Multiscale Cosmic Web Detachments, Connectivity, and Preprocessing in the Supercluster Scl A2142 Cocoon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SDSS DR7 Superclusters Morphology
A&A 532, A5 (2011) Astronomy DOI: 10.1051/0004-6361/201116564 & c ESO 2011 Astrophysics SDSS DR7 superclusters Morphology M. Einasto1,L.J.Liivamägi1,2,E.Tago1,E.Saar1,E.Tempel1,2,J.Einasto1, V. J. Martínez3, and P. Heinämäki4 1 Tartu Observatory, 61602 Tõravere, Estonia e-mail: [email protected] 2 Institute of Physics, Tartu University, Tähe 4, 51010 Tartu, Estonia 3 Observatori Astronòmic, Universitat de València, Apartat de Correus 22085, 46071 València, Spain 4 Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö, Finland Received 24 January 2011 / Accepted 2 May 2011 ABSTRACT Aims. We study the morphology of a set of superclusters drawn from the SDSS DR7. Methods. We calculate the luminosity density field to determine superclusters from a flux-limited sample of galaxies from SDSS DR7 and select superclusters with 300 and more galaxies for our study. We characterise the morphology of superclusters using the fourth Minkowski functional V3, the morphological signature (the curve in the shapefinder’s K1-K2 plane) and the shape parameter (the ratio of the shapefinders K1/K2). We investigate the supercluster sample using multidimensional normal mixture modelling. We use Abell clusters to identify our superclusters with known superclusters and to study the large-scale distribution of superclusters. Results. The superclusters in our sample form three chains of superclusters; one of them is the Sloan Great Wall. Most superclusters have filament-like overall shapes. Superclusters can be divided into two sets; more elongated superclusters are more luminous, richer, have larger diameters and a more complex fine structure than less elongated superclusters. The fine structure of superclusters can be divided into four main morphological types: spiders, multispiders, filaments, and multibranching filaments. -
The Dynamical State of the Coma Cluster with XMM-Newton?
A&A 400, 811–821 (2003) Astronomy DOI: 10.1051/0004-6361:20021911 & c ESO 2003 Astrophysics The dynamical state of the Coma cluster with XMM-Newton? D. M. Neumann1,D.H.Lumb2,G.W.Pratt1, and U. G. Briel3 1 CEA/DSM/DAPNIA Saclay, Service d’Astrophysique, L’Orme des Merisiers, Bˆat. 709, 91191 Gif-sur-Yvette, France 2 Science Payloads Technology Division, Research and Science Support Dept., ESTEC, Postbus 299 Keplerlaan 1, 2200AG Noordwijk, The Netherlands 3 Max-Planck Institut f¨ur extraterrestrische Physik, Giessenbachstr., 85740 Garching, Germany Received 19 June 2002 / Accepted 13 December 2002 Abstract. We present in this paper a substructure and spectroimaging study of the Coma cluster of galaxies based on XMM- Newton data. XMM-Newton performed a mosaic of observations of Coma to ensure a large coverage of the cluster. We add the different pointings together and fit elliptical beta-models to the data. We subtract the cluster models from the data and look for residuals, which can be interpreted as substructure. We find several significant structures: the well-known subgroup connected to NGC 4839 in the South-West of the cluster, and another substructure located between NGC 4839 and the centre of the Coma cluster. Constructing a hardness ratio image, which can be used as a temperature map, we see that in front of this new structure the temperature is significantly increased (higher or equal 10 keV). We interpret this temperature enhancement as the result of heating as this structure falls onto the Coma cluster. We furthermore reconfirm the filament-like structure South-East of the cluster centre. -
An Outline of Stellar Astrophysics with Problems and Solutions
An Outline of Stellar Astrophysics with Problems and Solutions Using Maple R and Mathematica R Robert Roseberry 2016 1 Contents 1 Introduction 5 2 Electromagnetic Radiation 7 2.1 Specific intensity, luminosity and flux density ............7 Problem 1: luminous flux (**) . .8 Problem 2: galaxy fluxes (*) . .8 Problem 3: radiative pressure (**) . .9 2.2 Magnitude ...................................9 Problem 4: magnitude (**) . 10 2.3 Colour ..................................... 11 Problem 5: Planck{Stefan-Boltzmann{Wien{colour (***) . 13 Problem 6: Planck graph (**) . 13 Problem 7: radio and visual luminosity and brightness (***) . 14 Problem 8: Sirius (*) . 15 2.4 Emission Mechanisms: Continuum Emission ............. 15 Problem 9: Orion (***) . 17 Problem 10: synchrotron (***) . 18 Problem 11: Crab (**) . 18 2.5 Emission Mechanisms: Line Emission ................. 19 Problem 12: line spectrum (*) . 20 2.6 Interference: Line Broadening, Scattering, and Zeeman splitting 21 Problem 13: natural broadening (**) . 21 Problem 14: Doppler broadening (*) . 22 Problem 15: Thomson Cross Section (**) . 23 Problem 16: Inverse Compton scattering (***) . 24 Problem 17: normal Zeeman splitting (**) . 25 3 Measuring Distance 26 3.1 Parallax .................................... 27 Problem 18: parallax (*) . 27 3.2 Doppler shifting ............................... 27 Problem 19: supernova distance (***) . 28 3.3 Spectroscopic parallax and Main Sequence fitting .......... 28 Problem 20: Main Sequence fitting (**) . 29 3.4 Standard candles ............................... 30 Video: supernova light curve . 30 Problem 21: Cepheid distance (*) . 30 3.5 Tully-Fisher relation ............................ 31 3.6 Lyman-break galaxies and the Hubble flow .............. 33 4 Transparent Gas: Interstellar Gas Clouds and the Atmospheres and Photospheres of Stars 35 2 4.1 Transfer equation and optical depth .................. 36 Problem 22: optical depth (**) . 37 4.2 Plane-parallel atmosphere, Eddington's approximation, and limb darkening .................................. -
And Ecclesiastical Cosmology
GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc. -
On Problems Related to Galaxy Formation
On Problems Related To Galaxy Formation Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Ahmed Hasan Abdullah aus Baghdad Bonn 2016 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. P. Kroupa 2. Gutachterin: Dr. Maria Massi Tag der Promotion: 11.04.2016 Erscheinungsjahr: 2016 To My Parents i Erklärung Hiermit versichere ich, die vorgelegte Arbeit - abgesehen von den ausdrücklich angegebenen Hilfsmit- teln -persönlich, selbstständig und ohne die Benutzung anderer als der angegebenen Hilfsmittel angefer- tigt zu haben. Die aus anderen Quellen direkt und indirekt verwendeten Daten und Konzepte sind unter der Angabe der Quelle kenntlich gemacht. Weder die vorgelegte Arbeit noch eine ähnliche Arbeit sind bereits anderweitig als Dissertation eingereicht worden und von mir wurden zuvor keine Promotionsver- suche unternommen. Für die Erstellung der vorgelegten Arbeit wurde keine fremde Hilfe, insbesondere keine entgeltliche Hilfe von Vermittlungs-, Beratungsdiensten oder Ähnlichem, in Anspruch genom- men. Bonn, den Ahmed Abdullah iii Acknowledgements I owe thanks to many people for their support and guidance which gave me a chance to complete this thesis. I am truly indebted and thankful for their support. First and foremost, I would like to express my deep and sincere gratitude to my advisor, Prof. Dr. Pavel Kroupa, for the continuous support of my study and research, and his motivation, encouragement and patient supervision. It was an honor to have a supervisor who was so patient and willing to help . I would also like to express my gratitude to Dr. -
An Astronomy Ubd for 8Th Grade Miguel Angel Webber [email protected]
Trinity University Digital Commons @ Trinity Understanding by Design: Complete Collection Understanding by Design 6-2019 Looking Up! What is our place in the universe? - An Astronomy UbD for 8th Grade Miguel Angel Webber [email protected] Follow this and additional works at: https://digitalcommons.trinity.edu/educ_understandings Repository Citation Webber, Miguel Angel, "Looking Up! What is our place in the universe? - An Astronomy UbD for 8th Grade" (2019). Understanding by Design: Complete Collection. 445. https://digitalcommons.trinity.edu/educ_understandings/445 This Instructional Material is brought to you for free and open access by the Understanding by Design at Digital Commons @ Trinity. For more information about this unie, please contact the author(s): [email protected]. For information about the series, including permissions, please contact the administrator: [email protected]. v 8GrSci Looking Up - What is our place in the universe? Unit Title Looking Up - What is our place in the universe? Course(s) 8th Grade Science Designed by Miguel Angel Webber Martinez Time Frame 17 Class Days: W1 August 26 - 30 (5) W2 September 3 - 6 (4) W3 September 9 - 13 (5) W4 September 16 - 18 (3) Stage 1- Desired Results Establish Goals 8th Grade Science TEKS ● 8.8A Describe components of the universe, including stars, nebulae, and galaxies. Use models such as the Hertzsprung-Russell diagram for classification. ● 8.8B Recognize that the Sun is a medium-sized star located in a spiral arm of the Milky Way galaxy, and that the Sun is many thousands of times closer to Earth than any other star. ● 8.8C Identify how different wavelengths of the electromagnetic spectrum, such as visible light and radio waves, are used to gain information about components in the universe. -
Astronomy 422
Astronomy 422 Lecture 15: Expansion and Large Scale Structure of the Universe Key concepts: Hubble Flow Clusters and Large scale structure Gravitational Lensing Sunyaev-Zeldovich Effect Expansion and age of the Universe • Slipher (1914) found that most 'spiral nebulae' were redshifted. • Hubble (1929): "Spiral nebulae" are • other galaxies. – Measured distances with Cepheids – Found V=H0d (Hubble's Law) • V is called recessional velocity, but redshift due to stretching of photons as Universe expands. • V=H0D is natural result of uniform expansion of the universe, and also provides a powerful distance determination method. • However, total observed redshift is due to expansion of the universe plus a galaxy's motion through space (peculiar motion). – For example, the Milky Way and M31 approaching each other at 119 km/s. • Hubble Flow : apparent motion of galaxies due to expansion of space. v ~ cz • Cosmological redshift: stretching of photon wavelength due to expansion of space. Recall relativistic Doppler shift: Thus, as long as H0 constant For z<<1 (OK within z ~ 0.1) What is H0? Main uncertainty is distance, though also galaxy peculiar motions play a role. Measurements now indicate H0 = 70.4 ± 1.4 (km/sec)/Mpc. Sometimes you will see For example, v=15,000 km/s => D=210 Mpc = 150 h-1 Mpc. Hubble time The Hubble time, th, is the time since Big Bang assuming a constant H0. How long ago was all of space at a single point? Consider a galaxy now at distance d from us, with recessional velocity v. At time th ago it was at our location For H0 = 71 km/s/Mpc Large scale structure of the universe • Density fluctuations evolve into structures we observe (galaxies, clusters etc.) • On scales > galaxies we talk about Large Scale Structure (LSS): – groups, clusters, filaments, walls, voids, superclusters • To map and quantify the LSS (and to compare with theoretical predictions), we use redshift surveys. -
Monthly Newsletter of the Durban Centre - March 2018
Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively. -
Identification and Study of Systems of Galaxies in The
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/41708749 Identification and study of systems of galaxies in the Shapley supercluster Article in Astronomy and Astrophysics · January 2006 DOI: 10.1051/0004-6361:20053623 CITATIONS READS 11 41 5 authors, including: Andreas Reisenegger Hernan Quintana Pontifical Catholic University of Chile Pontifical Catholic University of Chile 111 PUBLICATIONS 1,691 CITATIONS 226 PUBLICATIONS 5,059 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Abell and Group Galaxy Studies View project PUC Astronomy Group - Cluster of galaxies View project All content following this page was uploaded by Hernan Quintana on 20 July 2014. The user has requested enhancement of the downloaded file. A&A 445, 819–825 (2006) Astronomy DOI: 10.1051/0004-6361:20053623 & c ESO 2006 Astrophysics Identification and study of systems of galaxies in the Shapley supercluster C. J. Ragone1,2, H. Muriel1,2, D. Proust3, A. Reisenegger4, and H. Quintana4 1 Grupo de Investigaciones en Astronomía Teórica y Experimental, IATE, Observatorio Astronómico, Laprida 854, Córdoba, Argentina 2 Consejo de Investigaciones Científicas y Técnicas de la República Argentina e-mail: [cin;hernan]@oac.uncor.edu 3 GEPI, Observatoire de Paris-Meudon, 92195 Meudon Cedex, France e-mail: [email protected] 4 Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile e-mail: [areisene;hquintana]@astro.puc.cl Received 13 June 2005 / Accepted 7 September 2005 ABSTRACT Based on the largest compilation of galaxies with redshift in the region of the Shapley Supercluster (Proust et al. -
And Yet It Flips: Connecting Galactic Spin and the Cosmic
MNRAS 000,1–17 (2019) Preprint 5 June 2019 Compiled using MNRAS LATEX style file v3.0 And yet it flips: connecting galactic spin and the cosmic web Katarina Kraljic,1? Romeel Davé,1;2;3 and Christophe Pichon4;5 1 Institute for Astronomy, Royal Observatory, Edinburgh EH9 3HJ, United Kingdom 2 University of the Western Cape, Bellville, Cape Town 7535, South Africa 3 South African Astronomical Observatories, Observatory, Cape Town 7925, South Africa 4 Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France 5 Korea Institute for Advanced Study (KIAS), 85 Hoegiro, Dongdaemun-gu, Seoul, 02455, Republic of Korea Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We study the spin alignment of galaxies and halos with respect to filaments and walls of the cosmic web, identified with DISPERSE, using the SIMBA simulation from z = 0 − 2. Massive halos’ spins are oriented perpendicularly to their closest filament’s axis and walls, while low mass halos tend to have their spins parallel to filaments and in the plane of walls. A simi- lar mass-dependent spin flip is found for galaxies, albeit with a weaker signal particularly at low mass and low-z, suggesting that galaxies’ spins retain memory of their larger-scale en- vironment. Low-z star-forming and rotation-dominated galaxies tend to have spins parallel to nearby filaments, while quiescent and dispersion-dominated galaxies show preferentially perpendicular orientation; the star formation trend can be fully explained by the stellar mass correlation, but the morphology trend cannot. -
Milkomeda's Birthday
. o gahma-ray bursts hold secrets of the infant . ~~How,,astrono.mers? -.$ . .. : are finding out. g:& , g:& a&'" - . ' Bob Berman Master the How to create your on finding art of wide- own astronomy another Earth field imaging '..weather forecast p. 13 p. 66 - ,p. 64 > : I Ii. BILLIONS OF YEARS FROM bJW, ttp night sky will glow with stars, dust,.md psfrom two galaxies: the Milky Way, in ~Mchwe' live, and the *roaching Anqromeda Galaxy (M31). LYNE~TECOOKFOR ASTRONOMY / THE ANDROMEDA GALAXY (M31) is a typical spiral of stars, dust, and gas. Spiral galaxies the Sun's mass. It also suggests the Milky I dominate the night sky in the local universe. Fourteen satellite galaxies accompany / Andromeda, including the two visible in this image: M32 (above Andromeda) and NGC 205 Way and Andromeda \c.ill nialie a close pass : (below). Andromeda is the largest in the Local Group of galaxies. TONYANUDAPHNEHALLAS in about 4 billion years. Kahn and Woltjer inspired a generation and is visible in the northern sky with the effect. In contrast, most galaxies in the uni- of studies that further constrained the mass naked eye. The remaining members of the verse are flying away from the Milky Way. of the Local Group and revealed important Local Group - several dozen - are a bevy characteristics of Andromeda's orbit, such of much smaller satellite galaxies. Timing is everything as its total energy of motion. A galaxy group con~prisestwo or more Nearly 50 years ago, Franz Kahn and But the timing argument does not have relatively close, massive galaxies. -
Galaxies Through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars
Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Kasper Elm Heintz arXiv:1910.09849v1 [astro-ph.GA] 22 Oct 2019 Faculty of Physical Sciences University of Iceland 2019 Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Kasper Elm Heintz Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Physics PhD Committee Prof. Páll Jakobsson (supervisor) Assoc. Prof. Jesús Zavala Prof. Emeritus Einar H. Guðmundsson Opponents Prof. J. Xavier Prochaska Dr. Valentina D’Odorico Faculty of Physical Sciences School of Engineering and Natural Sciences University of Iceland Reykjavik, July 2019 Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Physics Copyright © Kasper Elm Heintz 2019 All rights reserved Faculty of Physical Sciences School of Engineering and Natural Sciences University of Iceland Dunhagi 107, Reykjavik Iceland Telephone: 525-4000 Bibliographic information: Kasper Elm Heintz, 2019, Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars, PhD disserta- tion, Faculty of Physical Sciences, University of Iceland, 71 pp. ISBN 978-9935-9473-3-8 Printing: Háskólaprent Reykjavik, Iceland, July 2019 Contents Abstract v Útdráttur vii Acknowledgments ix 1 Introduction 1 1.1 The nature of GRBs and quasars 1 1.1.1 GRB optical afterglows...................................2 1.1.2 Late-stage emission components associated with GRBs..............3 1.1.3 Quasar classification and selection............................4 1.1.4 GRBs and quasars as cosmic probes..........................5 1.2 Damped Lyman-α absorbers 7 1.2.1 Gas-phase abundances and kinematics........................ 10 1.2.2 The effect of dust.....................................