Assessment Report on Vitis Vinifera L., Folium Final

Total Page:16

File Type:pdf, Size:1020Kb

Assessment Report on Vitis Vinifera L., Folium Final 30 May 2017 EMA/HMPC/464682/2016 Committee on Herbal Medicinal Products (HMPC) Assessment report on Vitis vinifera L., folium Final Based on Article 10a of Directive 2001/83/EC (well-established use) Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC (traditional use) Herbal substance(s) (binomial scientific name of the plant, including plant part) Vitis vinifera L., folium Herbal preparation(s) a) Comminuted herbal substance (TU) b) Powdered herbal substance (TU) c) Soft extract (DER 2.5-4:1); extraction solvent water (TU) d) Dry extract (DER 4-6:1); extraction solvent water (WEU) Pharmaceutical form(s) Comminuted herbal substance as herbal tea for oral use (TU) Herbal preparation in solid dosage forms for oral use (WEU and TU) Herbal preparation in semi-solid dosage forms for cutaneous use (TU) Rapporteur(s) I. Chinou, G Garcia Lorente (first assessment) Peer-reviewer B. Kroes 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ................................................................................................................... 2 1. Introduction ....................................................................................................................... 4 1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof .. 4 1.2. Search and assessment methodology ..................................................................... 6 2. Data on medicinal use ........................................................................................................ 7 2.1. Information about products on the market .............................................................. 7 2.1.1. Information about products on the market in the EU/EEA Member States ................. 7 2.1.2. Information on products on the market outside the EU/EEA .................................. 10 2.2. Information on documented medicinal use and historical data from literature ............ 10 2.3. Overall conclusions on medicinal use .................................................................... 13 3. Non-Clinical Data ............................................................................................................. 16 3.1. Overview of available pharmacological data regarding the herbal substance(s), herbal preparation(s) and relevant constituents thereof ........................................................... 16 3.1.1. Primary pharmacodynamics .............................................................................. 16 3.1.2. Secondary pharmacodynamics .......................................................................... 20 3.1.3. Safety pharmacology ....................................................................................... 23 3.1.4. Pharmacodynamic interactions .......................................................................... 23 3.1.5. Conclusions .................................................................................................... 23 3.2. Overview of available pharmacokinetic data regarding the herbal substance(s), herbal preparation(s) and relevant constituents thereof ........................................................... 23 3.3. Overview of available toxicological data regarding the herbal substance(s)/herbal preparation(s) and constituents thereof ....................................................................... 24 3.3.1. Single dose toxicity .......................................................................................... 24 3.3.2. Repeat dose toxicity ......................................................................................... 24 3.3.3. Genotoxicity ................................................................................................... 25 3.3.4. Carcinogenicity ................................................................................................ 25 3.3.5. Reproductive and developmental toxicity ............................................................ 26 3.3.6. Local tolerance ................................................................................................ 26 3.3.7. Other special studies ........................................................................................ 26 3.3.8. Conclusions .................................................................................................... 26 3.4. Overall conclusions on non-clinical data ................................................................ 27 4. Clinical Data ..................................................................................................................... 27 4.1. Clinical pharmacology ......................................................................................... 27 4.1.1. Overview of pharmacodynamic data regarding the herbal substance(s)/preparation(s) including data on relevant constituents ........................................................................ 28 4.1.2. Overview of pharmacokinetic data regarding the herbal substance(s)/preparation(s) including data on relevant constituents ........................................................................ 28 4.2. Clinical efficacy .................................................................................................. 29 4.2.1. Dose response studies...................................................................................... 30 4.2.2. Clinical studies (case studies and clinical trials) ................................................... 30 4.3. Clinical studies in special populations (e.g. elderly and children) .............................. 38 4.4. Overall conclusions on clinical pharmacology and efficacy ........................................ 38 Assessment report on Vitis vinifera L., folium EMA/HMPC/464682/2016 Page 2/44 5. Clinical Safety/Pharmacovigilance ................................................................................... 38 5.1. Overview of toxicological/safety data from clinical trials in humans ........................... 38 5.2. Patient exposure ................................................................................................ 38 5.3. Adverse events, serious adverse events and deaths ................................................ 38 5.4. Laboratory findings ............................................................................................. 40 5.5. Safety in special populations and situations ........................................................... 40 5.5.1. Use in children and adolescents ......................................................................... 40 5.5.2. Contraindications ............................................................................................. 40 5.5.3. Special warnings and precautions for use ........................................................... 40 5.5.4. Drug interactions and other forms of interaction .................................................. 41 5.5.5. Fertility, pregnancy and lactation ....................................................................... 41 5.5.6. Overdose ........................................................................................................ 41 5.5.7. Effects on ability to drive or operate machinery or impairment of mental ability ...... 41 5.5.8. Safety in other special situations ....................................................................... 41 5.6. Overall conclusions on clinical safety ..................................................................... 41 6. Overall conclusions (benefit-risk assessment) ................................................................. 42 Annex .................................................................................................................................. 44 Assessment report on Vitis vinifera L., folium EMA/HMPC/464682/2016 Page 3/44 1. Introduction 1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof • Herbal substance(s) The herbal substance Vitis vinifera L., folium, (Vitaceaea) consists of the dried leaves of the black to pulp-red grapevine and has a faintly perceptible odour. The herbal drug is harvested by hand in the autumn following the grape harvest. Drying takes place under natural conditions in accordance with local climatic conditions. The crude herbal substance complies with the monograph “Vigne Rouge” French Pharmacopoeia (Pharmacopée Française, 10th ed., 1996). Constituents Grapevine leaves contain a wide range of polyphenol flavonoids including flavon(ol)-glycosides and glucuronides, quercetin-3-O-beta-D-glucuronide (most abundant of flavonoids), isoquercitrin, anthocyanins, oligomeric proanthocyanidins (Hmamouchi et al. 1997), catechin, epicatechin monomers and dimmers and gallic acid (Fig 1). The phytoalexin trans-resveratrol, another polyphenolic substance belonging to the stilbene group, can also be found in grapevine (Langcake et al. 1979). It has been referred in the international literature that AlCl3 is a potent elicitor of resveratrol production in grapevine leaves (Andrian et al. 1996). In grapevine leaves, also organic acids appear, mainly malic and oxalic acid but also tartaric acid. Citric, fumaric and succinic acid can be detected in the leaves only in traces. Compared to the
Recommended publications
  • Xylella Fastidiosa HOST: GRAPEVINE
    Xylella fastidiosa HOST: GRAPEVINE What is Xylella fastidiosa and why is it so serious? ◆ A dangerous bacterium threatening hundreds of species of plants in the UK ◆ It is spreading across southern Europe from its origins in the Americas ◆ Can be transported by sap-feeding insects such as spittlebugs ◆ Causes plant death by blocking water transporting vessels (xylem) ◆ Currently no cure Vitis vinifera ◆ Deciduous climbing shrub ◆ Flaky bark ◆ Climbs by tendrils reaching 15–18m high ◆ Three- or five-lobed, coarsely toothed leaves, 7.5–15cm long and wide, with stalks half as long as the blade, hairy underneath and of variable colour ◆ Tiny greenish flowers ◆ Oval or globose fruit Healthy Diseased What is BRIGIT? A collaborative project aimed at reducing the risk of a Xylella introduction into the UK and mitigating the risks in the event of an outbreak. Please turn over to find out more. What to look 1 out for 2 ◆ Marginal leaf scorch 1 ◆ Leaf chlorosis 2 ◆ Premature loss of leaves 3 ◆ Matchstick petioles 3 ◆ Irregular cane maturation (green islands in stems) 4 ◆ Fruit drying and wilting 5 ◆ Stunting of new shoots 5 ◆ Death of plant in 1–5 years Where is the plant from? 3 ◆ Plants sourced from infected countries are at a much higher risk of carrying the disease-causing bacterium Do not panic! 4 How long There are other reasons for disease symptoms to appear. Consider California. of University Montpellier; watercolour, RHS Lindley Collections; “healthy”, RHS / Tim Sandall; “diseased”, J. Clark, California 3 J. Clark & A.H. Purcell, University of California 4 J. Clark, University of California 5 ENSA, Images © 1 M.
    [Show full text]
  • So You Want to Grow Grapes in Tennessee
    Agricultural Extension Service The University of Tennessee PB 1689 So You Want to Grow Grapes in Tennessee 1 conditions. American grapes are So You Want to Grow versatile. They may be used for fresh consumption (table grapes) or processed into wine, juice, jellies or Grapes in Tennessee some baked products. Seedless David W. Lockwood, Professor grapes are used mostly for fresh Plant Sciences and Landscape Systems consumption, with very little demand for them in wines. Yields of seedless varieties do not match ennessee has a long history of grape production. Most recently, those of seeded varieties. They are T passage of the Farm Winery Act in 1978 stimuated an upsurge of also more susceptible to certain interest in grape production. If you are considering growing grapes, the diseases than the seeded American following information may be useful to you. varieties. French-American hybrids are crosses between American bunch 1. Have you ever grown winery, the time you spend visiting and V. vinifera grapes. Their grapes before? others will be a good investment. primary use is for wine. uccessful grape production Vitis vinifera varieties are used S requires a substantial commit- 3. What to grow for wine. Winter injury and disease ment of time and money. It is a American problems seriously curtail their marriage of science and art, with a - seeded growth in Tennessee. good bit of labor thrown in. While - seedless Muscadines are used for fresh our knowledge of how to grow a French-American hybrid consumption, wine, juice and jelly. crop of grapes continues to expand, Vitis vinifera Vines and fruits are not very we always need to remember that muscadine susceptible to most insects and some crucial factors over which we Of the five main types of grapes diseases.
    [Show full text]
  • Dual RNA Sequencing of Vitis Vinifera During Lasiodiplodia Theobromae Infection Unveils Host–Pathogen Interactions
    International Journal of Molecular Sciences Article Dual RNA Sequencing of Vitis vinifera during Lasiodiplodia theobromae Infection Unveils Host–Pathogen Interactions Micael F. M. Gonçalves 1 , Rui B. Nunes 1, Laurentijn Tilleman 2 , Yves Van de Peer 3,4,5 , Dieter Deforce 2, Filip Van Nieuwerburgh 2, Ana C. Esteves 6 and Artur Alves 1,* 1 Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (M.F.M.G.); [email protected] (R.B.N.) 2 Laboratory of Pharmaceutical Biotechnology, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; [email protected] (L.T.); [email protected] (D.D.); [email protected] (F.V.N.) 3 Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; [email protected] 4 Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium 5 Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa 6 Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, Estrada da Circunvalação, 3504-505 Viseu, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-234-370-766 Received: 28 October 2019; Accepted: 29 November 2019; Published: 3 December 2019 Abstract: Lasiodiplodia theobromae is one of the most aggressive agents of the grapevine trunk disease Botryosphaeria dieback. Through a dual RNA-sequencing approach, this study aimed to give a broader perspective on the infection strategy deployed by L. theobromae, while understanding grapevine response. Approximately 0.05% and 90% of the reads were mapped to the genomes of L.
    [Show full text]
  • The Muscadine Grape (Vitis Rotundifolia Michx)1 Peter C
    HS763 The Muscadine Grape (Vitis rotundifolia Michx)1 Peter C. Andersen, Ali Sarkhosh, Dustin Huff, and Jacque Breman2 Introduction from improved selections, and in fact, one that has been found in the Scuppernong River of North Carolina has The muscadine grape is native to the southeastern United been named ‘Scuppernong’. There are over 100 improved States and was the first native grape species to be cultivated cultivars of muscadine grapes that vary in size from 1/4 to in North America (Figure 1). The natural range of musca- 1 ½ inches in diameter and 4 to 15 grams in weight. Skin dine grapes extends from Delaware to central Florida and color ranges from light bronze to pink to purple to black. occurs in all states along the Gulf Coast to east Texas. It also Flesh is clear and translucent for all muscadine grape extends northward along the Mississippi River to Missouri. berries. Muscadine grapes will perform well throughout Florida, although performance is poor in calcareous soils or in soils with very poor drainage. Most scientists divide the Vitis ge- nus into two subgenera: Euvitis (the European, Vitis vinifera L. grapes and the American bunch grapes, Vitis labrusca L.) and the Muscadania grapes (muscadine grapes). There are three species within the Muscadania subgenera (Vitis munsoniana, Vitis popenoei and Vitis rotundifolia). Euvitis and Muscadania have somatic chromosome numbers of 38 and 40, respectively. Vines do best in deep, fertile soils, and they can often be found in adjacent riverbeds. Wild muscadine grapes are functionally dioecious due to incomplete stamen formation in female vines and incom- plete pistil formation in male vines.
    [Show full text]
  • Sustainable Viticulture: Effects of Soil Management in Vitis Vinifera
    agronomy Article Sustainable Viticulture: Effects of Soil Management in Vitis vinifera Eleonora Cataldo 1, Linda Salvi 1 , Sofia Sbraci 1, Paolo Storchi 2 and Giovan Battista Mattii 1,* 1 Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino (FI), Italy; eleonora.cataldo@unifi.it (E.C.); linda.salvi@unifi.it (L.S.); sofia.sbraci@unifi.it (S.S.) 2 Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology (CREA-VE), 52100 Arezzo, Italy; [email protected] * Correspondence: giovanbattista.mattii@unifi.it; Tel.: 390-554-574-043 Received: 19 October 2020; Accepted: 8 December 2020; Published: 11 December 2020 Abstract: Soil management in vineyards is of fundamental importance not only for the productivity and quality of grapes, both in biological and conventional management, but also for greater sustainability of the production. Conservative soil management techniques play an important role, compared to conventional tillage, in order to preserve biodiversity, to save soil fertility, and to keep vegetative-productive balance. Thus, it is necessary to evaluate long-term adaptation strategies to create a balance between the vine and the surrounding environment. This work sought to assess the effects of following different management practices on Vitis vinifera L. cv. Cabernet Sauvignon during 2017 and 2018 seasons: soil tillage (T), temporary cover cropping over all inter-rows (C), and mulching with plant residues every other row (M). The main physiological parameters of vines (leaf gas exchange, stem water potential, chlorophyll fluorescence, and indirect chlorophyll content) as well as qualitative and quantitative grape parameters (technological and phenolic analyses) were measured.
    [Show full text]
  • First Report of Grapevine Dieback Caused by Lasiodiplodia Theobromae and Neoscytalidium Dimidiatum in Basrah, Southern Iraq
    African Journal of Biotechnology Vol. 11(95), pp. 16165-16171, 27 November, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB12.010 ISSN 1684–5315 ©2012 Academic Journals Full Length Research Paper First report of grapevine dieback caused by Lasiodiplodia theobromae and Neoscytalidium dimidiatum in Basrah, Southern Iraq Abdullah H. Al-Saadoon1, Mohanad K. M. Ameen1, Muhammed A. Hameed2* Adnan Al-Badran1 and Zulfiqar Ali3 1Department of Biology, College of Science, Basrah University, Iraq. 2Date Palm Research Centre, Basra University, Iraq. 3Departments of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan. Accepted 30 March, 2012 In Basrah, grapevines suffer from dieback. Lasiodiplodia theobromae and Neoscytalidium dimidiatum were isolated from diseased grapevines, Vitis vinifera L. and identified based on morphological characteristics and DNA sequence data of the rDNA internal transcribed spacer (ITS) region. The results of the pathogenicity test conducted under greenhouse conditions for L. theobromae and N. dimidiatum reveal that both species were the causal agents of grapevines diebacks in Basrah, Southern Iraq. A brief description is provided for the isolated species. Key words: grapevine, dieback, Lasiodiplodia theobromae, Neoscytalidium dimidiatum, internal transcribed spacer (ITS), rDNA, Iraq. INTRODUCTION Grapevine, Vitis vinifera L. is the most widely planted fruit thern part of Haur Al-Hammar (at Qarmat Ali) to a new crop worldwide and is cultivated in all continents except canal, the “Al-Basrah Canal”, which runs parallel to Shatt Antarctica (Mullins et al., 1992). The area under planta- Al-Arab river into the Arabian Gulf (Bedair, 2006). Many tion in iraq is 240,000 hectares, and it has an annual environmental stress factors weaken plant hosts and production of 350,000 tons grape (FAO, 1996).
    [Show full text]
  • Chemical Composition of Red Wines Made from Hybrid Grape and Common Grape (Vitis Vinifera L.) Cultivars
    444 Proceedings of the Estonian Academy of Sciences, 2014, 63, 4, 444–453 Proceedings of the Estonian Academy of Sciences, 2014, 63, 4, 444–453 doi: 10.3176/proc.2014.4.10 Available online at www.eap.ee/proceedings Chemical composition of red wines made from hybrid grape and common grape (Vitis vinifera L.) cultivars Priit Pedastsaara*, Merike Vaherb, Kati Helmjab, Maria Kulpb, Mihkel Kaljurandb, Kadri Karpc, Ain Raald, Vaios Karathanose, and Tõnu Püssaa a Department of Food Hygiene, Estonian University of Life Sciences, Kreutzwaldi 58A, 51014 Tartu, Estonia b Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia c Department of Horticulture, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia d Department of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia e Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., Athens, Greece Received 21 June 2013, revised 8 May 2014, accepted 23 May 2014, available online 20 November 2014 Abstract. Since the formulation of the “French paradox”, red grape wines are generally considered to be health-promoting products rather than culpable alcoholic beverages. The total wine production, totalling an equivalent of 30 billion 750 mL bottles in 2009, only verifies the fact that global demand is increasing and that the polyphenols present in wines are accounting for a significant proportion of the daily antioxidant intake of the general population. Both statements justify the interest of new regions to be self-sufficient in the wine production. Novel cold tolerant hybrid grape varieties also make it possible to produce wines in regions where winter temperatures fall below – 30 °C and the yearly sum of active temperatures does not exceed 1750 °C.
    [Show full text]
  • In Vitro Clonal Propagation of Grapevine (Vitis Spp.)
    In vitro clonal Propagation of grapevine (Vitis spp.) By Magdoleen Gamar Eldeen Osman B.Sc. Agriculture Science (Honours) Sudan University of Science and Technology Thesis submitted in partial fulfillment of the requirements for the degree of master of science in Agric Supervisor :Prof.Abd El Gaffar Al Hag Said Co supervisor :Dr.Mustafa .M.El Balla Department of Horticulture Faculty of Agriculture University of Khartoum October 2oo4 TABLE OF CONTENTS Dedication………………………………. Acknowledgment………………………….……… i Contents…………………………………………… ii Abstract……………………………………………. iv Arabic Abstract…………………………………… vi 1. Introduction ………………………………………. 1 2. Literature review………………………………… 3 2.1 Origin and distribution of grape (vitis sp)………. 3 2.2 Botany……………………………………………... 3 2.3 Soil and Location………………………………… 4 2.4 Yield and storage…………………………………. 4 2.5 Pests and diseases…………………………………. 2.6 World production………………………………… 2.7 Propagation methods…………………………… 7 2.7.1 Traditional propagation ………………………… 7 2.7.2 Propagation by tissue culture……………………. 8 2.7.2.1 The ex-plant……………………………………….. 9 2.7.2.2 Media composition ……………………………….. 11 2.7.2.2.1 Inorganic nutrients ……………………………… 11 2.7.2.2.2 Organic nutrien…………………………………… 13 2.7.2.2.2.1 Carbohydrates…………………………………… 14 2.7.2.2.2.2 Growth regulators………………………………… 15 3. Materials and methods…………………………… 19 3.1 Plant material……………………………………... 19 3.2 Sterilization……………………………………… 19 3.3 Preparation of ex-plants …………………………. 19 3.4 Basal nutrient medium…………………………… 20 3.5 Culture incubation……………………………….. 20 3.6 Experimentation………………………………….. 20 3.6.1 Effect of MS salts mix……………………………. 20 3.6.2 Effect of supplementary phosphate …………………….. 21 3.6.3 Effect of ex-plant……………………………. 21 3.6.4 Growth regulators………………………………… 21 3.6.4.1 Combined effect of kinetin annaphthaleneacetic acid (NAA) on 21 different growth parameters…… 3.6.4.2 Induction of roots………………………………….
    [Show full text]
  • Use of Phytomonitoring to Evaluate the Irrigation Scheduling in Vineyards (Vitis Vinifera L.) of Itata Valley Chile
    Horticulture International Journal Research Article Open Access Use of phytomonitoring to evaluate the irrigation scheduling in vineyards (vitis vinifera l.) of itata valley Chile Abstract Volume 4 Issue 5 - 2020 The phytomonitoring is a technology that provides information in real time of crop water status and allow to make a feedback between crop and grower to improve the irrigation Celerino Quezada, Ricardo Merino, control. The aim of this investigation was to asses the plant water status and your effect Alejandro Chandía, Marcos Cassanova on yield and quality parameter in a commercial vineyard under drip irrigation in an Ultic Faculty of Agronomy, University of Concepción, Chile Palexeralf soil during the 2008-2009 growing season at Central Southern of the Ñuble Region, Itata Valley, Chile. The experimental design was split-plot with three treatments Correspondence: Celerino Quezada, Faculty of Agronomy, University of Concepción, Chile, Tel 56-42-2208927, of soil texture: clayey loam, sandy clay and clayey, and three sub-treatments of ‘Cabernet Email Sauvignon’, ‘Merlot’ and ‘Syrah’ cultivars. Stomatal conductance, leaf-air temperature, cluster weight, berry diameter, berry weight, and soluble solids content were evaluated. The Received: June 25, 2020 | Published: September 07, 2020 results showed that the phytomonitoring is useful to evaluate the irrigation management in vineyards. Stomatal conductance and leaf-air temperature showed good performance as indicators of vine water status and grapevine quality. This study highlight the effect of soil texture on yield and wine quality in grapevines of semi-arid zones with drip irrigation. Keywords: stomatal conductance, leaf temperature, soil texture, yield components Introduction in terms of plant physiology and agronomy5 and has demostrated great potential for assessing vine water status.6 Different instruments measure various aspects of soil-water relations, but none direct assesses the portion available water to Water status parameters such midday stem water potential (Ψs), the vine.
    [Show full text]
  • Effects of Irrigation on Wine Grape Growth and Fruit Quality
    RESEARCH REPORTS Effects of Irrigation on Wine Grape Growth and Fruit Quality Richard Allen Hamman, Jr.,1 and Imed Eddine Dami2 ADDITIONAL INDEX WORDS. cold hardiness, soil moisture, soluble carbohydrates, Vitis vinifera Cabernet sauvignon, drip irrigation, wine color, pruning weight, crop load, total soluble solids, vineyard canopy SUMMARY. Field studies were con- ducted to determine the effect of three drip irrigation regimes on grapevine growth, juice and wine quality, soil moisture, cold hardiness of bud and cane tissues and soluble sugar content of cortical cane tissues of Vitis vinifera, Linnaeus ‘Cabernet Sauvignon’. This study was developed to help provide some irrigation management strategies that would improve fruit quality and reduce excessive vigor. Irrigation treatments of 192, 96, and 48 L (51, 25, and 13 gal) per vine per week were initiated at bud break until veraison (initiation of berry color) and then reduced by 25% through harvest. Significant differences of fruit weight per vine, crop load, soil moisture, average berry and cluster weight, shoot length and pruning weight per meter of canopy row were observed among treatments. Juice and wine compositions and wine color were also significantly different; however, cold hardiness and soluble sugar contents did not differ between treatments. Colorado State University, Orchard Mesa Research Center, 3168 B1/2 Road, Grand Junction, CO 81503. This research was conducted at the Canyon Wind Vineyard, Palisade, Colo. The authors acknowledge the cooperation of Norm Christianson, the owner of Canyon Wind Wine Cellars, and the support and technical assistance of Susan Baker, Refugio Diaz, John Wilhelm, Diane Ross, and Pepe Seufferheld. This work was supported in part by the Colorado Wine Board.
    [Show full text]
  • Responses on Must and Wine Composition of Vitis Vinifera L. Cvs. Riesling and Cabernet Sauvignon Under a Free Air CO2 Enrichment (FACE)
    foods Article Responses on Must and Wine Composition of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon under a Free Air CO2 Enrichment (FACE) Yvette Wohlfahrt 1,* , Claus-Dieter Patz 2, Dominik Schmidt 3 , Doris Rauhut 4, Bernd Honermeier 5 and Manfred Stoll 1 1 Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany; [email protected] 2 Department of Beverage Research, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany; [email protected] 3 Department of Modeling and Systems Analysis, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany; [email protected] 4 Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany; [email protected] 5 Department of Agronomy and Plant Breeding I, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-6722-502-144 Abstract: Challenges of climate change on the future grape and wine production are widely discussed in science and in the wine industry with the goal to maintain a consistent must and wine quality in the future. Therefore, the effect of elevated CO2 (eCO2)—as one of the relevant greenhouse gases jointly responsible for a changing climate—was investigated concerning the composition of must and wine made of two grapevine cultivars V. vinifera L. cvs. Riesling and Cabernet Sauvignon within the established VineyardFACE (Free-Air Carbon dioxide Enrichment) experiment. Must and wine Citation: Wohlfahrt, Y.; Patz, C.-D.; analysis were conducted in three consecutive years (2014–2016) by analyzing standard must and Schmidt, D.; Rauhut, D.; Honermeier, wine parameters, e.g., total soluble solids (TSS), pH, total acidity (TA), organic acids (e.g., tartaric B.; Stoll, M.
    [Show full text]
  • Grape and Wine Culture in Georgia, the South Caucasus
    BIO Web of Conferences 7, 03027 (2016) DOI: 10.1051/bioconf/20160703027 39th World Congress of Vine and Wine Grape and wine culture in Georgia, the South Caucasus David Maghradze1,a, Giorgi Samanishvili1, Levan Mekhuzla1, Irma Mdinaradze1, George Tevzadze1, Andro Aslanishvili1, Paata Chavchanidze1, David Lordkipanidze2, Mindia Jalabadze2, Eliso Kvavadze2, Nana Rusishvili2, Eldar Nadiradze2, Gvantsa Archvadze2, Patrick McGovern3, Patrice This4, Roberto Bacilieri4, Osvaldo Failla5, Gabriele Cola5, Luigi Mariani5, Nathan Wales6, M. Thomas P. Gilbert6, Laurent Bouby7, Tina Kazeli8, Levan Ujmajuridze9, Stephen Batiuk10, Andrew Graham10, Lika Megrelidze11, Tamar Bagratia11, and Levan Davitashvili12 1 National Wine Agency of Georgia, 6 Marshal Geloveni Ave., 0159 Tbilisi, Georgia 2 National Museum of Georgia, 3 Purtseladze Str., 0105 Tbilisi, Georgia 3 University of Pennsylvania Museum of Archaeology and Anthropology, 3260 South St., Philadelphia, PA 19104, USA 4 INRA-CIRAD-SupAgro, UMR AGAP, 1334 Montpellier, France 5 University of Milan, via Celoria 2, 20133 Milano, Italy 6 University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark 7 Institut des Sciences de l’Evolution, University of Montpellier, Place Eugene` Bataillon, 22, 34095 Montpellier, France 8 Georgian Wine Association, 12 Mtatsminda Str., 0108 Tbilisi, Georgia 9 Scientific – Research Center of Agriculture, 6 Marshal Geloveni Ave., 0159 Tbilisi, Georgia 10 University of Toronto, Dept. of Near & Middle Eastern Civilizations, 4 Bancroft Ave, Toronto, Canada 11 Environmental Agency of Georgia, David Aghmashenebely Ave., 0112 Tbilisi, Georgia 12 Minister of Agriculture of Georgia, Tbilisi, Georgia Abstract. In 2014, the National Wine Agency of the Republic of Georgia initiated a three-year “Research Project for the study of Georgian Grapes and Wine Culture.
    [Show full text]