentos, Laboratório de Cromatografia Líquida Avenida das Américas, 29501, CEP 23020-470, Rio de Janeiro, RJ, Brazil 4Embrapa Pecuária Sudeste, Rodovia Washington Luiz, km 234, Caixa Postal 339, CEP 13560-970 São Carlos, SP, Brazil ABSTRACT. -
SPC Beche-De-Mer Information Bulletin Contains Eight Articles Commercial Species in Tonga and Communications from Several Countries
Secretariat of the Pacific Community ISSN 1025-4943 Issue 33 – May 2013 BECHE-DE-MER information bulletin Inside this issue Editorial Change in weight of sea cucumbers during processing: Ten common This issue of SPC Beche-de-mer Information Bulletin contains eight articles commercial species in tonga and communications from several countries. It also includes abstracts about sea P. Ngaluafe and J. Lee p. 3 cucumbers that were presented at the 14th International Echinoderm Conference First insight into Colombian Caribbean that was held in Brussels in August. sea cucumbers and sea cucumber fishery The first article (p. 3) comes from Tonga. Poasi Ngaluafe and Jessica Lee analyse A. Rodriguez Forero et al. p. 9 the change in weight of ten common commercial sea cucumbers. They discuss the possible reasons for the discrepancy they observe between their results and Strategies for improving survivorship of hatchery-reared juvenile Holothuria previous ones, and the implications for fisheries management in Tonga. scabra in community-managed sea cucumber farms We are also very pleased to present some insights about sea cucumbers and sea A. Rougier et al. p. 14 cucumber fisheries in the Colombian Caribbean. The article is from the team of Holothurian abundance, richness and Adriana Rodríguez Forero (p. 9). They report on species that could be new for the population densities, comparing sites Caribbean and conclude with stressing the importance of initiating a management with different degrees of exploitation in plan for the Colombian fishery resource. the shallow lagoons of Mauritius K. Lampe p. 23 Some news also from Madagascar, where Antoine Rougier et al. -
UNIVERSITY of SOUTHAMPTON Systematics and Phylogeny of The
UNIVERSITY OF SOUTHAMPTON Systematics and Phylogeny of the Holothurian Family Synallactidae Francisco Alonso Solís Marín Doctor of Philosophy SCHOOL OF OCEAN AND EARTH SCIENCE July 2003 Graduate School of the Southampton Oceanography Centre This PhD dissertation by: Francisco Alonso Solís Marín Has been produced under the supervision of the following persons: Supervisors: Prof. Paul A. Tyler Dr. David Billett Dr. Alex D. Rogers Chair of Advisory Panel: Dr. Martin Sheader “I think the Almighty put synallactids on this earth as some sort of punishment.” Dave Pawson DECLARATION This thesis is the result of work completed wholly while registered as a postgraduate in the School of Ocean and Earth Science, University of Southampton. UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF SCIENCE SCHOOL OF OCEAN AND EARTH SCIENCE Doctor of Philosophy Systematics and Phylogeny of the Holothurian Family Synallactidae By Francisco Alonso Solís-Marín The sea cucumbers of the family Synallactidae (Echinodermata: Holothuroidea) are mostly restricted to the deep sea. They comprise of approximately 131 species, about one-third of all known deep-sea holothurian species. Many species are morphologically similar, making their identification and classification difficult. The aim of this study is to present the phylogeny of the family Synallactidae based on DNA sequences of the mitochondrial large subunit rRNA (16S), cytochrome oxidase I (COI) genes and morphological taxonomy characters. In order to examine type specimens, corroborate distributional data and collect muscles tissues for the DNA analyses, 7 institutions that hold holothurian specimens were visited. For each synallactid species, selected synonymy, primary diagnosis, location of type material, type locality, distributional data (geographical and bathymetrical) and extra biological information were extracted from the primary references. -
(Echinodermata) Collected During the TALUD Cruises Off the Pacific Coast of Mexico, with the Description of Two New Species Revista Mexicana De Biodiversidad, Vol
Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Massin, Claude; Hendrickx, Michel E. Deep-water Holothuroidea (Echinodermata) collected during the TALUD cruises off the Pacific coast of Mexico, with the description of two new species Revista Mexicana de Biodiversidad, vol. 82, núm. 2, junio, 2011, pp. 413-443 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42521043005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 82: 413-443, 2011 Deep-water Holothuroidea (Echinodermata) collected during the TALUD cruises off the Pacific coast of Mexico, with the description of two new species Holothuroidea (Echinodermata) de mar profundo recolectadas durante las campañas TALUD frente a la costa del Pacífico mexicano, con la descripción de dos especies nuevas Claude Massin1 and Michel E. Hendrickx2* 1Department of Recent Invertebrates, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium. 2Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, PO Box 811, 82000 Mazatlán, Sinaloa, México. *Correspondent: [email protected] Abstract. Research cruises aboard the R/V “El Puma” were organized to collect deep-water benthic and pelagic specimens off the Pacific coast of Mexico. Seventy four specimens of Holothuroidea were collected off the Pacific coast of Mexico in depths of 377-2 200 m. -
Structure Elucidation of Five Novel Isomeric Saponins from the Viscera of the Sea Cucumber Holothuria Lessoni
Mar. Drugs 2014, 12, 4439-4473; doi:10.3390/md12084439 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Structure Elucidation of Five Novel Isomeric Saponins from the Viscera of the Sea Cucumber Holothuria lessoni Yadollah Bahrami 1,2,3,4,*, Wei Zhang 1,2,3, Tim Chataway 5 and Chris Franco 1,2,3,* 1 Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia; E-Mail: [email protected] 2 Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042, Australia 3 Australian Seafood Cooperative Research Centre, Mark Oliphant Building, Science Park, Adelaide SA 5042, Australia 4 Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran 5 Flinders Proteomics Facility, School of Medicine, Flinders University, Adelaide, SA 5042, Australia; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (Y.B.); [email protected] (C.F.); Tel.: +61-872-218-563 (Y.B.); Fax: +61-872-218-555 (Y.B. & C.F.); Tel.: +61-872-218-554 (C.F.). Received: 5 June 2014; in revised form: 25 July 2014 / Accepted: 25 July 2014 / Published: 8 August 2014 Abstract: Sea cucumbers are prolific producers of a wide range of bioactive compounds. This study aimed to purify and characterize one class of compound, the saponins, from the viscera of the Australian sea cucumber Holothuria lessoni. The saponins were obtained by ethanolic extraction of the viscera and enriched by a liquid-liquid partition process and adsorption column chromatography. -
I. Introduction
Bathymetric distribution of the species .... 210 2. Penetration of species into the Bathymetric zonation of the deep sea ...... 210 Mediterranean deep sea ............. 235 Bathymetric distribution and taxonomic 3. Comparison with other groups ....... 235 relationship .......................... 214 Sediments and nutrient conditions ........ 235 Number of species and individuals in Hydrostatic pressure ..................... 237 relation to depth ...................... 217 Currents ............................... 238 Topography ............................ 238 E. Geographic distribution .................. 219 Conclusion ............................. 239 The exploration of the different geographic regions ............................... 219 G. The hadal fauna ........................ 239 The bathyal fauna ...................... 220 The hadal environment .................. 239 The abyssal fauna ....................... 221 General features of the hadal fauna ....... 240 1. World-wide distributions ............ 223 2. The Antarctic Ocean ................ 224 H. Evolutionary aspects .................... 243 3. The North Atlantic ................. 225 Evolution within the deep sea versus 4. The South Atlantic ................. 227 immigration from shallower depths .... 243 5. The Indian Ocean .................. 22; Geographic variation .................... 244 6. The Indonesian seas ................ 228 1. Clines ............................. 245 7. The Pacific Ocean .................. 231 2. Local variation ..................... 245 8. The Arctic -
Profiles and Biological Values of Sea Cucumbers: a Mini Review Siti Fathiah Masre
Life Sciences, Medicine and Biomedicine, Vol 2 No 4 (2018) 25 Review Article Profiles and Biological Values of Sea Cucumbers: A Mini Review Siti Fathiah Masre Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), 50300 Kuala Lumpur, Malaysia. https://doi.org/10.28916/lsmb.2.4.2018.25 Received 8 October 2018, Revisions received 19 November 2018, Accepted 23 November 2018, Available online 31 December 2018 Abstract Sea cucumbers, blind cylindrical marine invertebrates that live in the ocean intertidal beds have more than thousand species available of varying morphology and colours throughout the world. Sea cucumbers have long been exploited in traditional treatment as a source of natural medicinal compounds. Various nutritional and therapeutic values have been linked to this invertebrate. These creatures have been eaten since ancient times and purported as the most commonly consumed echinoderms. Some important biological activities of sea cucumbers including anti-hypertension, anti-inflammatory, anti-cancer, anti-asthmatic, anti-bacterial and wound healing. Thus, this short review comes with the principal aim to cover the profile, taxonomy, together with nutritional and medicinal properties of sea cucumbers. Keywords: sea cucumber; invertebrate; echinoderm; therapeutic; taxonomy. 1.0 Introduction Sea cucumbers are marine invertebrate under phylum Echinodermata (Kamarudin et al., 2017). This cylindrical invertebrate that lives throughout the worlds’ oceans bed is known as sea cucumber or ‘gamat’ in Malaysia (Kamarudin et al., 2017). There are more than 1200 sea cucumber species available of varying morphology and colours throughout the world (Oh et al., 2017). Within the coastal areas of Malaysia, sea cucumbers can be located in Semporna Island, Pangkor Island, Tioman Island, Langkawi Island and coastal areas within Terengganu. -
Growth and Size of the Tropical Sea Cucumber Holothuria (Halodeima) Atra Jager at Enewetak Atoll, Marshall Islands!
Pacific Science (1978), vol. 32, no. 2 © 1978 by The University Press of Hawaii. All rights reserved Growth and Size of the Tropical Sea Cucumber Holothuria (Halodeima) atra Jager at Enewetak Atoll, Marshall Islands! THOMAS A. EBERT 2 ABSTRACT: In September 1975, 5031 sea cucumbers (Holothuria atra Jager) were tagged with tetracycline and returned to a gutter on the seaward reef bench of Ananij Island, Enewetak Atoll, Marshall Islands. A sample of 184 individuals was collected in September 1976. Animals were dissected and plates of the calcareous ring were examined with ultraviolet radiation for tetracycline lines. Based on 18 tagged individuals, the Brody-Bertalanffy growth constants are: K = 0.11 and P00 = 0.89 cm (for interradial plates). Length (L, cm) and weight (W, g) of individuals are related to plate size: L = 36.35P and W = 1950P3, giving maximum size as 32 cm and 1352 g. Length frequency distributions for the population did not change from 1975 to 1976. A preliminary estimate of annual loss is 50 to 70 percent of the total population based on the growth parameters and population size structure. Holothuria atra shows asexual reproduction by transverse fission, which appears to be the major source of recruitment at Ananij rather than from the plankton. ON MANY TROPICAL REEFS, sea cucumbers are tion to a technique that shows some promise abundant and may attain densities in excess as a means ofstudying growth ofholothurians of 200/m2 (Bakus 1968). But they are very and so, somewhat indirectly, of estimating difficult to study as populations and very few mortality and population turnover. -
Profiles and Results from Survey Work at Ha’Atafu, Manuka, Koulo and Lofanga
PACIFIC REGIONAL OCEANIC AND COASTAL FISHERIES DEVELOPMENT PROGRAMME (PROCFish/C/CoFish) TONGA COUNTRY REPORT: PROFILES AND RESULTS FROM SURVEY WORK AT HA’ATAFU, MANUKA, KOULO AND LOFANGA (November and December 2001; March to June 2002; April to June, September and October 2008 ) by Kim Friedman, Silvia Pinca, Mecki Kronen, Pierre Boblin, Lindsay Chapman, Franck Magron, Aliti Vun isea and Pierre Labrosse This document has been produced with the financial assistance of the European Community The views expressed herein are those of the Secretariat of the Pacific Community and do not reflect the official opinion of the European Community i ©Copyright Secretariat of the Pacific Community (SPC), 2009 All rights for commercial / for profit reproduction or translation, in any form, reserved. SPC authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided SPC and the source document are properly acknowledged. Permission to reproduce the document and/or translate in whole, in any form, whether for commercial / for profit or non-profit purposes, must be requested in writing. Original SPC artwork may not be altered or separately published without permission. Original text: English Secretariat of the Pacific Community Cataloguing-in-publication data Tonga country report: profiles and results from survey work at Ha’atafu, Manuka, Koulo and Lofanga (November and December 2001; March to June 2002; April to June, September and October 2008) / by Kim Friedman, Silvia Pinca, Mecki Kronen, Pierre Boblin, Lindsay Chapman, Franck Magron, Aliti Vunisea and Pierre Labrosse (Pacific Regional Oceanic and Coastal Fisheries Development Programme (PROCFish/C/CoFish) / Secretariat of the Pacific Community) I. -
Biological and Taxonomic Perspective of Triterpenoid Glycosides of Sea Cucumbers of the Family Holothuriidae (Echinodermata, Holothuroidea)
Comparative Biochemistry and Physiology, Part B 180 (2015) 16–39 Contents lists available at ScienceDirect Comparative Biochemistry and Physiology, Part B journal homepage: www.elsevier.com/locate/cbpb Review Biological and taxonomic perspective of triterpenoid glycosides of sea cucumbers of the family Holothuriidae (Echinodermata, Holothuroidea) Magali Honey-Escandón a,⁎, Roberto Arreguín-Espinosa a, Francisco Alonso Solís-Marín b,YvesSamync a Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, C.P. 04510 México, D. F., Mexico b Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apartado Postal 70-350, C.P. 04510 México, D. F., Mexico c Scientific Service of Heritage, Invertebrates Collections, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium article info abstract Article history: Since the discovery of saponins in sea cucumbers, more than 150 triterpene glycosides have been described for Received 20 May 2014 the class Holothuroidea. The family Holothuriidae has been increasingly studied in search for these compounds. Received in revised form 18 September 2014 With many species awaiting recognition and formal description this family currently consists of five genera and Accepted 18 September 2014 the systematics at the species-level taxonomy is, however, not yet fully understood. We provide a bibliographic Available online 28 September 2014 review of the triterpene glycosides that has been reported within the Holothuriidae and analyzed the relationship of certain compounds with the presence of Cuvierian tubules. We found 40 species belonging to four genera and Keywords: Cuvierian tubules 121 compounds. -
Sphingolipids of Asteroidea and Holothuroidea: Structures and Biological Activities
marine drugs Review Sphingolipids of Asteroidea and Holothuroidea: Structures and Biological Activities Timofey V. Malyarenko 1,2,*, Alla A. Kicha 1, Valentin A. Stonik 1,2 and Natalia V. Ivanchina 1,* 1 G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; [email protected] (A.A.K.); [email protected] (V.A.S.) 2 Department of Bioorganic Chemistry and Biotechnology, School of Natural Sciences, Far Eastern Federal University, Sukhanova Str. 8, 690000 Vladivostok, Russia * Correspondence: [email protected] (T.V.M.); [email protected] (N.V.I.); Tel.: +7-423-2312-360 (T.V.M.); Fax: +7-423-2314-050 (T.V.M.) Abstract: Sphingolipids are complex lipids widespread in nature as structural components of biomembranes. Commonly, the sphingolipids of marine organisms differ from those of terres- trial animals and plants. The gangliosides are the most complex sphingolipids characteristic of vertebrates that have been found in only the Echinodermata (echinoderms) phylum of invertebrates. Sphingolipids of the representatives of the Asteroidea and Holothuroidea classes are the most studied among all echinoderms. In this review, we have summarized the data on sphingolipids of these two classes of marine invertebrates over the past two decades. Recently established structures, properties, and peculiarities of biogenesis of ceramides, cerebrosides, and gangliosides from starfishes and holothurians are discussed. The purpose of this review is to provide the most complete informa- tion on the chemical structures, structural features, and biological activities of sphingolipids of the Asteroidea and Holothuroidea classes. -
Elpidia Soyoae, a New Species of Deep-Sea Holothurian (Echinodermata) from the Japan Trench Area
Species Diversity 25: 153–162 Published online 7 August 2020 DOI: 10.12782/specdiv.25.153 Elpidia soyoae, a New Species of Deep-sea Holothurian (Echinodermata) from the Japan Trench Area Akito Ogawa1,2,4, Takami Morita3 and Toshihiko Fujita1,2 1 Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan E-mail: [email protected] 2 Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan 3 National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan 4 Corresponding author (Received 23 October 2019; Accepted 28 May 2020) http://zoobank.org/00B865F7-1923-4F75-9075-14CB51A96782 A new species of holothurian, Elpidia soyoae sp. nov., is described from the Japan Trench area, at depths of 3570– 4145 m. It is distinguished from its congeners in having: four or five paired papillae and unpaired papillae present along entire dorsal radii (four to seven papillae on each radius), with wide separation between second and third paired papillae; maximum length of Elpidia-type ossicles in dorsal body wall exceeds 1000 µm; axis diameter of dorsal Elpidia-type ossicles less than 40 µm; tentacle Elpidia-type ossicles with arched axis and shortened, occasionally completely reduced arms and apophyses. Purple pigmentation spots composed of small purple particles on both dorsal and ventral body wall. This is the second species of Elpidia Théel, 1876 from Japanese abyssal depths. The diagnosis of the genus Elpidia is modified to distin- guish from all other elpidiid genera.