Magnetoresistive RAM (MRAM)

Total Page:16

File Type:pdf, Size:1020Kb

Magnetoresistive RAM (MRAM) Magnetoresistive RAM (MRAM) Jacob Lauzon, Ryan McLaughlin Agenda ● Current solutions ● Why MRAM? ● What is MRAM? ● History ● How it works ● Comparisons ● Outlook Current Memory Types Memory Market primarily consists of: DRAM: High Density to Price Ratio SRAM: High Performance/Speed Flash: Non-Volatile Memory Comparison of Memory Types DRAM SRAM Flash Memory Volatile Yes Yes No Speed Medium Fast Slow Power High Medium Low consumption Density Medium Low High Infinite Durability Yes Yes No Typical Use Main Memory Cache External Why do we need MRAM? Quest for Universal Memory Universal Memory aims to provide: ● High Density ● High Speed ● Non-Volatility ● High Durability What is MRAM? Non-volatile random access memory Stores data using magnetic charge rather than electrical charge Very high speed (SRAM speed) with high density (DRAM density) Low power consumption (30% of DRAM) Key Players: Everspin(Motorola/Freescale), Canon, Crocus, Cypress, IBM, Intel, Infineon MRAM Timeline ● 1955 – Magnetic core memory developed, which influenced MRAM Writing ● 1989 - IBM made key "giant magnetoresistive effect” discoveries ○ Adjacent ferromagnets with parallel alignment have a low resistance, while antiparallel layers produce a high resistance. ○ IBM was able to reproduce the GMR effect with room temperature, less precise thin film structures - implemented in 16.8 GB HDD Write Heads ● 1995 – Motorola began developing MRAM Single Cell/Bit Spin Valve/Magnetic Tunnel Junction (MTJ) Consists of: ● “Free” magnet, which changes polarization ● Thin insulation layer AKA Tunnel Barrier ● “Fixed” magnet, with permanent polarization ● Transistor for selecting Read Cell Multiple Cells/Mem Hierarchy Individual Spin Valves/MTJs are connected in a 2D grid by “bit lines” perpendicular to “word lines”. Reading Magnetic tunnel effect causes resistance to change based on the polarity of the plates Resistance can be determined by measuring the current through the cell Write Methods: Toggle Decoders are used to power the appropriate bit line and word line for the write. This induces a magnetic field at the junction of the two lines which the free magnet picks up The direction of the current will determine polarization Disadvantages: ● High current required to induce the field ● Size limitation: Cells need to be spread out to avoid the the induced field overlapping into other cells Write Methods: Spin Transfer Torque ● Uses spin-polarized current to change the polarization of the free magnet ● Uses much less current than Toggle method ● Does not induce a magnetic field so overlapping with other cells is not a problem Write Methods: Others Thermal-Assisted Switching (TAS) - Uses toggle method but heats up the junction during a write to reduce the field needed Vertical-Transport (V) - Sends current through a vertical column to change the polarity. The direction of the current determines the polarity Comparison to Other Memory MRAM DRAM SRAM Flash Memory Volatile No Yes Yes No Speed Fast Medium Fastest Slow Power Lowest High Medium Low consumption Density Medium High Low Highest Infinite Yes Yes Yes No Durability Could MRAM be Universal Memory? ● SRAM vs. MRAM performance gap could be forgivable. ● DRAM/Flash vs. MRAM density gap is too large. ● Increased density -> Sufficient ● Increased performance -> Optimal MRAM Timeline ● 2000 - MRAM joint development started by IBM and Infineon, and Spintec created a patent with Spin Torque Transfer ● 2003 – 128 kbit MRAM chip was manufactured using 180 nm technology ● 2005 - Record MRAM cell clocked at 2 GHz, Renesas Tech. Development of 65 nm STT-MRAM begins ● 2006 - First commercial MRAM modules (4 Mbit,25$) - Freescale ● 2008 - Toshiba continues development of 1Gb MRAM, predicting DRAM replaced by MRAM in 7 years ● 2009 - STT-MRAM advancements announced by Crocus that compete with DRAM/Flash ● 2011 - Samsung developed Spin Valves/Magnetic Tunnel Junctions with 17 nm technology ● 2012 - Announcement from Buffalo to produce first SSD with MRAM Cache (Everspin STT-MRAM) ● 2013 - Buffalo produces Industrial SSD utilizing Everspin's EMD3D064M 64Mb DDR3 STT-MRAM chip for cache Future Outlook CURRENT FUTURE ● Everspin produces ● Potential to replace DRAM EMD3D064M - 64Mb DDR3 ST- ● Higher density than DRAM MRAM, scalable to 1Gb possible, since not limited by the ● Currently MRAM cannot fully number of electrons in the area. replace DRAM, SRAM, or flash ● Instant Startup Devices ● MRAM can be used for small ● 20 Company Alliance(Micron density requirement applications Technology, Hitachi) - Mass that require very low power production research consumption or cannot be ● Commercial Mass Production is accessed for long periods of targeted for 2018 time (i.e. satellites) Questions? Bibliography ● http://en.kisti.re.kr/blog/post/scientists-find-solution-preventing-malfunction-next-generation-magnetic-memory/ ● http://www.intechopen.com/books/electronic-properties-of-carbon-nanotubes/carbon-nanotube-based-magnetic- tunnel-junctions-mtjs-for-spintronics-application#F6 ● http://en.wikipedia.org/wiki/Mram ● http://nram.com/pdf/Nantero_Memory.pdf ● http://www.eejournal.com/archives/articles/20130107-mram/ ● http://www.blogcdn.com/www.engadget.com/media/2012/11/everspin-11-14-12-02.jpg ● http://www.electronicproducts.com/images2/F101FREE0107.gif ● http://www.columbia.edu/cu/computinghistory/core.jpg ● http://www.research.ibm.com/research/gmr.html ● http://asia.nikkei.com/Business/Companies/DRAMs-days-numbered-as-Japan-US-chip-alliance-homes-in-on- MRAM.
Recommended publications
  • Multilevel-Cell Phase-Change Memory - Modeling and Reliability Framework
    MULTILEVEL-CELL PHASE-CHANGE MEMORY - MODELING AND RELIABILITY FRAMEWORK THÈSE NO 6801 (2016) PRÉSENTÉE LE 14 JANVIER 2016 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR LABORATOIRE DE SYSTÈMES MICROÉLECTRONIQUES PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Aravinthan ATHMANATHAN acceptée sur proposition du jury: Prof. G. De Micheli, président du jury Prof. Y. Leblebici, Dr M. Stanisavljevic, directeurs de thèse Dr E. Eleftheriou, rapporteur Dr R. Bez, rapporteur Dr J. Brugger, rapporteur Suisse 2016 All birds find shelter during a rain . But eagle avoids rain by flying above the clouds . Problems are common, but attitude makes the difference . — Dr. A. P.J. Abdul Kalam To my parents and wife. Acknowledgements This accomplishment would not have been possible without the wonderful people who have inspired me on my journey towards the PhD. This PhD challenge would have been more of an academic title than a great adventure if not for them. I consider myself fortunate to have spent the last four years of my life in a great research atmosphere for learning, and also working with some exceptional individuals during the course of my doctoral studies. I am greatly indebted to my supervisor, Prof. Yusuf Leblebici, who gave me the independence to pursue my ideas freely, while at the same time mentoring by example. I am especially grateful to my manager, Dr. Evangelos Eleftheriou, for giving me this wonderful opportunity to pursue my PhD thesis with IBM Research. His energy and enthusiasm have been an inspiration for me to aim ever higher in my pursuits.
    [Show full text]
  • ROSS: a Design of Read-Oriented STT-MRAM Storage for Energy
    ROSS: A Design of Read-Oriented STT-MRAM Storage for Energy-Efficient Non-Uniform Cache Architecture Jie Zhang, Miryeong Kwon, Chanyoung Park, Myoungsoo Jung, and Songkuk Kim School of Integrated Technology, Yonsei Institute Convergence Technology, Yonsei University [email protected], [email protected], [email protected], [email protected], [email protected] Abstract high leakage power. With increasing demand for larger caches, SRAM is struggling to keep up with the density Spin-Transfer Torque Magnetoresistive RAM (STT- and energy-efficiency requirements set by state-of-the- MRAM) is being intensively explored as a promis- art system designs. ing on-chip last-level cache (LLC) replacement for Thanks to the device-level advantages of STT-MRAM SRAM, thanks to its low leakage power and high stor- such as high-density structure, zero leakage current, and age capacity. However, the write penalties imposed by very high endurance, it comes out as an excellent candi- STT-MRAM challenges its incarnation as a successful date to replace age-old SRAM for LLC design. However, LLC by deteriorating its performance and energy effi- the performance of STT-MRAM is critically sensitive to ciency. This write performance characteristic unfortu- write frequency due to its high write latency and energy nately makes STT-MRAM unable to straightforwardly values. Therefore, an impulsive replacement of SRAM substitute SRAM in many computing systems. with high-density STT-MRAM, simply for increasing In this paper, we propose a hybrid non-uniform cache LLC capacity, can deteriorate cache performance and in- architecture (NUCA) by employing STT-MRAM as a troduce poor energy consumption behavior.
    [Show full text]
  • Non-Volatile Memory Databases
    15-721 ADVANCED DATABASE SYSTEMS Lecture #24 – Non-Volatile Memory Databases Andy Pavlo // Carnegie Mellon University // Spring 2016 @Andy_Pavlo // Carnegie Mellon University // Spring 2017 2 ADMINISTRIVIA Final Exam: May 4th @ 12:00pm → Multiple choice + short-answer questions. → I will provide sample questions this week. Code Review #2: May 4th @ 11:59pm → We will use the same group pairings as before. Final Presentations: May 9th @ 5:30pm → WEH Hall 7500 → 12 minutes per group → Food and prizes for everyone! CMU 15-721 (Spring 2017) 3 TODAY’S AGENDA Background Storage & Recovery Methods for NVM CMU 15-721 (Spring 2017) 4 NON-VOLATILE MEMORY Emerging storage technology that provide low latency read/writes like DRAM, but with persistent writes and large capacities like SSDs. → AKA Storage-class Memory, Persistent Memory First devices will be block-addressable (NVMe) Later devices will be byte-addressable. CMU 15-721 (Spring 2017) 5 FUNDAMENTAL ELEMENTS OF CIRCUITS Capacitor Resistor Inductor (ca. 1745) (ca. 1827) (ca. 1831) CMU 15-721 (Spring 2017) 6 FUNDAMENTAL ELEMENTS OF CIRCUITS In 1971, Leon Chua at Berkeley predicted the existence of a fourth fundamental element. A two-terminal device whose resistance depends on the voltage applied to it, but when that voltage is turned off it permanently remembers its last resistive state. TWO CENTURIES OF MEMRISTORS Nature Materials 2012 CMU 15-721 (Spring 2017) 7 FUNDAMENTAL ELEMENTS OF CIRCUITS Capacitor Resistor Inductor Memristor (ca. 1745) (ca. 1827) (ca. 1831) (ca. 1971) CMU 15-721 (Spring 2017) 8 MERISTORS A team at HP Labs led by Stanley Williams stumbled upon a nano-device that had weird properties that they could not understand.
    [Show full text]
  • Graphene-Based Spintronic Components
    Graphene-Based Spintronic Components Minggang Zeng,†,‡ Lei Shen,∗,† Haibin Su,¶,§ Miao Zhou,† Chun Zhang,†,∥ and Yuanping Feng∗,† Department of Physics, 2 Science Drive 3, National University of Singapore, Singapore 117542, Singapore, NanoCore, 5A Engineering Drive 4, National University of Singapore, Singapore 117576, Singapore, Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore, Institute of High Performance Computing, 1 Fusionopolis Way, Connexis 138632, Singapore, and Department of Chemistry, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore E-mail: [email protected] ; [email protected] Abstract A major challenge of spintronics is in generating, controlling and detecting spin-polarized current. Manipulation of spin-polarized current, in particular, is difficult. We demonstrate here, based on calculated transport properties of graphene nanoribbons, that nearly ±100 % spin-polarized current can be generated in zigzag graphene nanoribbons (ZGNRs) and tuned by a source-drain voltage in the bipolar spin diode, in addition to magnetic configurations of the electrodes. This unusual transport property is attributed to the intrinsic transmission selection rule of the spin subbands near the Fermi level in ZGNRs. The simultaneous control of spin current by the bias voltage and the magnetic configurations of the electrodes provides an opportunity to implement a whole range of spintronics devices. We propose theoretical designs for a complete set of basic spintronic devices, including bipolar spin diode, transistor and logic gates, based on ZGNRs. Graphical TOC Introduction Spintronics, a new type of electronics that seeks to exploit the spin degree of freedom of an electron in addition to its charge, offers one of the most promising solutions for future high operating speed and energy-saving electronic devices.1 The major challenge of spintronics is the difficulty in generating, controlling and detecting spin-polarized current.
    [Show full text]
  • Emerging Spintronics Phenomena and Applications
    Emerging spintronics phenomena and applications Rahul Mishra and Hyunsoo Yang * Department of Electrical and Computer Engineering, National University of Singapore, 117576, Singapore Development of future sensor, memory, and computing nanodevices based on novel physical concepts is one of the significant research endeavors in solid-state research. The field of spintronics is one such promising area of nanoelectronics which utilizes both the charge and spin of an electron for device operations. The advantage offered by spin systems is in their non-volatility and low- power functionality. This paper reviews emerging spintronic phenomena and the research advancements in diverse spin based applications. Spin devices and systems for logic, memories, emerging computing schemes, flexible electronics and terahertz emitters are discussed in this report. *[email protected] 1 I. Introduction Conventional sensor, memory, and computing electronics exploit the charge of an electron for their operations. However, along with charge, an electron is also characterized by its spin angular momentum or spin. It is the spin of an electron that manifests in the form of magnetism that we see in magnetic objects of the macro world. In the information technology age, magnetism has found industry applications in the massive digital data storage. The field of spintronics is centered on electron’s spin in conjunction with its charge. As we near the end of a several decade scaling of CMOS technologies due to fundamental physical limitations, utilizing the degree of spin freedom might be a natural choice for next generation technologies. An external energy source is not required for maintaining a particular spin- or magnetic-state in a spintronic device.
    [Show full text]
  • Non-Volatile Memory Technology Continue to Scale Up
    MEMORY Non-volatile Memory Technology Continue to Scale Up The emergence of new Non-Volatile memory technology promises to improve performance, efficiency that matches with ideal characteristics. The article reviews some of new non-volatile memory technologies. PADAM RAO RAM, DRAM and Flash are three Landscape dominating memory technologies and With respect to ideal characteristics of memory each technology has some advantages technology described above, till now all known and disadvantages. The ideal memory S memory/storage technologies address only some technology should have low power of the characteristics. Static RAM (SRAM) is very consumption, high performance, high reliability, fast, but it's expensive, has low density and is not high density, low cost, and the ability to be used in any semiconductor memory application. persistent. Dynamic RAM (DRAM) has better Besides computers, today’s portable electronics densities and is cheaper (but still expensive) at the have become computationally intensive devices as cost of being a little slower, and it's not persistent as the user interface has migrated to a fully well. Disks are cheap, highly dense and persistent, multimedia experience. To provide the but very slow. Flash memory is between DRAM and performance required for these applications, the disk; it is a persistent solid-state memory with higher portable electronics designer uses multiple types of densities than DRAM, but its write latency is much memories: a medium-speed random access higher than the latter. memory for continuously changing data, a high- Fortunately, it is possible to design a memory system speed memory for caching instructions to the CPU, that incorporates all these different technologies in and a slower, non-volatile memory for long-term a single memory hierarchy.
    [Show full text]
  • Valleytronics: Opportunities, Challenges, and Paths Forward
    REVIEW Valleytronics www.small-journal.com Valleytronics: Opportunities, Challenges, and Paths Forward Steven A. Vitale,* Daniel Nezich, Joseph O. Varghese, Philip Kim, Nuh Gedik, Pablo Jarillo-Herrero, Di Xiao, and Mordechai Rothschild The workshop gathered the leading A lack of inversion symmetry coupled with the presence of time-reversal researchers in the field to present their symmetry endows 2D transition metal dichalcogenides with individually latest work and to participate in honest and addressable valleys in momentum space at the K and K′ points in the first open discussion about the opportunities Brillouin zone. This valley addressability opens up the possibility of using the and challenges of developing applications of valleytronic technology. Three interactive momentum state of electrons, holes, or excitons as a completely new para- working sessions were held, which tackled digm in information processing. The opportunities and challenges associated difficult topics ranging from potential with manipulation of the valley degree of freedom for practical quantum and applications in information processing and classical information processing applications were analyzed during the 2017 optoelectronic devices to identifying the Workshop on Valleytronic Materials, Architectures, and Devices; this Review most important unresolved physics ques- presents the major findings of the workshop. tions. The primary product of the work- shop is this article that aims to inform the reader on potential benefits of valleytronic 1. Background devices, on the state-of-the-art in valleytronics research, and on the challenges to be overcome. We are hopeful this document The Valleytronics Materials, Architectures, and Devices Work- will also serve to focus future government-sponsored research shop, sponsored by the MIT Lincoln Laboratory Technology programs in fruitful directions.
    [Show full text]
  • Eighth Edition (2006) Core Level
    International Patent Classification Eighth Edition (2006) Core Level Volume 4 Section H Electricity World Intellectual Property Organization BASIC INFORMATION ON IPC REFORM The eighth edition (2006) of the Classification represents its first publication after the basic period of IPC reform which was carried out from 1999 to 2005. The following major changes were introduced in the Classification in the course of the reform: (a) the Classification was divided into a core and an advanced level, in order to better satisfy the needs of different categories of users; (b) different revision methods were introduced for the core and the advanced level, namely, a three-year revision cycle for the core level and continuous revision for the advanced level; (c) when the Classification is revised, patent documents are reclassified according to the amendments to the core and the advanced levels; (d) additional data illustrating classification entries or explaining them in more detail, such as classification definitions, structural chemical formulae and graphic illustrations, were introduced in the electronic layer of the Classification; (e) general principles of classification and classification rules were reconsidered and revised where appropriate. Industrial property offices are required to classify their published patent documents either at the core level or at the advanced level. The core level represents a relatively small and stable part of the eighth edition. It includes approximately 20,000 entries at hierarchically high levels of the Classification: sections, classes, subclasses, main groups and, in some technical fields, subgroups with a small number of dots. Revision amendments are not included in the core level of the IPC until its next edition.
    [Show full text]
  • Semiconductor Spintronics: Information Processing with Spin Currents
    Semiconductor Spintronics: Information Processing with Spin Currents Berend T. Jonker1, Olaf M.J. van ‘t Erve2, George Kioseoglou2, Aubrey T. Hanbicki, Connie H. Li, Michael Holub3, Chaffra Awo-Affouda3 and Phillip E. Thompson Naval Research Laboratory, Washington DC 20375, USA 1 Phone: 001-202-404-8015 E-Mail: [email protected] 2 George Washington University Research Associate 3 National Research Council Postdoctoral Associate 1. Introduction shows that the net spin polarization of the electrons in the Si The electronics industry to date has relied upon the at least 30% at low temperature. The spin injection process control of charge flow, and used size scaling to is therefore relatively efficient, given that the spin continuously increase the performance of existing polarization of the Fe is only 45%. electronics. However, size scaling cannot continue This interpretation is confirmed by similar indefinitely, and new approaches must be developed. measurements on Fe/Al2O3/Si/AlGaAs/GaAs/AlGaAs Basic research efforts have shown that spin angular quantum well structures, in which the spin polarized momentum, another fundamental property of the electron, electrons drift under applied field from the Si and recombine can be used to store and process information in solid state in the GaAs QW. In this case, the polarized EL can be devices. The International Technology Roadmap for analyzed using the familiar quantum selection rules, Semiconductors has identified the electron’s spin as a new yielding an electron spin polarization of 10%. state variable which should be explored for use beyond CMOS. Silicon’s mature technology base and overwhelming dominance make it an obvious choice for implementing spin-based functionality.
    [Show full text]
  • Arxiv:1907.03494V2 [Cond-Mat.Mes-Hall] 29 Oct 2019
    Single and bilayer graphene on the topological insulator Bi2Se3: Electronic and spin-orbit properties from first-principles Klaus Zollner1, ∗ and Jaroslav Fabian1 1Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany (Dated: October 30, 2019) We present a detailed study of the electronic and spin-orbit properties of single and bilayer graphene in proximity to the topological insulator Bi2Se3. Our approach is based on first-principles calculations, combined with symmetry derived model Hamiltonians that capture the low-energy band properties. We consider single and bilayer graphene on 1{3 quintuple layers of Bi2Se3 and extract orbital and proximity induced spin-orbit coupling (SOC) parameters. We find that graphene gets significantly hole doped (350 meV), but the linear dispersion is preserved. The proximity induced SOC parameters are about 1 meV in magnitude, and are of valley-Zeeman type. The induced SOC depends weakly on the number of quintuple layers of Bi2Se3. We also study the effect of a transverse electric field, that is applied across heterostructures of single and bilayer graphene above 1 quintuple layer of Bi2Se3. Our results show that band offsets, as well as proximity induced SOC parameters can be tuned by the field. Most interesting is the case of bilayer graphene, in which the band gap, originating from the intrinsic dipole of the heterostructure, can be closed and reopened again, with inverted band character. The switching of the strong proximity SOC from the conduction to the valence band realizes a spin-orbit valve. Additionally, we find a giant increase of the proximity induced SOC of about 200%, when we decrease the interlayer distance between graphene and Bi2Se3 by only 10%.
    [Show full text]
  • Computing-In-Memory with Spintronics
    Computing-in-Memory with Spintronics Shubham Jain1, Sachin Sapatnekar2, Jian-Ping Wang2, Kaushik Roy1, Anand Raghunathan1 1School of Electrical and Computer Engineering, Purdue University 2Department of Electrical and Computer Engineering, University of Minnesota 1fjain130,kaushik,[email protected], 2fsachin,[email protected] Abstract—In-memory computing is a promising approach to different in-memory computing designs – STT-CiM [12], alleviating the processor-memory data transfer bottleneck in ROM-Embedded MRAM [13], and CRAM [10] that propose computing systems. While spintronics has attracted great interest modifications to the peripherals or the bit-cells of STT-MRAM as a non-volatile memory technology, recent work has shown that its unique properties can also enable in-memory computing. We to enable in-memory computing. We show that by leveraging summarize efforts in this direction, and describe three different the unique attributes of spintronic memories, these designs designs that enhance STT-MRAM to perform logic, arithmetic, perform computations (logic operations, scalar and vector and vector operations and evaluate transcendental functions arithmetic, and transcendental functions) within the memory within memory arrays. array. I. Introduction STT-CiM [12] is an example of in-memory computing Modern computing workloads such as data analytics, ma- with spintronic memory that proposes modifications to the chine learning, graphics, and bioinformatics operate on large peripherals while retaining the core bit-cell and array structure datasets, leading to frequent accesses to off-chip memory. of STT-MRAM intact. It exploits the resistive nature of spin- Consequently, a significant amount of time and energy is spent tronic memories to simultaneously enable multiple wordlines in the movement of data between the processor and memory, in an STT-MRAM array, leading to multiple bit-cells being causing a major bottleneck in computing systems.
    [Show full text]
  • Opportunities and Challenges for Spintronics in the Microelectronics Industry
    REVIEW ARTICLE https://doi.org/10.1038/s41928-020-0461-5 Opportunities and challenges for spintronics in the microelectronics industry B. Dieny 1 ✉ , I. L. Prejbeanu1, K. Garello 2, P. Gambardella 3, P. Freitas4,5, R. Lehndorff6, W. Raberg7, U. Ebels1, S. O. Demokritov8, J. Akerman9,10, A. Deac11, P. Pirro 12, C. Adelmann 2, A. Anane13, A. V. Chumak 12,14, A. Hirohata 15, S. Mangin 16, Sergio O. Valenzuela17,18, M. Cengiz Onbaşlı 19, M. d’Aquino 20, G. Prenat1, G. Finocchio 21, L. Lopez-Diaz22, R. Chantrell 23, O. Chubykalo-Fesenko 24 and P. Bortolotti13 ✉ Spintronic devices exploit the spin, as well as the charge, of electrons and could bring new capabilities to the microelectronics industry. However, in order for spintronic devices to meet the ever-increasing demands of the industry, innovation in terms of materials, processes and circuits are required. Here, we review recent developments in spintronics that could soon have an impact on the microelectronics and information technology industry. We highlight and explore four key areas: magnetic memories, magnetic sensors, radio-frequency and microwave devices, and logic and non-Boolean devices. We also discuss the challenges—at both the device and the system level—that need be addressed in order to integrate spintronic materials and functionalities into mainstream microelectronic platforms. onventional electronic devices are based on nonmagnetic spin-transfer torque14,15 (STT) and spin–orbit torque (SOT)16, of semiconductors and use the controlled flow of electric giant tunnelling magnetoresistance (TMR)17,18 in MgO-based MTJs charges to achieve information processing and communi- and of large interfacial magnetic anisotropy at magnetic metal/ C 19 cation.
    [Show full text]