GC Derivatization Pierce 2003-2004 Applications Handbook & Catalog
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Porphyrin Carbene Complexes: (5,10,15,20-Tetra-P-Tolylporphyrinato )
Chemistry Publications Chemistry 8-1994 Properties and Molecular Structures of Osmium(ll) Porphyrin Carbene Complexes: (5,10,15,20-Tetra-p-tolylporphyrinato )osmium Di-p-tolylmethylidene and (5,10,15,20-Tetra-p- tolylporphyrinato)osmium (Trimethylsilyl)methylidene Jean-Pierre Djukic Iowa State University Daniel A. Smith Iowa State University Victor G. Young Jr. Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs L. Keith Woo IowaP Satrate of U ntheiversitCyhe, kmiwoo@istryas Ctaommonte.edu s The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ chem_pubs/727. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Properties and Molecular Structures of Osmium(ll) Porphyrin Carbene Complexes: (5,10,15,20-Tetra-p-tolylporphyrinato )osmium Di-p- tolylmethylidene and (5,10,15,20-Tetra-p-tolylporphyrinato)osmium (Trimethylsilyl)methylidene Abstract The first molecular structures of two (porphyrinato)osmium(II) alkylidene complexes are described. The carbene fragments of (5,10,15,20-tetra-p-tolylporphyrinato)osmium (trimethylsilyl) methylidene (1) and (5,10,15,20-tetra-p-tolylporphyrinato)osmium di-p-tolylmethylidene (2) adopt different conformations in the solid state. With respect to the porphyrin ring nitrogen atoms, a staggered conformation is found for the complex 1 carbene moiety (dos-e = 1. -
Cyanosilylation of Aldehydes Catalyzed by Ag(I)- and Cu(II)-Arylhydrazone Coordination Polymers in Conventional and in Ionic Liquid Media
catalysts Article Cyanosilylation of Aldehydes Catalyzed by Ag(I)- and Cu(II)-Arylhydrazone Coordination Polymers in Conventional and in Ionic Liquid Media Gonçalo A. O. Tiago 1, Kamran T. Mahmudov 1,2,*, M. Fátima C. Guedes da Silva 1,* , Ana P. C. Ribeiro 1,* , Luís C. Branco 3, Fedor I. Zubkov 4 and Armando J. L. Pombeiro 1 1 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisboa, Portugal; [email protected] (G.A.O.T.); [email protected] (A.J.L.P.) 2 Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan 3 LAQV-REQUINTE, Departamento de Química, Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; [email protected] 4 Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian; [email protected] * Correspondence: [email protected] or [email protected] (K.T.M.); [email protected] (M.F.C.G.d.S.); [email protected] (A.P.C.R.) Received: 22 February 2019; Accepted: 15 March 2019; Published: 20 March 2019 0 Abstract: The novel Ag(I) and Cu(II) coordination polymers [Ag(m3-1κO;2:3κO ;4κN-HL)]n·n/2H2O(1) − and [Cu(en)2(m-1κO;2κN-L)]n·nH2O(2) [HL = 2-(2-(1-cyano-2-oxopropylidene)hydrazinyl)benzene sulfonate] were synthesized and characterized by IR and ESI-MS spectroscopies, elemental and single crystal X-ray diffraction analyses. -
Trimethylsilyl Trifluoromethanesulfonate-Mediated Additions to Acetals, Nitrones, and Aminals Chelsea Safran
University of Richmond UR Scholarship Repository Honors Theses Student Research 4-1-2013 Trimethylsilyl trifluoromethanesulfonate-mediated additions to acetals, nitrones, and aminals Chelsea Safran Follow this and additional works at: http://scholarship.richmond.edu/honors-theses Recommended Citation Safran, Chelsea, "Trimethylsilyl trifluoromethanesulfonate-mediated additions to acetals, nitrones, and aminals" (2013). Honors Theses. Paper 71. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. Trimethylsilyl trifluoromethanesulfonate-mediated additions to acetals, nitrones, and aminals By Chelsea Safran Honors Thesis In Program In Biochemistry and Molecular Biology University of Richmond Richmond, VA Spring 2012 Advisor: Dr. C. Wade Downey This thesis has been accepted as part of the honors requirements in the Program in Biochemistry and Molecular Biology ______________________________ _________________ (advisor signature) (date) ______________________________ _________________ (reader signature) (date) Table of Contents i. Acknowledgements ii ii. Abstract iii iii. Chapter I: Introduction 1-4 iv. Chapter II: Amides 4-15 v. Chapter III: I. Bisthione Synthesis 16-18 II. Reactions with other N,O-acetals 18-22 vi. Chapter IV: I. Additions to Nitrones 22-25 II. Future Work 25 vii. Chapter V: Experimental I. N,O-acetal Formation 25-28 II. Addition to Nitrones 28-29 viii. Chapter VI: References 30 i Acknowledgments I would like to acknowledge my research Dr. Wade Downey for all of his time and dedication to my research for the past two years. -
Divergent Enantioselective Synthesis of Hapalindole-Type Alkaloids Using Catalytic Cite This: Chem
Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Divergent enantioselective synthesis of hapalindole-type alkaloids using catalytic Cite this: Chem. Sci.,2016,7,4725 asymmetric hydrogenation of a ketone to construct the chiral core structure† Yang Liu,‡a Li-Jie Cheng,‡a Hai-Tao Yue,a Wen Che,a Jian-Hua Xie*a and Qi-Lin Zhouab A divergent enantioselective approach to hapalindole-type alkaloids is described. The route features a ruthenium-catalyzed asymmetric hydrogenation of a ketone via DKR to construct the chiral trans-1- indolyl-2-isopropenylcyclohexane skeleton and a switchable sequence of methylation and acetylation/ aldol reaction to access a chiral quaternary stereocenter. (+)-Hapalindole Q (1, 13 steps, 5.9% overall Received 15th February 2016 yield), (À)-12-epi-hapalindole Q isonitrile (2, 15 steps, 5.5% overall yield), (À)-hapalindole D (3, 14 steps, Accepted 12th April 2016 2.3% overall yield), and (+)-12-epi-fischerindole U isothiocyanate (4, 14 steps, 3.0% overall yield) were Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/c6sc00686h synthesized in 13–15 steps from a commercially available material to demonstrate the application of this www.rsc.org/chemicalscience approach. Introduction (+)-p-menth-1-en-9-ol.3,5f However, only one catalytic enantiose- lective synthesis of a hapalindole-type alkaloid has been re- 7 Owing to the unique and diverse molecular architectures of ported: Kinsman and Kerr used an organocatalyzed hapalindole-type alkaloids and their broad range of biological asymmetric Diels–Alder reaction as a key step in the synthesis of activities, they have recently attracted great interest as synthetic (+)-hapalindole Q (1). -
Arenechromium Tricarbonyl Complexes: Conformational
η6 – ARENECHROMIUM TRICARBONYL COMPLEXES: CONFORMATIONAL ANALYSIS, STEREOCONTROL IN NUCLEOPHILIC ADDITION AND APPLICATIONS IN ORGANIC SYNTHESIS by HARINANDINI PARAMAHAMSAN Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Prof. Anthony J. Pearson Department of Chemistry CASE WESTERN RESERVE UNIVERSITY May 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Harinandini Paramahamsan candidate for the Ph.D. degree*. (signed) Prof. Philip P. Garner (Chair of the Committee, Department of Chemistry, CWRU) Prof. Anthony J. Pearson (Department of Chemistry, CWRU) Prof. Fred L. Urbach (Department of Chemistry, CWRU) Dr. Zwong-Wu Guo (Department of Chemistry, CWRU) Dr. Stuart J. Rowan (Department of Macromolecular Science and Engineering, CWRU) Date: 14th January 2005 *We also certify that written approval has been obtained for any propriety material contained therein. To Amma, Naina & all my Teachers Table of Contents List of Tables………………………………………………………………………..……iv List of Figures…………………………………………………………………….…........vi List of Schemes…………………………………………………………………….….….ix List of Equations………………………………………………………...……….……….xi Acknowledgements………………………………………………………….…..……….xii List of Abbreviations……………………………………………………………………xiv Abstract………………………………………………………………………………….xvi CHAPTER I........................................................................................................................ 1 I.1 Structure and Bonding ........................................................................................... -
Basic Principles and Analytical Application of Derivative Spectrophotometry
13 Basic Principles and Analytical Application of Derivative Spectrophotometry Joanna Karpinska Institute of Chemistry, University of Bialystok, Bialystok Poland 1. Introduction Analytical methods based on measurements of UV or visible light absorption belong to the most popular and most often used in laboratory practice. Commercially available apparatuses are cheap and easy for operation. Spectrophotometric procedures usually are not time- and labour-consuming. The economical aspects of UV-Vis techniques is worth of emphasize too. It is one of the cheapest technique, so spectrophotometers are basic equipment of every laboratory. The main disadvantage and limitation of the spectrophotometry is its low selectivity. The measurement of absorbance is burden by interferences derived from others components of sample. A recorded UV-Vis spectrum is the sum of absorbances of analyte and matrix. Usually, recorded bands are well-defined but more or less distorted by a background. As the background is called absorbance exhibited by matrix (reagents or accompanied compounds). The problem with specific or nonspecific background can be omitted by measurements versus blank. Such procedure can be successfully applied only in the case of simple samples, which composition is stable and well known or when highly selective reagents are used. An isolation of an analyte from matrix is another solution for increasing the selectivity of assay. But every additional operation introduced into sample preparation procedure extents time and costs of single analysis and increases risk of loss or contamination of the analyte. One of the simplest method for an increasing a selectivity is derivatisation of spectra. This operation allows to remove spectral interferences and as a consequence leads to increase selectivity of assay. -
Nomenclature of Carboxylic Acids • Select the Longest Carbon Chain Containing the Carboxyl Group
Chapter 5 Carboxylic Acids and Esters Carboxylic Acids • Carboxylic acids are weak organic acids which Chapter 5 contain the carboxyl group (RCO2H): Carboxylic Acids and Esters O C O H O RCOOH RCO2H Chapter Objectives: O condensed ways of • Learn to recognize the carboxylic acid, ester, and related functional groups. RCOH writing the carboxyl • Learn the IUPAC system for naming carboxylic acids and esters. group a carboxylic acid C H • Learn the important physical properties of the carboxylic acids and esters. • Learn the major chemical reaction of carboxylic acids and esters, and learn how to O predict the products of ester synthesis and hydrolysis reactions. the carboxyl group • Learn some of the important properties of condensation polymers, especially the polyesters. Mr. Kevin A. Boudreaux • The tart flavor of sour-tasting foods is often caused Angelo State University CHEM 2353 Fundamentals of Organic Chemistry by the presence of carboxylic acids. Organic and Biochemistry for Today (Seager & Slabaugh) www.angelo.edu/faculty/kboudrea 2 Nomenclature of Carboxylic Acids • Select the longest carbon chain containing the carboxyl group. The -e ending of the parent alkane name is replaced by the suffix -oic acid. • The carboxyl carbon is always numbered “1” but the number is not included in the name. • Name the substituents attached to the chain in the Nomenclature of usual way. • Aromatic carboxylic acids (i.e., with a CO2H Carboxylic Acids directly connected to a benzene ring) are named after the parent compound, benzoic acid. O C OH 3 -
Functional Group Transformations in Derivatives Of
Article pubs.acs.org/joc Functional Group Transformations in Derivatives of 1,4- Dihydrobenzo[1,2,4]triazinyl Radical † § † ∥ † ‡ † ⊥ Agnieszka Bodzioch, , Minyan Zheng, , Piotr Kaszynski,́ *, , and Greta Utecht , † Organic Materials Research Group Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States ‡ Faculty of Chemistry, University of Łodź,́ Tamka 12, 91403 Łodź,́ Poland *S Supporting Information ABSTRACT: Transformations of functional groups OCOPh, ’ − OCH2Ph, I, NO2, and CO2Me in Blatter s radical derivatives 1 5 were investigated in order to develop synthetic tools for incorporation of the benzo[1,2,4]triazinyl system into complex molecular architectures. Thus, basic hydrolysis of OCOPh or Pd-catalyzed debenzylation of OCH2Ph gave phenol functionality, which was acylated and alkylated. Pd-catalyzed Suzuki, Negishi, Sonogashira, and Heck C−C cross-coupling reactions of iodo derivatives 1c, 1d, and 2d ffi were also successful and e cient. Reduction of NO2 in 1e led to aniline derivative 1t, which was reductively alkylated with hexanal and coupled to L-proline. Selected benzo[1,2,4]triazinyl radicals were characterized by EPR and electronic absorption spectroscopy, and the results were analyzed in tandem with DFT computational methods. Lastly, the mechanism for formation of the 1,4- dihydrobenzo[1,2,4]triazine ring was investigated using the B3LYP/6-31G(2d,p) method. ■ INTRODUCTION little attention, and only a handful of derivatives have been Stable π-delocalized radicals are becoming important structural reported in the literature. This situation changed several years elements of materials for solar cells,1 energy storage,2 ago when Koutentis began systematic development of synthetic − electronic,3,4 and biological5 8 applications.9,10 Their incorpo- access to this class of radicals. -
Total Synthesis of Aspeverin and Penicimutamide a Part Ii
PART I: TOTAL SYNTHESIS OF ASPEVERIN AND PENICIMUTAMIDE A PART II: TOTAL CHEMICAL SYNTHESIS OF ALL-L AND ALL-D KRAS(G12V) AND THE FURTHER EXPLORATION OF ISONITRILE- MEDIATED PEPTIDE LIGATIONS A Dissertation Presented to the Faculty of the Weill Cornell Graduate School of Medical Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Adam M. Levinson January 2017 © Adam M. Levinson 2016 PART I: TOTAL SYNTHESIS OF ASPEVERIN AND PENICIMUTAMIDE A PART II: TOTAL CHEMICAL SYNTHESIS AND FOLDING OF ALL-L AND ALL-D KRAS(G12V) AND THE FURTHER EXPLORATION OF ISONITRILE- MEDIATED PEPTIDE LIGATIONS Adam M. Levinson Cornell University 2016 Part I: Fungi serve as a rich source of prenylated indole alkaloids, which exhibit important biological activities including antiproliferative, antibiotic, and antihelminthic properties. Their promise as therapeutics, coupled with their diverse and complex molecular architectures, have made prenylated indole alkaloids popular targets for synthetic chemists in order to probe their activities and develop new synthetic methods. Herein, we describe the first total synthesis of aspeverin, a unique bridged carbamate-containing prenylated indole alkaloid isolated from Aspergillus versicolor. We also describe the synthesis of a closely related congener, penicimutamide A, isolated from a mutant strain of Penicillium purpurogenum. These molecules belong to a recently described subclass of prenylated indoles thought to be degradation products of parent bicyclo[2.2.2]diazaoctane congeners. In this research, we showcase a highly diastereoselective Diels−Alder cycloaddition, followed by an electrophilic Rawal arylation – reductive indolization to forge the pentacyclic scaffold of these natural products. A novel sequence for installation of a geminal dimethyl group was also developed. -
Metabolic Profiling of Primary Metabolites and Galantamine
plants Article Metabolic Profiling of Primary Metabolites and Galantamine Biosynthesis in Wounded Lycoris radiata Callus 1, 1, 2, 3 Chang Ha Park y, Ramaraj Sathasivam y , Bao Van Nguyen y, Seung-A Baek , Hyeon Ji Yeo 1, Ye Eun Park 1, Haeng Hoon Kim 4 , Jae Kwang Kim 3,* and Sang Un Park 1,2,* 1 Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea; [email protected] (C.H.P.); [email protected] (R.S.); [email protected] (H.J.Y.); [email protected] (Y.E.P.) 2 Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea; [email protected] 3 Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsugu, Incheon 22012, Korea; [email protected] 4 Department of Well-being Resources, Sunchon National University, Suncheon 57922, Korea; [email protected] * Correspondence: [email protected] (J.K.K.); [email protected] (S.U.P.); Tel.: +82-32-835-8241 (J.K.K.); +82-42-821-5730 (S.U.P.); Fax: +82-32-835-0763 (J.K.K.); +82-42-822-2631 (S.U.P.) Chang Ha Park, Ramaraj Sathasivam, and Bao Van Nguyen contributed equally to this work. y Received: 16 October 2020; Accepted: 18 November 2020; Published: 20 November 2020 Abstract: Plants are continuously exposed to abiotic and biotic factors that lead to wounding stress. Different plants exhibit diverse defense mechanisms through which various important metabolites are synthesized. Humans can exploit these mechanisms to improve the efficacy of existing drugs and to develop new ones. -
A Binuclear Ruthenium(I) Carbonyl Complex Containing a Bridging Benzene-1,2-Dithiolate Ligand
FULL PAPER Derivative Chemistry of [Ru2(µ-bdt)(CO)6], a Binuclear Ruthenium(I) Carbonyl Complex Containing a Bridging Benzene-1,2-dithiolate Ligand Javier A. Cabeza,*[a] M. Angeles Martı´nez-Garcı´a,[a] Vı´ctor Riera,[a] Diego Ardura,[b] Santiago Garcı´a-Granda,[b] and Juan F. Van der Maelen[b] Keywords: Ruthenium / Thiolate ligands / Dithiolate ligands / Substitution reactions / Electrophilic additions The known dithiolate-bridged ruthenium(I) complex [Ru2(µ- bdt)(CO)4}(µ-dppm)]n, which consists of binuclear {Ru2(µ- bdt)(CO)6](1) (bdt = benzene-1,2-dithiolate) has been bdt)(CO)4} units linked to each other by bridging dppm prepared in fair yield (55%) by the sequential treatment of ligands. The use of two equivalents of dppm leads to [Ru2(µ- 1 RuCl3·nH2O with carbon monoxide, benzene-1,2-dithiol and bdt)(CO)4(η -dppm)2] in quantitative yield. The X-ray zinc in a one-pot reaction. Complex 1 reacts readily with diffraction structure of [Ru2(µ-bdt)(CO)4(PiPr3)2](3c) confirms monodentate phosphanes to give, stepwise, the penta- and that the phosphane ligands are located in axial positions, cis tetracarbonyl derivatives [Ru2(µ-bdt)(CO)6–n(PR3)n](n= 1, 2; to both sulfur atoms, and that the Ru–Ru distance is short R = Ph, Cy, iPr). However, the reaction of 1 with one [2.6753(7) A˚ ]. A comparative study of the reactivity of + + equivalent of bis(diphenylphosphanyl)methane (dppm) complexes 1 and 3c with the electrophiles H , [Au(PPh3)] , affords a mixture of complex 1 and the disubstituted and HgCl2 has allowed the isolation of the derivatives [Ru2(µ- 1 derivative [Ru2(µ-bdt)(CO)4(η -dppm)2], in which the dppm H)(µ-bdt)(CO)6–n(PiPr3)n][BF4](n= 0, 2), [Ru2Au(µ-bdt)(CO)6–n- ligands are monodentate. -
A Review of Organosilanes in Organic Chemistry
A Review of Organosilanes in Organic Chemistry • Silyl Protecting and Derivatisation Reagents • Organosilanes as Reducing Agents • Silanes in Cross-coupling Chemistry • Allylsilanes Used to Stabilize α-Carbanions and β-Carbocations INTRODUCTION Organosilanes have varied uses in organic chemistry from the most frequently employed protecting groups to intermediates in organic synthesis. The Acros Organics portfolio of organosilanes is continuously expanding to meet your chemistry needs. In this brochure you will find an overview of four of the most important applications of organosilanes: • Silyl Protecting and Derivatisation Reagents 1, 2 • Organosilanes as Reducing Agents 3 • Silanes in Cross-coupling Chemistry 4 • Allylsilanes Used to Stabilize α-Carbanions and β-Carbocations4 Silyl Protecting and Derivatisation Reagents Silicon protecting groups are probably the most frequently employed of all protecting groups, and modern natural product synthesis is inconceivable without them.5 Silylating agents are mostly used to protect alcohols and phenols, but have also found application in the protection of amines, carboxylic acids, amides, thiols and alkynes. By varying the substituents attached to silicon, the steric and electronic characteristics of the protecting group can be finely tuned, allowing a wide variety of both reaction and deprotection conditions. The leaving group also plays an important role in the reactivity and use of silylating reagents. Whilst chlorotrimethylsilane [product code: 42643] liberates hydrogen chloride on reaction,