Download Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Download Thesis This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Molecular characterisation of the bacterial community in dentinal caries Schulze-Schweifing, Kathrin Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 10. Oct. 2021 Molecular characterisation of the bacterial community in dentinal caries Kathrin Schulze-Schweifing A thesis submitted in accordance with the requirements of the degree of Doctor of Philosophy for King's College London August 2012 Department of Clinical and Diagnostic Sciences, Dental Institute King's College London Abstract Abstract Dental caries remains the major cause of loss of tooth function and associated morbidity. The development of new prevention and treatment measures requires a better understanding of the disease process, particularly the role of the associated microbiota. The aim of this study was to perform a comprehensive characterisation of the microbiota in dental caries using culture-independent and next generation sequencing methods, with a focus on improving the detection of bacteria with DNA of high G+C content. Oligonucleotide probes for taxa of interest were designed and evaluated using fluorescent in situ hybridisation (FISH). DNA extraction methods, PCR polymerases and primer pairs were compared for their ability to isolate and amplify 16S rRNA genes from species with low and high G+C content. DNA extraction method and polymerase were not found to significantly influence the detection of high G+C species but primer sequence was found to be of critical importance. Five “universal” PCR primer sets and culture were used to characterise the dentine caries microbiota of six subjects. From 3240 clones and isolates, 228 taxa representing eight phyla were identified by Sanger sequencing. Detection frequency of the high G+C Actinobacteria was 33% using culture, but 2.6-11.1% in the different clone libraries. The samples were analysed further by 454 pyrosequencing and 25758 sequences were identified to 264 taxa representing 11 phyla. Pyrosequencing allowed an analysis of greater depth, although the composition of the samples was comparable to those obtained by the Sanger-based method. Total and specific bacteria were detected successfully in excavated dentine by FISH with universal and specific probes, while in bisected teeth only total bacteria were seen with the universal probe. In conclusion, this study has revealed a highly diverse caries microbiota. Pyrosequencing increased detection of taxa and overall coverage, but all methods had associated biases which affected the results obtained. - 2 - Acknowledgements Acknowledgements I share the credit of my work with many people who have helped, encouraged and supported me in a myriad of ways. I would like to express my sincere gratitude to my supervisors Prof William Wade and Prof Avijit Banerjee, who have encouraged and criticised as and when needed and helped me navigate the sometimes cloudy, sometimes stormy, waters that is a research thesis. My deepest gratitude to all patients who have kindly provided the samples on which this research is based. A very big thank you also goes to the lovely Mona Hajatdoost-Sanj, who helped recruit volunteers and co-ordinated collection of all patient samples. In addition, Pete Pilecki gave much appreciated practical support in bisecting the collected teeth and Ahmed Almahdy kindly helped excavate caries scoops. Fellow PhD student James Kistler organised and carried out the experimental work needed for the 454 pyrosequencing in collaboration with the Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London. Many thanks not just for the work, but also the numerous questions you’ve patiently answered. I would also like to thank Dr Dave Moyes for descending on my writing with a sharpened red pen, giving very helpful and much appreciated constructive criticism. Many thanks also go to my friends and colleagues (present and past), not just of the Micro Department, but also the Salivary Research and Mucosal Immunity, Fungal and HIV infection groups – thank you guys for your friendship, many pieces of advice and generally for making the labs a fun place to work. I am also grateful to be blessed with a fabulous (extended) family and many friends outside work who have boosted my morale on various occasions over the last few years. Finally, I would like to dedicate this thesis to my wonderful husband, without whom this thesis would simply have remained a dream. Christian, your encouragement, support and understanding has made me believe in myself and enabled me to chase my dream. The love and gratitude I feel for you and our precious children cannot be expressed in mere words. - 3 - Table of Contents Table of Contents Abstract ......................................................................................................................... - 2 - Acknowledgements ....................................................................................................... - 3 - Table of Contents .......................................................................................................... - 4 - List of Figures .............................................................................................................. - 12 - List of Tables ................................................................................................................ - 16 - List of Abbreviations ................................................................................................... - 18 - Chapter 1 Introduction ................................................................................................ - 21 - 1.1 Microbiota of the human oral cavity in health ........................................... - 22 - 1.2 Oral diseases and their associated microbiota ........................................... - 24 - 1.3 Shifts in the oral microbiota as a result of dynamic interactions with the host and/or environment ................................................................................................ - 27 - 1.4 Oral surfaces and microbial habitats .......................................................... - 30 - 1.4.1 Saliva, the acquired pellicle and the oral microbiota ............................. - 30 - 1.5 Plaque formation ........................................................................................ - 33 - 1.5.1 Reversible adhesion ................................................................................ - 33 - 1.5.2 Irreversible adhesion ............................................................................... - 34 - 1.6 Sequence of plaque formation ................................................................... - 36 - 1.7 Bacterial interactions in the process of biofilm formation ......................... - 41 - 1.8 Biofilms ........................................................................................................ - 43 - 1.8.1 Biofilm structure ..................................................................................... - 43 - 1.8.2 Matrix functions ...................................................................................... - 46 - 1.9 Dental caries ................................................................................................ - 47 - 1.9.1 Structure of enamel and dentine ............................................................ - 47 - 1.9.1.1 Enamel ........................................................................................... - 47 - 1.9.1.2 Dentine .......................................................................................... - 48 - 1.9.1.2.1 Types of dentine ........................................................................ - 49 - - 4 - Table of Contents 1.9.2 Clinical aspects of caries.......................................................................... - 50 - 1.9.3 Clinical lesion development .................................................................... - 51 - 1.9.4 Microbiology of caries ............................................................................. - 52 - 1.10 Molecular microbial ecology methodologies .............................................. - 60 - 1.10.1 Unculturability of bacterial species....................................................... - 60 - 1.10.2 Culture-independent methods ............................................................
Recommended publications
  • Rapid NH System Rapid Spot Indole Reagent (R8309002, Supplied Separately) • When Using the 1-Hour Procedure, Only Selective Notes: (15 Ml/Bottle) Agars Can Be Used
    n,n-Dimethyl-1-naphthylamine ..................................... 6.0 g Selective Media: Thayer-Martin Agar; Martin-Lewis 6. Return the panel to a level position. If necessary, gently Glacial Acetic Acid ................................................... 280.0 ml Agar; New York City Agar. tap the panel on the bench top to remove any air Demineralized Water ............................................... 720.0 ml Notes: trapped in the cavities. RapID NH System RapID Spot Indole Reagent (R8309002, supplied separately) • When using the 1-hour procedure, only selective Notes: (15 ml/Bottle) agars can be used. • Examine the test cavities which should appear R8311001 .................................................20 Tests/Kit ρ-Dimethylaminocinnamaldehyde .............................. 10.0 g • Cultures used for inoculum preparation should bubble-free and uniformly filled. Slight irregularities 1. INTENDED USE Hydrochloric Acid .................................................... 100.0 ml preferably be 18-24 hours old. Slow-growing isolates in test cavity fills are acceptable and will not affect Remel RapID™ NH System is a qualitative micromethod Demineralized Water ............................................... 900.0 ml may be tested using 48-hour cultures. test performance. If the panel is grossly misfilled, employing conventional and chromogenic substrates for the *Adjusted as required to meet performance standards. a new panel should be inoculated and the misfilled • The use of media other than those recommended panel discarded. identification of medically important species of Neisseria, 5. PRECAUTIONS may compromise test performance. Haemophilus, and other bacteria isolated from human • Complete the inoculation of each panel receiving in vitro clinical specimens. A complete listing of the organisms This product is for diagnostic use and should be used 3. Using a cotton swab or inoculating loop, suspend inoculation fluid before inoculating additional addressed by RapID NH System is provided in the RapID NH by properly trained individuals.
    [Show full text]
  • Comparison of Three Dispersion Procedures for Quantitative Recovery of Cultivable Species of Subgingival Spirochetes SERGIO L
    JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 1987, p. 2230-2232 Vol. 25, No. 11 0095-1137/87/112230-03$02.00/0 Copyright © 1987, American Society for Microbiology Comparison of Three Dispersion Procedures for Quantitative Recovery of Cultivable Species of Subgingival Spirochetes SERGIO L. SALVADOR, SALAM A. SYED, AND WALTER J. LOESCHE* Department of Microbiology and Immunology, University of Michigan School of Dentistry and University of Michigan School of Medicine, Ann Arbor, Michigan 48109-1078 Received 9 April 1987/Accepted 3 August 1987 Spirochetes are usually the predominant organisms observed microscopically in subgingival plaques removed from tooth sites associated with periodQntitis, but these organisms are rarely isolated by cultural means, presumably because the media do not support their growth and/or because these fragile organisms are disrupted by the various procedures used to disperse plaque samples. In the present investigation, three dispersal procedures, sonification, mechanical mixing, and homogenization, were compared for their ability to permit the isolation of Treponema denticola, Treponema vincentii, Treponema socranskii, and Treponema pectinovorum from plaque samples on media that support the growth of these species. Plaque samples in which the spirochetes averaged 50% of the microscopic count were chosen. The highest viable recoveries of spirochetes were observed when the plaques were dispersed with a Tekmar homogenizer, and the lowest occurred with sonification. The highest recoveries averaged only about 1% of the total cultivable counts, indicating either that the sought-after species were minor members of the flora or that the dispersal procedures were still too harsh. A total of 91% of the isolates were T. denticola, 5% were T.
    [Show full text]
  • Identification by 16S Ribosomal RNA Gene Sequencing of Arcobacter
    182 ORIGINAL ARTICLE Identification by 16S ribosomal RNA gene sequencing of Mol Path: first published as 10.1136/mp.55.3.182 on 1 June 2002. Downloaded from Arcobacter butzleri bacteraemia in a patient with acute gangrenous appendicitis SKPLau,PCYWoo,JLLTeng, K W Leung, K Y Yuen ............................................................................................................................. J Clin Pathol: Mol Pathol 2002;55:182–185 Aims: To identify a strain of Gram negative facultative anaerobic curved bacillus, concomitantly iso- lated with Escherichia coli and Streptococcus milleri, from the blood culture of a 69 year old woman with acute gangrenous appendicitis. The literature on arcobacter bacteraemia and arcobacter infections associated with appendicitis was reviewed. Methods: The isolate was phenotypically investigated by standard biochemical methods using conventional biochemical tests. Genotypically, the 16S ribosomal RNA (rRNA) gene of the bacterium was amplified by the polymerase chain reaction (PCR) and sequenced. The sequence of the PCR prod- uct was compared with known 16S rRNA gene sequences in the GenBank by multiple sequence align- ment. Literature review was performed by MEDLINE search (1966–2000). Results: The bacterium grew on blood agar, chocolate agar, and MacConkey agar to sizes of 1 mm in diameter after 24 hours of incubation at 37°C in 5% CO2. It grew at 15°C, 25°C, and 37°C; it also grew in a microaerophilic environment, and was cytochrome oxidase positive and motile, typically a member of the genus arcobacter. Furthermore, phenotypic testing showed that the biochemical profile See end of article for of the isolate did not fit into the pattern of any of the known arcobacter species.
    [Show full text]
  • Bacterial Diversity Within the Human Subgingival Crevice
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Veterans Affairs Staff Publications U.S. Department of Veterans Affairs 12-7-1999 Bacterial diversity within the human subgingival crevice Ian Kroes Stanford University School of Medicine Paul W. Lepp Stanford University School of Medicine, [email protected] David A. Relman Stanford University School of Medicine, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/veterans Kroes, Ian; Lepp, Paul W.; and Relman, David A., "Bacterial diversity within the human subgingival crevice" (1999). U.S. Department of Veterans Affairs Staff Publications. 18. https://digitalcommons.unl.edu/veterans/18 This Article is brought to you for free and open access by the U.S. Department of Veterans Affairs at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. Department of Veterans Affairs Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Bacterialdiversity within the human subgingivalcrevice Ian Kroes, Paul W. Lepp, and David A. Relman* Departmentsof Microbiologyand Immunology,and Medicine,Stanford University School of Medicine,Stanford, CA 94305, and VeteransAffairs Palo Alto HealthCare System, Palo Alto,CA 94304 Editedby Stanley Falkow, Stanford University, Stanford, CA, and approvedOctober 15, 1999(received for review August 2, 1999) Molecular, sequence-based environmental surveys of microorgan- associated with disease (9-11). However, a directcomparison isms have revealed a large degree of previously uncharacterized between cultivation-dependentand -independentmethods has diversity. However, nearly all studies of the human endogenous not been described. In this study,we characterizedbacterial bacterial flora have relied on cultivation and biochemical charac- diversitywithin a specimenfrom the humansubgingival crevice terization of the resident organisms.
    [Show full text]
  • Bacterial Communities Associated with Chronic Rhinosinusitis and the Impact of Mucin
    Bacterial communities associated with chronic rhinosinusitis and the impact of mucin degradation on Staphylococcus aureus physiology A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Sarah Kathleen Lucas IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advisor: Ryan C. Hunter August 2020 © Sarah Kathleen Lucas 2020 Acknowledgements First, this thesis was made possible by the support of the Microbiology, Immunology, and Cancer Biology graduate program, and the faculty and staff of the Department of Microbiology & Immunology at the University of Minnesota. The contribution of the research community and resources available to me at the University of Minnesota cannot be overstated, and I feel very fortunate to have had the opportunity to work within a community that upholds high scholarly standards and are also a pleasure to be around. I would like to extend my deepest gratitude to several individuals for their support during my doctoral training: My advisor, Dr. Ryan Hunter: Thank you for the confidence you had in me, especially in the times when I scarcely believed in myself. Thank you for your patience, and for being the first true mentor I ever had. My labmates: it was a pleasure to conduct research alongside you all. My daily sounding boards for far-out ideas, and encouragement to jump into experiments and just “see what happens”. The members of my thesis committee: Gary Dunny, Mark Herzberg, and Dan Knights. Thanks for all the great feedback in our meetings. Your comments on my work over the years have always been constructive. There would be times in our annual meetings where I would find great motivation in your enthusiasm of the data I presented.
    [Show full text]
  • M0495datasheet-Lot0011212
    1X Standard Taq Reaction Buffer: Reaction setup: analyze primers. The final concentration of Hot Start 10 mM Tris-HCl Due to the hot start nature of the enzyme, reactions each primer in a PCR may be 0.05–1 µM, typi- 50 mM KCl can be assembled on the bench at room temperature cally 0.1–0.5 µM. Taq DNA Polymerase 1.5 mM MgCl 2 and transferred to a thermocycler. No separate activa- ++ pH 8.3 @ 25°C tion step is required to release the inhibitor from the 3. Mg and additives: 1-800-632-7799 enzyme. Mg++ concentration of 1.5–2.0 mM is optimal [email protected] Unit Definition: One unit is defined as the amount for most PCR products generated with Hot www.neb.com of enzyme that will incorporate 15 nmol of dNTP Add to a sterile thin-walled PCR tube: Start Taq DNA Polymerase. The final Mg++ M0495S 001121214121 into acid insoluble material in 30 minutes at 75°C. 25 µl 50 µl FInaL concentration in 1X Standard Taq Reaction COMPONENT REacTION REacTION CONCENTRATION Buffer is 1.5 mM. This supports satisfactory Unit Assay Conditions: 1X ThermoPol™ Reaction amplification of most amplicons. However, M0495S Buffer, 200 µM dNTPs including [3H]-dTTP and 10X Standard Taq Reaction Buffer 2.5 µl 5 µl 1X Mg++ can be further optimized in 0.5 or 1.0 mM 200 µg/ml activated Calf Thymus DNA. 200 units 5,000 U/ml Lot: 0011212 10 mM dNTPs 0.5 µl 1 µl 200 µM increments using MgCl2 (sold separately).
    [Show full text]
  • Applied Microbiology VOLUME 60 This Page Intentionally Left Blank ADVANCES in Applied Microbiology
    ADVANCES IN Applied Microbiology VOLUME 60 This page intentionally left blank ADVANCES IN Applied Microbiology Edited by ALLEN I. LASKIN Somerset, New Jersey SIMA SARIASLANI Wilmington, Delaware GEOFFREY M. GADD Dundee, United Kingdom VOLUME 60 AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald’s Road, London WC1X 8RR, UK This book is printed on acid-free paper. Copyright ß 2006, Elsevier Inc. All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher. The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher’s consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (www.copyright.com), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2006 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters.
    [Show full text]
  • 11|1111 Technical Tips
    Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press 11|1111 Technical Tips PCR has revolutionized nucleic acid vapor barrier on the surface of the aque- Wax-embedded analysis in many scientific disciplines, ous mixture. With this approach, the PCR Reagents including molecular biology, medical di- wax must first be melted and solidified agnostics, population genetics, and fo- on top of the lower aqueous layer prior rensic analysis. (1~ PCR is a highly sensi- to addition of the missing compo- tive technique that can selectively nent(s). In a similar approach, wax is enrich for a specific target from a back- melted and solidified to cover the lower Patricia Blair, ground of nonrelated sequences. How- aqueous layer completely. (7~ The miss- Rama Ramanujam, and ever, if all of the reaction components ing reagent is then layered onto the wax Brent A. Burdick (nucleotides, buffer containing magne- cap, followed by two drops of mineral sium, primers, a thermostable DNA poly- oil. When the temperature of the tubes Pharmacia Biotech, Milwaukee, merase, and sample containing the tar- in the thermocycler exceeds the melting Wisconsin get to be amplified) are mixed at room temperature of the wax, the wax rises to temperature prior to thermocycling, pre- the top of the tube and the upper and mature mispriming events such as non- lower aqueous layers mix by convection. specific annealing of primers to nontar- Another variation of the hot start get nucleic acid sequences and the technique involves drying one of the re- production of primer oligomerization action components in trehalose and em- (primer dimer) artifacts may occur.
    [Show full text]
  • Haemophilus] Haemoglobinophilus As Canicola Haemoglobinophilus Gen
    Scotland's Rural College Reclassification of [Haemophilus] haemoglobinophilus as Canicola haemoglobinophilus gen. nov., comb. nov. including Bisgaard taxon 35 Christensen, Henrik; Kuhnert, Peter; Foster, Geoffrey; Bisgaard, Magne Published in: International Journal of Systematic and Evolutionary Microbiology DOI: 10.1099/ijsem.0.004881 First published: 15/07/2021 Document Version Peer reviewed version Link to publication Citation for pulished version (APA): Christensen, H., Kuhnert, P., Foster, G., & Bisgaard, M. (2021). Reclassification of [Haemophilus] haemoglobinophilus as Canicola haemoglobinophilus gen. nov., comb. nov. including Bisgaard taxon 35. International Journal of Systematic and Evolutionary Microbiology, 71(7), [004881]. https://doi.org/10.1099/ijsem.0.004881 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Sep. 2021 1 Supplemetary material for the paper: 2 Reclassification of [Haemophilus] haemoglobinophilus as Canicola haemoglobinophilus 3 gen. nov., comb. nov. including Bisgaard taxon 35 4 By Henrik Christensen, Peter Kuhnert, Geoff Foster and Magne Bisgaard 5 1 Table S1.
    [Show full text]
  • PCR Tools 2Nd Edition PCR Tools 2Nd Edition | 2009
    Novagen® PCR Tools 2nd edition PCR Tools 2nd edition | 2009 Thermostable DNA Polymerases ......... 4 Overview and Enzyme Selection Guide ................................. 4 KOD Hot Start DNA Polymerase ............................................. 6 KOD Hot Start Master Mix ....................................................... 8 KOD Xtreme™ Hot Start DNA Polymerase .............................. 9 KOD XL DNA Polymerase .......................................................11 KOD DNA Polymerase ............................................................12 NovaTaq™ Hot Start DNA Polymerase .................................13 NovaTaq Hot Start Master Mix Kit ........................................13 NovaTaq DNA Polymerase ....................................................14 NovaTaq PCR Master Mix .....................................................14 Taq Antibody ...........................................................................15 10 mM dNTP Mix ...................................................................15 Direct PCR from Blood ........................16 BloodDirect™ PCR Buffer Kits ...............................................16 RT-PCR ....................................................18 One Step RT-PCR Master Mix Kit ........................................18 First Strand cDNA Synthesis Kit ..........................................19 Cover and Inside Photography: Chris Bucher Photography, Dale Chihuly Sculpture located at Indiana University, Medical Sciences Building, Indiana, United States. Prices and availability
    [Show full text]
  • Treponema Amylovorum Sp. Nov., a Saccharolytic Spirochete of Medium Size Isolated from an Advanced Human Periodontal Lesion
    Wyss, C; Choi, B K; Schüpbach, P; Guggenheim, B; Göbel, U B. Treponema amylovorum sp. nov., a saccharolytic spirochete of medium size isolated from an advanced human periodontal lesion. Int. J. Syst. Bacteriol. 1997, 47(3):842-5. Postprint available at: http://www.zora.unizh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.unizh.ch Originally published at: Winterthurerstr. 190 Int. J. Syst. Bacteriol. 1997, 47(3):842-5 CH-8057 Zurich http://www.zora.unizh.ch Year: 1997 Treponema amylovorum sp. nov., a saccharolytic spirochete of medium size isolated from an advanced human periodontal lesion Wyss, C; Choi, B K; Schüpbach, P; Guggenheim, B; Göbel, U B Wyss, C; Choi, B K; Schüpbach, P; Guggenheim, B; Göbel, U B. Treponema amylovorum sp. nov., a saccharolytic spirochete of medium size isolated from an advanced human periodontal lesion. Int. J. Syst. Bacteriol. 1997, 47(3):842-5. Postprint available at: http://www.zora.unizh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.unizh.ch Originally published at: Int. J. Syst. Bacteriol. 1997, 47(3):842-5 Treponema amylovorum sp. nov., a saccharolytic spirochete of medium size isolated from an advanced human periodontal lesion Abstract A highly motile, medium-size, saccharolytic spirochete was isolated from an advanced human periodontal lesion in medium OMIZ-Pat supplemented with 1% human serum. The growth of this organism is dependent on either glucose, maltose, starch, or glycogen. The cells contain six endoflagella, three per pole, which overlap in the central region of the cell body.
    [Show full text]
  • Actinomyces Naeslundii and Aggregatibacter Aphrophilus Brain Abscess in an Adolescent
    Arch Clin Med Case Rep 2019; 3 (6): 409-413 DOI: 10.26502/acmcr.96550112 Case Report Actinomyces Naeslundii and Aggregatibacter Aphrophilus Brain Abscess in an Adolescent Michael Croix1, Christopher Schwarz2, Ryan Breuer3,4, Amanda B. Hassinger3,4, Kunal Chadha5, Mark Daniel Hicar4,6 1Division of Internal Medicine and Pediatrics, University at Buffalo. Buffalo, New York, USA 2Division of Emergency Medicine, University at Buffalo. Buffalo, New York, USA 3Division of Pediatric Critical Care, John R. Oishei Children’s Hospital. Buffalo, New York, USA 4Department of Pediatrics, University at Buffalo. Buffalo, New York, USA 5Division of Pediatric Emergency Medicine, University at Buffalo. Buffalo, New York, USA 6Division of Pediatric Infectious Diseases, University at Buffalo. Buffalo, New York, USA *Corresponding Authors: Dr. Mark Daniel Hicar, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 1001 Main Street, Buffalo, NY, 14203 USA, Tel: (716) 323-0150; Fax: (716) 888-3804; E-mail: [email protected] (or) [email protected] Dr. Michael Croix, Division of Internal Medicine and Pediatrics, 300 Linwood Ave, Buffalo, NY, 14209 USA, Tel: (217) 840-5750; Fax: (716) 888-3804; E-mail: [email protected] Received: 20 July 2019; Accepted: 02 August 2019; Published: 04 November 2019 Abstract We report the case of a child with a brain abscess from which Actinomyces naeslundii and Aggregatibacter aphrophilus were isolated. The is the first case describing A. naeslundii causing a brain abscess. This case highlights the association of these two organisms which may affect antibiotic choice and therapy length. Keywords: Brain; Abscess; Actinomyces; Aggregatibacter 1. Case Report A 13 year old male with no known past medical history initially presented to the Emergency Department with one week of headache, nausea, and vomiting.
    [Show full text]