Part 4: Meromorphic Functions and Residues

Total Page:16

File Type:pdf, Size:1020Kb

Part 4: Meromorphic Functions and Residues COMPLEX ANALYSIS PART 4: MEROMORPHIC FUNCTIONS AND RESIDUES Q What are we going to discuss today ? A Before starting a new topic, let us recall what we did so far. Can you briefly describe this in your own words, sparing all details ? Q Why do we have to review at this moment? I am eager to learn new things. A In math, new things are often developed from old ones. Other subjects such as physics are all alike in this respect. To understand Einstein’s relativity theory, you have to know Newton’s mechanics. Besides, learning a math subject is like taking a long journey. From time to time we have to recall the places we have passed in order to find out where we are, to avoid being completely lost. Q I’m afraid that I can’t remember everything correctly. A Give a try. You may consult your notes if necessary. But don’t look up the notes without giving a try. In doing this, conduct a self-evaluation to see how well you can visualize the big picture. Q OK. let me go through this briefly. We begin with basics of complex numbers. Then we move to complex functions and we define a function to be analytic if it is complex differentiable at each point of its domain. This leads to CR-equations, which can be simply put as ∂f/∂z¯ = 0. Then we introduce contour integrals and we use Green’s formula to prove Cauchy’s theorem, which says Z f(z) dz = 0 ∂D for an analytic function f in a suitable set-up. This theorem is used to establish Cauchy’s integral formula, which says Z 1 f(w) f(z0) = dw (z0 ∈ D) (1) 2πi C w − z0 1 for an analytic function in an appropriate set-up. Then we use this formula to deduce several important properties of analytic functions, such as the existence of power series expansion at each point. A You are doing pretty well. Can you elaborate power series expansions a bit? Q It says that if f is an analytic function with an open set U as its domain, and if z0 is a point in U, then we can write 2 f(z) = a0 + a1(z − z0) + a2(z − z0) + ··· , (2) where the series on the right hand side converges uniformly to f(z) on any closed disk D¯(z0; R) contained in U centered at z0. Here the coefficients an can be described in two ways: (n) Z f (z0) 1 f(w) an = , and an = n+1 dw. (3) n! 2πi |w−z0|=R (w − z0) Here I simply write “|z − z0| = R” for the circle Cz0;R ≡ ∂D(z0; R) oriented in the counterclockwise manner. (n) A What happens if all derivatives f (z0) at z0, imcluding n = 0, vanish? Q In that case the above power series vanishes and hence f is zero on the entire disk D(z0; R). A This is rather amazing: what happens at a point z0 can affect the entire neighborhood D¯(z0; R). Actually, more is true: it can affect the whole domain U as long as U is connected. Let me make this precise: if f is an analytic function on a connected open set U and if (n) f (z0) = 0 (n = 0, 1, 2,... ) at some point z0 ∈ U, then f is a zero function: f ≡ 0. Q How do you prove this? A Take any point z1 in U. We have to show f(z1) = 0. Because U is connected, we can link up z0 and z1 by a curve C. Due to a topological consideration, we know that there is a positive number R > 0 such that |z − w| > R for all z on C and all w not in U. Another topological consideration allows us to find a finite sequence of open disks D(c1; R),D(c2; R),...,D(cN ; R) 2 of radius R such that c1 = z0, cN = z1 and |ck − ck+1| < R (1 ≤ k ≤ N − 1), that is, each disk contains the center of the next disk. We have seen that f vanishes on (n) the first disk D(c1; R) because c1 = z0 and f (z0) = 0 (n ≥ 0) by our assumption. (n) Since c2 belongs to D(c1; R) and since f vanishes on D(c1; R), we have f (c2) = 0 (n ≥ 0) and consequently f vanishes on D(c2; R). This argument shows in general that the property “f vanishes on D(ck; R)” passes on to the next disk. Now you can see why f(z1) ≡ f(cN ) = 0. Q From now on let us assume that f is not identically zero. Thus, in the power series expansion, there is at least one n such that an 6= 0. Now, what can we say about the local behavior of f at z0? A Let N be the smallest integer such that aN 6= 0. Thus we have N N+1 N f(z) = aN (z − z0) + aN+1(z − z0) + ··· = (z − z0) F (z) where F (z) = aN + aN+1(z − z0) + ··· with F (z0) = aN 6= 0. When N ≥ 1, we call z0 a zero of f and N the order of this zero. If f is a polynomial, then of course z0 in this case is a root of f and N is the multiplicity of this root. N From the expression (z − z0) F (z) we know that the zero z0 is isolated: there is a neighborhood N of z0 such that z0 is the only zero of f in N . Q Let me try to prove this. Since F (z0) = aN 6= 0, by the continuity of F we know that there is a neighborhood N on which F never vanishes. WE are going to show that z0 is the only zero of f in N as follows. Suppose that z1 ∈ N is a zero of f in N . Then N (z1 − z0) F (z1) = f(z1) = 0 N but F (z1) 6= 0. Hence (z1 − z0) = 0, which gives z1 = z0. A Good. Next we consider the reciprocal 1/f. What is its local behavior at z = z0? N Let us write f(z) = (z − z0) F (z) again, assuming N ≥ 1 and F does not vanish at any point in a neighborhood N of z0. (We may assume that N is an open disk, say N = D(z0; r).) Now 1/F is an analytic near z0 and hence we have a power series P∞ k expansion of 1/F at z − z0, say 1/F (z) = k=0 bk(z − z0) . Thus X∞ X 1 1 1 k−N n = N = bk(z − z0) = cn(z − z0) , f(z) (z − z0) F (z) k=0 n≥−N 3 where cn = bk in case k − N = n, or cn = bn+N . Q What are you going to do next? P n A Next, I split the sum n≥−N cn(z − z0) into two parts. The first part is a sum of partial fractions: X−1 n c−N c2 c−1 cn(z − z0) ≡ N + ··· + 2 + . (4) n=−N (z − z0) (z − z0) z − z0 P∞ n It is called the principal part. The second part is h(z) ≡ n=0 cn(z − z0) , which represents an analytic function defined on a neighborhood of z0. (Our discussion here can be repeated in the future for a meromorphic function with z0 as a pole.) Q Suppose that, instead of 1/f, we have g/f, where g is another analytic function defined on U. What happens? N M A We write down f(z) = (z−z0) F (z) again. Similarly, we write g(z) = (z−z0) G(z), where G(z0) 6= 0. Then we have g(z) G(z) = (z − z )M−N . f(z) 0 F (z) When M ≥ N, g/f is analytic at z0. When M < N, we can repeat the above discussion ... Q I know how to handle the rest. A Now let us entertain a general situation. Assume that f is a function analytic on U, except at some isolated points called singularities. Let z0 be a point of singularity for f. That z0 is isolated means that we can take a disk D(z0; R) centered at this point so that f is analytic at each point of this disk except its center z0. In a neighborhood of this singularity, we can express f by a Laurent series: X n f(z) = an(z − z0) ≡ −∞<n<∞ (5) −2 2 ··· + a−2(z − z0) + a−1(z − z0) + a0 + a1(z − z0) + a2(z − z0) + ··· which converges uniformly in an annulus {z : δ ≤ |z| ≤ R}, where δ is any positive number less than R. Q How do you prove (5)? 4 A Laurent series expansions generalize power series expansions. So you expect that the proof is similar. Alas, this is not quite the case. The first step is to guess what an in (5) are. For power series expansion at a regular point (a point is regular if it is not a singularity) we have two ways to put an: see (2) and (3) above. (2) is no good for (n) the present situation because z0 is a singularity of f and hence f (z0) does not make sense. So we guess an is given by (3). This is a correct guess. From this we can start the proof. But we are not planning to do here because it is a bit technical, and not suitable for our conversation.
Recommended publications
  • Complex Analysis
    Complex Analysis Andrew Kobin Fall 2010 Contents Contents Contents 0 Introduction 1 1 The Complex Plane 2 1.1 A Formal View of Complex Numbers . .2 1.2 Properties of Complex Numbers . .4 1.3 Subsets of the Complex Plane . .5 2 Complex-Valued Functions 7 2.1 Functions and Limits . .7 2.2 Infinite Series . 10 2.3 Exponential and Logarithmic Functions . 11 2.4 Trigonometric Functions . 14 3 Calculus in the Complex Plane 16 3.1 Line Integrals . 16 3.2 Differentiability . 19 3.3 Power Series . 23 3.4 Cauchy's Theorem . 25 3.5 Cauchy's Integral Formula . 27 3.6 Analytic Functions . 30 3.7 Harmonic Functions . 33 3.8 The Maximum Principle . 36 4 Meromorphic Functions and Singularities 37 4.1 Laurent Series . 37 4.2 Isolated Singularities . 40 4.3 The Residue Theorem . 42 4.4 Some Fourier Analysis . 45 4.5 The Argument Principle . 46 5 Complex Mappings 47 5.1 M¨obiusTransformations . 47 5.2 Conformal Mappings . 47 5.3 The Riemann Mapping Theorem . 47 6 Riemann Surfaces 48 6.1 Holomorphic and Meromorphic Maps . 48 6.2 Covering Spaces . 52 7 Elliptic Functions 55 7.1 Elliptic Functions . 55 7.2 Elliptic Curves . 61 7.3 The Classical Jacobian . 67 7.4 Jacobians of Higher Genus Curves . 72 i 0 Introduction 0 Introduction These notes come from a semester course on complex analysis taught by Dr. Richard Carmichael at Wake Forest University during the fall of 2010. The main topics covered include Complex numbers and their properties Complex-valued functions Line integrals Derivatives and power series Cauchy's Integral Formula Singularities and the Residue Theorem The primary reference for the course and throughout these notes is Fisher's Complex Vari- ables, 2nd edition.
    [Show full text]
  • Zeros of Differential Polynomials in Real Meromorphic Functions
    Zeros of differential polynomials in real meromorphic functions Walter Bergweiler∗, Alex Eremenko† and Jim Langley June 30, 2004 Abstract We investigate when differential polynomials in real transcendental meromorphic functions have non-real zeros. For example, we show that if g is a real transcendental meromorphic function, c R 0 n ∈ \{ } and n 3 is an integer, then g0g c has infinitely many non-real zeros.≥ If g has only finitely many poles,− then this holds for n 2. Related results for rational functions g are also considered. ≥ 1 Introduction and results Our starting point is the following result due to Sheil-Small [15] which solved a longstanding conjecture. 2 Theorem A Let f be a real polynomial of degree d. Then f 0 + f has at least d 1 distinct non-real zeros which are not zeros of f . − In the special case that f has only real roots this theorem is due to Pr¨ufer [14, Ch. V, 182]; see [15] for further discussion of the result. The following Theorem B is an analogue of Theorem A for transcendental meromorphic functions. Here “meromorphic” will mean “meromorphic in the complex plane” unless explicitly stated otherwise. A meromorphic function is called real if it maps the real axis R to R . ∪{∞} ∗Supported by the German-Israeli Foundation for Scientific Research and Development (G.I.F.), grant no. G-643-117.6/1999 †Supported by NSF grants DMS-0100512 and DMS-0244421. 1 Theorem B Let f be a real transcendental meromorphic function with 2 finitely many poles. Then f 0 + f has infinitely many non-real zeros which are not zeros of f .
    [Show full text]
  • Notes on Riemann's Zeta Function
    NOTES ON RIEMANN’S ZETA FUNCTION DRAGAN MILICIˇ C´ 1. Gamma function 1.1. Definition of the Gamma function. The integral ∞ Γ(z)= tz−1e−tdt Z0 is well-defined and defines a holomorphic function in the right half-plane {z ∈ C | Re z > 0}. This function is Euler’s Gamma function. First, by integration by parts ∞ ∞ ∞ Γ(z +1)= tze−tdt = −tze−t + z tz−1e−t dt = zΓ(z) Z0 0 Z0 for any z in the right half-plane. In particular, for any positive integer n, we have Γ(n) = (n − 1)Γ(n − 1)=(n − 1)!Γ(1). On the other hand, ∞ ∞ Γ(1) = e−tdt = −e−t = 1; Z0 0 and we have the following result. 1.1.1. Lemma. Γ(n) = (n − 1)! for any n ∈ Z. Therefore, we can view the Gamma function as a extension of the factorial. 1.2. Meromorphic continuation. Now we want to show that Γ extends to a meromorphic function in C. We start with a technical lemma. Z ∞ 1.2.1. Lemma. Let cn, n ∈ +, be complex numbers such such that n=0 |cn| converges. Let P S = {−n | n ∈ Z+ and cn 6=0}. Then ∞ c f(z)= n z + n n=0 X converges absolutely for z ∈ C − S and uniformly on bounded subsets of C − S. The function f is a meromorphic function on C with simple poles at the points in S and Res(f, −n)= cn for any −n ∈ S. 1 2 D. MILICIˇ C´ Proof. Clearly, if |z| < R, we have |z + n| ≥ |n − R| for all n ≥ R.
    [Show full text]
  • 4. Complex Analysis, Rational and Meromorphic Asymptotics
    ANALYTIC COMBINATORICS P A R T T W O 4. Complex Analysis, Rational and Meromorphic Asymptotics http://ac.cs.princeton.edu ANALYTIC COMBINATORICS P A R T T W O 4. Complex Analysis, Rational and Meromorphic functions Analytic Combinatorics •Roadmap Philippe Flajolet and •Complex functions Robert Sedgewick OF •Rational functions •Analytic functions and complex integration CAMBRIDGE •Meromorphic functions http://ac.cs.princeton.edu II.4a.CARM.Roadmap Analytic combinatorics overview specification A. SYMBOLIC METHOD 1. OGFs 2. EGFs GF equation 3. MGFs B. COMPLEX ASYMPTOTICS SYMBOLIC METHOD asymptotic ⬅ 4. Rational & Meromorphic estimate 5. Applications of R&M COMPLEX ASYMPTOTICS 6. Singularity Analysis desired 7. Applications of SA result ! 8. Saddle point 3 Starting point The symbolic method supplies generating functions that vary widely in nature. − + √ + + + ...+ − ()= ()= − ()= ()= ... − − − − − − ()= ()= ln + / ( )( ) ...( ) ()= − − − − − Next step: Derive asymptotic estimates of coefficients. − []() [ ]() [ ]() + [ ]()=β ∼ ∼ ∼ (ln ) / √ / / − − − [ ]() [ ]()=ln [ ]() ∼ ! ∼ √ Classical approach: Develop explicit expressions for coefficients, then approximate Analytic combinatorics approach: Direct approximations. 4 Starting point Catalan trees Derangements Construction G = ○ × SEQ( G ) Construction D = SET (CYC>1( Z )) ln ()= ()= − OGF equation () EGF equation − − + √ − Explicit form of OGF Explicit form of EGF = ()= − − ( ) Expansion ()= ( ) Expansion ()= − − − ! " #
    [Show full text]
  • Lecture 8 - the Extended Complex Plane Cˆ, Rational Functions, M¨Obius Transformations
    Math 207 - Spring '17 - Fran¸coisMonard 1 Lecture 8 - The extended complex plane C^, rational functions, M¨obius transformations Material: [G]. [SS, Ch.3 Sec. 3] 1 The purpose of this lecture is to \compactify" C by adjoining to it a point at infinity , and to extend to concept of analyticity there. Let us first define: a neighborhood of infinity U is the complement of a closed, bounded set. A \basis of neighborhoods" is given by complements of closed disks of the form Uz0,ρ = C − Dρ(z0) = fjz − z0j > ρg; z0 2 C; ρ > 0: Definition 1. For U a nbhd of 1, the function f : U ! C has a limit at infinity iff there exists L 2 C such that for every " > 0, there exists R > 0 such that for any jzj > R, we have jf(z)−Lj < ". 1 We write limz!1 f(z) = L. Equivalently, limz!1 f(z) = L if and only if limz!0 f z = L. With this concept, the algebraic limit rules hold in the same way that they hold at finite points when limits are finite. 1 Example 1. • limz!1 z = 0. z2+1 1 • limz!1 (z−1)(3z+7) = 3 . z 1 • limz!1 e does not exist (this is because e z has an essential singularity at z = 0). A way 1 0 1 to prove this is that both sequences zn = 2nπi and zn = 2πi(n+1=2) converge to zero, while the 1 1 0 sequences e zn and e zn converge to different limits, 1 and 0 respectively.
    [Show full text]
  • The Riemann Zeta Function and Its Functional Equation (And a Review of the Gamma Function and Poisson Summation)
    Math 259: Introduction to Analytic Number Theory The Riemann zeta function and its functional equation (and a review of the Gamma function and Poisson summation) Recall Euler's identity: 1 1 1 s 0 cps1 [ζ(s) :=] n− = p− = s : (1) X Y X Y 1 p− n=1 p prime @cp=1 A p prime − We showed that this holds as an identity between absolutely convergent sums and products for real s > 1. Riemann's insight was to consider (1) as an identity between functions of a complex variable s. We follow the curious but nearly universal convention of writing the real and imaginary parts of s as σ and t, so s = σ + it: s σ We already observed that for all real n > 0 we have n− = n− , because j j s σ it log n n− = exp( s log n) = n− e − and eit log n has absolute value 1; and that both sides of (1) converge absolutely in the half-plane σ > 1, and are equal there either by analytic continuation from the real ray t = 0 or by the same proof we used for the real case. Riemann showed that the function ζ(s) extends from that half-plane to a meromorphic function on all of C (the \Riemann zeta function"), analytic except for a simple pole at s = 1. The continuation to σ > 0 is readily obtained from our formula n+1 n+1 1 1 s s 1 s s ζ(s) = n− Z x− dx = Z (n− x− ) dx; − s 1 X − X − − n=1 n n=1 n since for x [n; n + 1] (n 1) and σ > 0 we have 2 ≥ x s s 1 s 1 σ n− x− = s Z y− − dy s n− − j − j ≤ j j n so the formula for ζ(s) (1=(s 1)) is a sum of analytic functions converging absolutely in compact subsets− of− σ + it : σ > 0 and thus gives an analytic function there.
    [Show full text]
  • 20 the Modular Equation
    18.783 Elliptic Curves Spring 2017 Lecture #20 04/26/2017 20 The modular equation In the previous lecture we defined modular curves as quotients of the extended upper half plane under the action of a congruence subgroup (a subgroup of SL2(Z) that contains a b a b 1 0 Γ(N) := f c d 2 SL2(Z): c d ≡ ( 0 1 )g for some integer N ≥ 1). Of particular in- ∗ terest is the modular curve X0(N) := H =Γ0(N), where a b Γ0(N) = c d 2 SL2(Z): c ≡ 0 mod N : This modular curve plays a central role in the theory of elliptic curves. One form of the modularity theorem (a special case of which implies Fermat’s last theorem) is that every elliptic curve E=Q admits a morphism X0(N) ! E for some N 2 Z≥1. It is also a key ingredient for algorithms that use isogenies of elliptic curves over finite fields, including the Schoof-Elkies-Atkin algorithm, an improved version of Schoof’s algorithm that is the method of choice for counting points on elliptic curves over a finite fields of large characteristic. Our immediate interest in the modular curve X0(N) is that we will use it to prove the first main theorem of complex multiplication; among other things, this theorem implies that the j-invariants of elliptic curve E=C with complex multiplication are algebraic integers. There are two properties of X0(N) that make it so useful. The first, which we will prove in this lecture, is that it has a canonical model over Q with integer coefficients; this allows us to interpret X0(N) as a curve over any field, including finite fields.
    [Show full text]
  • LECTURE-16 Meromorphic Functions a Function on a Domain Ω Is Called
    LECTURE-16 VED V. DATAR∗ Meromorphic functions A function on a domain Ω is called meromorphic, if there exists a sequence ∗ of points p1; p2; ··· with no limit point in Ω such that if we denote Ω = Ω n fp1; · · · g ∗ • f :Ω ! C is holomorphic. • f has poles at p1; p2 ··· . We denote the collection of meromorphic functions on Ω by M(Ω). We have the following observation, whose proof we leave as an exercise. Proposition 0.1. The class of meromorphic function forms a field over C. That is, given any meromorphic functions f; g; h 2 M(Ω), we have that (1) f ± g 2 M(Ω), (2) fg 2 M(Ω), (3) f(g + h) = fg + fh: (4) f ± 0 = f; f · 1 = f, (5)1 =f 2 M. Recall that if a holomorphic function has finitely many roots, then it can be \factored" as a product of a polynomial and a no-where vanishing holo- morphic function. Something similar holds true for meromorphic functions. Proposition 0.2. Let f 2 M(Ω) such that f has only finitely many poles fp1; ··· ; png with orders fm1; ··· ; mng. Then there exist holomorphic func- tions g; h 2 O(Ω) such that for all z 2 Ω n fp1; ··· ; png, g(z) f(z) = : h(z) Moreover, we can choose g and h such that f(z) and g(z) have the exact same roots with same multiplicities, while h(z) has zeroes precisely at p1; ··· ; pn with multiplicities exactly m1; ··· ; mn. Proof. We define g :Ω n fp1; ··· ; pmg by n mk g(z) = Πk=1(z − pk) f(z): This is clearly a holomorphic function.
    [Show full text]
  • Iteration of Meromorphic Functions
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume29, Number2, October1993 ITERATION OF MEROMORPHIC FUNCTIONS WALTER BERGWEILER Contents 1. Introduction 2. Fatou and Julia Sets 2.1. The definition of Fatou and Julia sets 2.2. Elementary properties of Fatou and Julia sets 3. Periodic Points 3.1. Definitions 3.2. Existence of periodic points 3.3. The Julia set is perfect 3.4. Julia's approach 4. The Components of the Fatou set 4.1. The types of domains of normality 4.2. The classification of periodic components 4.3. The role of the singularities of the inverse function 4.4. The connectivity of the components of the Fatou set 4.5. Wandering domains 4.6. Classes of functions without wandering domains 4.7. Baker domains 4.8. Classes of functions without Baker domains 4.9. Completely invariant domains 5. Properties of the Julia Set 5.1. Cantor sets and real Julia sets 5.2. Points that tend to infinity 5.3. Cantor bouquets 6. Newton's Method 6.1. The unrelaxed Newton method 6.2. The relaxed Newton method 7. Miscellaneous topics References Received by the editors February 23, 1993 and, in revised form, May 1, 1993. 1991 MathematicsSubject Classification.Primary 30D05, 58F08; Secondary 30D30, 65H05. Key words and phrases. Iteration, meromorphic function, entire function, set of normality, Fatou set, Julia set, periodic point, wandering domain, Baker domain, Newton's method. ©1993 American Mathematical Society 0273-0979/93 $1.00 + $.25 per page 151 152 WALTER BERGWEILER 1. Introduction Mathematical models for phenomena in the natural sciences often lead to iteration.
    [Show full text]
  • Math 520A - Homework 6 - Selected Solutions
    Math 520a - Homework 6 - selected solutions 1. Let Ω be an open subset of the complex plane that is symmetric about the real axis and intersects the real axis. Let Ω+ = {z ∈ Ω : Im(z) > 0}. Let I = {z ∈ Ω : Im(z)=0}, the intersection of Ω with the real axis. Let f be analytic on Ω+ and continuous on Ω+ ∪ I. Suppose that |f(z)| = 1 for z ∈ I. Prove that f has an analytic continuation to Ω. Solution: The problem is not true as stated. We need to also assume f does not vanish on Ω+. We have already seen that f(z) is analytic on the relection of Ω+ about the real axis,which we denote by Ω−. If f never vanishes on Ω+, then g(z)=1/f(z) is analytic Ω−. Note that f is continuous on Ω+ ∪ I and g is continuous on Ω− ∪ I. On I, |f(z)| = 1 implies f(z) = g(z). By the same argument used to prove the Schwarz reflection principle, g provides the analytic continuation. 2. Problem 2 on page 109 in the book. Solution: Define z0 − z φ(z)= 1 − z0z so φ maps the unit disc to the unit disc and sends z0 to 0. Consider v(z)= u(φ(z)). It is a harmonic function on the disc, so by the mean value property, 1 2π v(0) = v(eiθ) dθ 2π Z0 We have v(0) = u(φ(0)) = u(z0). So 2π 1 iθ u(z0)= u(φ(e )) dθ 2π Z0 Do a change of variables in the integral given by iθ iα z0 − e e = iθ 1 − z0e Some calculation then yields the result.
    [Show full text]
  • 17 the Functional Equation
    18.785 Number theory I Fall 2018 Lecture #17 11/5/2018 17 The functional equation In the previous lecture we proved that the Riemann zeta function ζ(s) has an Euler product and an analytic continuation to the right half-plane Re(s) > 0. In this lecture we complete the picture by deriving a functional equation that relates the values of ζ(s) to those of ζ(1 − s). This will then also allow us to extend ζ(s) to a meromorphic function on C that is holomorphic except for a simple pole at s = 1. 17.1 Fourier transforms and Poisson summation A key tool we will use to derive the functional equation is the Poisson summation formula, a result from harmonic analysis that we now recall. 1 Definition 17.1. A Schwartz function on R is a complex-valued C function f : R ! C that decays rapidly to zero: for all m; n 2 Z≥0 we have m (n) sup x f (x) < 1; x2R (n) where f denotes the nth derivative of f. The Schwartz space S(R) of all Schwartz functions on R is a (non-unital) C-algebra of infinite dimension. Example 17.2. All compactly supported functions C1 functions are Schwartz functions, as is the Gaussian function g(x) := e−πx2 . Non-examples include functions that do not tend to zero as x ! ±∞ (such as non-constant polynomials), and functions like (1 + x2n)−1 and e−x2 sin(ex2 ) that either do not tend to zero quickly enough, or have derivatives that do not tend to zero as x ! ±∞.
    [Show full text]
  • A Connection Between the Riemann Hypothesis and Uniqueness
    A Connection between the Riemann Hypothesis and Uniqueness of the Riemann zeta function Pei-Chu Hu and Bao Qin Li Department of Mathematics, Shandong University, Jinan 250100, Shandong, P. R. China E-mail: [email protected] Department of Mathematics and Statistics, Florida International University, Miami, FL 33199 USA E-mail: libaoqin@fiu.edu Abstract In this paper, we give a connection between the Riemann hypothesis and uniqueness of the Riemann zeta function and an analogue for L- functions. 1 Introduction The Riemann ζ function is defined by the Dirichlet series ∞ arXiv:1610.01583v1 [math.NT] 5 Oct 2016 1 ζ(s)= , s = σ + it (1.1) ns nX=1 Mathematics Subject Classification 2000 (MSC2000): 11M36, 30D35. Key words and phrases: Riemann zeta function; Riemann hypothesis, uniqueness, the Dedekind zeta function, L-function, Riemann functional equation. 1 for Re(s) > 1, which is absolutely convergent, and admits an analytical continuation as a meromorphic function in the complex plane C of order 1, which has only a simple pole at s = 1 with residue equal to 1. It satisfies the following Riemann functional equation: πs ζ(1 s) = 2(2π)−s cos Γ(s)ζ(s), (1.2) − 2 where Γ is the Euler gamma function ∞ Γ(z)= tz−1e−tdt, Rez > 0, Z0 analytically continued as a meromorphic function in C of order 1 without any zeros and with simple poles at s = 0, 1, 2, . − − · · · The allied function s s s ξ(s)= (s 1)π− 2 Γ ζ(s) (1.3) 2 − 2 is an entire function of order equal to 1 satisfying the functional equation ξ(1 s)= ξ(s) (1.4) − (see e.g.
    [Show full text]