Unifying Themes in Complex Systems

Total Page:16

File Type:pdf, Size:1020Kb

Unifying Themes in Complex Systems Unifying Themes in Complex Systems Volume VII Springer Complexity Springer Complexity is a publication program, cutting across all traditional disciplines of sciences as well as engineering. economics, medicine, psychology and computer sciences, which is aimed at researchers. students and practitioners working in the field of complex systems. Complex Systems are systems that comprise many interacting parts with the ability to generate a new quality of macro- scopic collective behavior through self-organization. e.g., the spontaneous fonnalion of temporal, spatial or functional structures. This recognition, that the collective behavior of the whole system cannot be simply inferred from the understanding of the behavior of the individual components, has led to various new concepts and sophisticated tools of complexity. The main concepts and tools - with sometimes overlapping contents and methodologies - are the theories of self-organization, complex systems. synergetics. dynamical systems, turbulence. catastrophes, instabilities, nonlinear- ity, stochastic processes, chaos. neural networks, cellular automata, adaptive systems, and genetic algorithms. The topics treated within Springer Complexity are as diverse as lasers or fluids in physics, machine cutting phenomena of workpieces or electric circuits with feedback in engineering, growth of crystals or pattern formation in chemistry, morphogenesis in biology, brain function in neurology, behavior of stock exchange rates in economics, or the fonnation of public opinion in sociology. All these seemingly quite different kinds of structure formation have a number of important features and underlying structures in common. These deep structural similarities can be exploited to transfer analytical methods and understanding from one field to another. The Springer Complexity program therefore seeks to foster cross-fertilization between the disciplines and a dialogue between theo- reticians and experimentalists for a deeper understanding of the general structure and behavior of complex systems. The program consists of individual books, books series such as "Springer Series in Synerget- ics", "Institute of Nonlinear Science", "Physics of Neural Networks", and "Understanding Complex Systems", as well as various journals. New England Complex Systems Institute President Yaneer Bar-Yam New England Complex Systems Institute 238 Main Street Suite 319 NECSI Cambridge, MA 02142, USA For over ten years, the New England Complex Systems Institute (NECSI) has been instrumental in the development of complex systems science and its applications. NECSI conducts research, education, knowledge dissemination, and community development around the world for the promotion of the study of complex systems and its application for the betterment of society. NECSI was founded by faculty of New England area academic institutions in 1996 to further international research and understanding of complex systems. The science of complex systems is a growing field that aims to understand how parts of a system give rise to the system's collective behaviors, and how it interacts with its environment. These questions can be studied in general, and they are also relevant to all traditional fields of science. Social systems formed (in part) out of people, the brain formed out of neu- rons, molecules formed out of atoms, and the weather formed from air flows are all examples of complex systems. The field of complex systems intersects all tradi- tional disciplines of physical, biological and social sciences, as well as engineering, management, and medicine. Advanced education in complex systems attracts pro- fessionals, as complex-systems science provides practical approaches to health care, social networks, ethnic violence, marketing, military conflict, education, systems engineering, international development and counter-terrorism. The study of complex systems is about understanding indirect effects. Problems we find difficult to solve have causes and effects that are not obviously related. Pushing on a complex system "here" often has effects "over there" because the parts are interdependent. This has become more and more apparent in our efforts to solve societal problems or avoid ecological disasters caused by our own actions. The field of complex systems provides a number of sophisticated tools, some of them conceptual, helping us think about these systems; some of them analytical, for studying these systems in greater depth; and some of them computer-based, for describing, modeling or simulating them. NECSI research develops basic concepts and formal approaches as well as their applications to real-world problems. Contributions of NECSI researchers include studies of networks, agent-based modeling, multiscale analysis and complexity, chaos and predictability, evolution, ecology, biodiversity, altruism, systems biology, cellular response, health care, systems engineering, negotation, military conflict, ethnic violence, and international development. Throughout the year, NECSI's classes, seminars, conferences and other programs assist students and professionals alike in their understanding of complex systems. Courses have been taught in Australia, Canada, China, Colombia, France, Italy, Japan, Korea, Portugal, Russia and many states of the U.S. NECSI also spon- sors postdoctoral fellows, provides research resources, and hosts the International Conference on Complex Systems as well as discussion groups and web resources. New England Complex Systems Institute Book Series Series Editor Dan Braha New England Complex Systems Institute NECSI 238 Main Street Suite 319 Cambridge, MA 02142, USA The world around us is full of the wonderful interplay of relationships and emergent behaviors. The beautiful and mysterious way that atoms form bio- logical and social systems inspires us to new efforts in science. As our society becomes more concerned with how people are connected to each other than how they work independently, so science has become interested in the nature of relationships and relatedness. Through relationships elements act together to become systems, and systems achieve function and purpose. The elements act together to become systems, and systems achieve function and purpose. The study of complex systems is remarkable in the closeness of basic ideas and practical implications. Advances in our understanding of complex sys- tems give new opportunities for insight in science and improvement of society. This is manifest in the relevance to engineering, medicine, management and education. We devote this book series to the communication of recent ad- vances and reviews of revolutionary ideas and their application to practical concerns. Unifying Themes in Complex Systems VII Proceedings of the Seventh International Conference on Complex Systems Edited by Ali Minai, Dan Braha and Yaneer Bar-Yam Ali A. Minai Univeristy of Cincinnati Department of Electrical and Computer Engineering, and Computer Science P.O. Box 210030, Rhodes Hall 814 Cincinnati, OH 45221-0030, USA Email: [email protected] Dan Braha New England Complex Systems Institute 238 Main Street Suite 319 Cambridge, MA 02142, USA Email: braha@necsLedu Yaneer Bar-Yam New England Complex Systems Institute 238 Main Street Suite 319 Cambridge, MA 02142, USA Email: [email protected] This volume is part of the New England Complex Systems Institute Series on Complexity ISBN 978-3-642-18002-6 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version. Vi­ olations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+ Business Media springer. com NECSI Cambridge, Massachusetts 2012 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific state­ ment, that such names are exempt from the relevant protective laws and re ulations and therefore free for eneral use. CONTENTS - 2007 CONFERENCE Introduction III Organization iv Conference Programme vii PRESENTED PAPERS Richard M. Adler & David J. Koehn Complex Adaptive System-Based Decision Support for Enabling Organizational Change 2 Chih-Chun Chen, Sylvia B. Nagl & Christopher D. Clack Multi-Level Behaviours in Agent-Based Simulation: Colonic Crypt Cell Populations 14 Myriam Patricia Cifuentes Developing a Complex Approach to Health Phenomena 27 Roozbeh Daneshvar & Liwen Shih Virtual Spring-Based 3D Multi-Agent Group Coordination 36 Sarjoun Doumit & Ali A. Minai Exploration for Agents with Different Personalities in Unknown Environments 44 Rene Doursat T~~~~~~* M Robert A. Este The Necessity of Conceptual Skill Enhancement to Address Philosophical Challenges of New Science 68 Dene Farrell, Hiroki Sayama, Shelly D. Dionne, Francis J. Yammarino & David Sloan Wilson Evolutionary Perspective on Collective Decision Making 75 Philip V. Fellman, Jonathan B. Clemens, Roxana Wright, Jonathan Vos Post & Matthew Dadmun Disrupting Terrorist Networks - A Dynamic Fitness Landscape Approach 85 Carlos Gershenson The World as Evolving Information 100 Adorn Giffin Inferring Diversity: Life After Shannon
Recommended publications
  • Downloading Our Newsletter
    Department of Chemistry Biochemistry& NEWSLETTER In This Issue Page Chair’s Message................2 Jorge Torres Discovers Key Role for a Motor Awards...........................2-5 Protein in Cancer Cell Proliferation Seaborg Symposium........6-7 Happenings....................7-10 Biochemistry Professor high-throughput genetic Distinguished Lectures....11-14 Jorge Torres discovered that screen that knocked the Research.......................15-17 suppressing STARD9, a proteins out one by one to In Memoriam................17-19 newly identified protein see how that affected involved in regulating cell spindle function. Calendar.........................19 division, could be a novel “The idea was to find strategy for fighting certain something that arrested the Spring 2012 cancers, as it stops malignant cells while they were Volume 31 - Number 2 cells from dividing and trying to divide and causes them to die quickly. injured them in such a way that cell death occurred quickly,” The study was published in Torres said. “We were looking for a way to attack the cancer the December 9, 2011 issue cells as they were dividing.” of Cell. From the screens, Torres and his team selected the most During the five-year promising protein. This was STARD9, a kinesin-like protein Jorge Torres study, designed to seek — a sort of molecular motor — that functions to form a targets for anti-cancer stable mitotic spindle. therapies, Torres and co-workers found that depleting “When STARD9 is depleted in the cancer cells, the STARD9 also helped the commonly used chemotherapy chromosomes attempt to align for transmission into the drug Taxol work more effectively against cancers such as daughter cells but fail,” he said.
    [Show full text]
  • DNA Ejection from Bacteriophage: Towards a General Behavior for Osmotic Suppression Experiments Martin Castelnovo, Alex Evilevitch
    DNA ejection from bacteriophage: towards a general behavior for osmotic suppression experiments Martin Castelnovo, Alex Evilevitch To cite this version: Martin Castelnovo, Alex Evilevitch. DNA ejection from bacteriophage: towards a general behavior for osmotic suppression experiments. European Physical Journal E: Soft matter and biological physics, EDP Sciences: EPJ, 2007, 24, pp.9-18. 10.1140/epje/i2007-10205-5. hal-00196724 HAL Id: hal-00196724 https://hal.archives-ouvertes.fr/hal-00196724 Submitted on 13 Dec 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DNA ejection from bacteriophage: towards a general behavior for osmotic suppression experiments M. Castelnovo∗ and A. Evilevitch† (Dated: December 18, 2007) We present in this work in vitro measurements of the force ejecting DNA from two distinct bacteriophages (T5 and λ) using the osmotic ejection suppression technique. Our datas are analyzed by revisiting the current theories of DNA packaging in spherical capsids. In particular we show that a simplified analytical model based on bending considerations only is able to account quantitatively for the experimental findings. Physical and biological consequences are discussed. I. INTRODUCTION Viruses have developped various specific strategies over the evolution in order to infect higher organisms.
    [Show full text]
  • Two-Stage Dynamics of in Vivo Bacteriophage Genome Ejection
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE PHYSICAL REVIEW X 8, 021029 (2018) provided by Caltech Authors Two-Stage Dynamics of In Vivo Bacteriophage Genome Ejection † ‡ Yi-Ju Chen,1,* David Wu,2, William Gelbart,3 Charles M. Knobler,3 Rob Phillips,2,4, and Willem K. Kegel5,§ 1Department of Physics, California Institute of Technology, Pasadena, California 91125, USA 2Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125, USA 3Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA 4Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA 5Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands (Received 1 July 2017; revised manuscript received 27 January 2018; published 1 May 2018) Biopolymer translocation is a key step in viral infection processes. The transfer of information-encoding genomes allows viruses to reprogram the cell fate of their hosts. Constituting 96% of all known bacterial viruses [A. Fokine and M. G. Rossmann, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage 4, e28281 (2014)], the tailed bacteriophages deliver their DNA into host cells via an “ejection” process, leaving their protein shells outside of the bacteria; a similar scenario occurs for mammalian viruses like herpes, where the DNA genome is ejected into the nucleus of host cells, while the viral capsid remains bound outside to a nuclear-pore complex. In light of previous experimental measurements of in vivo bacteriophage λ ejection, we analyze here the physical processes that give rise to the observed dynamics.
    [Show full text]
  • Biosoft Frontiers: Physics of Soft And
    BioSoft Frontiers: Physics of Soft and Biological Matter Research Workshop of the Israel Science Foundation September 18-21, 2016 Weizmann Institute and Tel Aviv University Sponsors Israel Science Foundation Weizmann Institute of Science Tel Aviv University Chorafas Institute for Scientific Exchange, Weizmann Institute Clore Center for Biological Physics, Weizmann Institute Schmidt Minerva Center, Weizmann Institute Department of Materials and Interfaces, Weizmann Institute Faculty of Exact Sciences, Tel Aviv University School of Physics & Astronomy, Tel Aviv University School of Chemistry, Tel Aviv University Sackler Institute of Solid State Physics, Tel Aviv University Sackler Institute of Chemical Physics, Tel Aviv University 1 Scientific Program 18/9/16 Weizmann Institute (Lopatie Center) 12:00-13:45 Arrival and Lunch 13:45-14:00 Opening 14:00-15:25 Session 1. Chair: Jacques Prost (Institut Curie, Paris) 14:00-14:30 Fred MacKintosh (VU University, Amsterdam) Phase transitions and non-equilibrium behavior in living systems 14:30-14:50 Ayelet Lesman (Tel Aviv University) The influence of contractile forces on biological processes 14:50-15:05 Xingpeng Xu (Weizmann Institute) Nonlinear elastic responses of biopolymer gels under compression 15:05-15:35 Tsvi Tlusty (IAS, Princeton) Proteins as learning amorphous matter: dimension and spectrum of the genotype-to-phenotype map 15:35-16:20 Coffee 16:20-17:25 Session 2. Chair: Nihat Berker (Sabanci University, Istanbul) 16:20-16:50 Christoph Schmidt (Universitaet Goettingen) Active soft matter builds life 16:50-17:05 Kinjal Dasbiswas (University of Chicago) Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies 17:05-17:25 Yoram Burak (Hebrew University) Encoding of an animal's trajectory by grid cells in the entorhinal cortex 18:00 Dinner (Lopatie Center) 2 19/9/16 Weizmann Institute (Lopatie Center) 09:00-09:30 Arrival and coffee 09:30-10:35 Session 3.
    [Show full text]
  • Arxiv:Nlin/0610040V2 [Nlin.AO] 27 Nov 2012
    Self-organizing Traffic Lights: A Realistic Simulation Seung-Bae Cools, Carlos Gershenson, and Bart D’Hooghe 1 Introduction: Catch the Green Wave? Better Make Your Own! Everybody in populated areas suffers from traffic congestion problems. To deal with them, different methods have been developed to mediate between road users as best as possible. Traffic lights are not the only pieces in this puzzle, but they are an important one. As such, different approaches have been used trying to reduce waiting times of users and to prevent traffic jams. The most common consists of finding the appropriate phases and periods of traffic lights to quantitatively optimize traffic flow. This results in “green waves” that flow through the main avenues of a city, ideally enabling cars to drive through them without facing a red light, as the speed of the green wave matches the desired cruise speed for the avenue. However, this approach does not consider the current state of the traffic. If there is a high traffic density, cars entering a green wave will be stopped by cars ahead of them or cars that turned into the avenue, and once a car misses the green wave, it will have to wait the whole duration of the red light to enter the next green wave. On the other hand, for very low densities, cars might arrive too quickly at the next intersection, having to stop at each crossing. This method is certainly better than having no synchronization at all, however, it can be greatly improved. Traffic modelling has enhanced greatly our understanding of this complex phe- nomenon, especially during the last decade (Prigogine and Herman 1971; Wolf et al.
    [Show full text]
  • Print Special Issue Flyer
    IMPACT FACTOR 2.524 an Open Access Journal by MDPI What Is Self-Organization? Guest Editors: Message from the Guest Editors Prof. Dr. Claudius Gros In this Special Issue, we invite viewpoints, perspectives, Institute for Theoretical Physics, and applied considerations on questions regarding the Goethe University notions of self-organization and complexity. Examples Frankfurt/Main, Frankfurt, Germany include: [email protected] Routes: In how many different ways can self-organization manifest itself? Would it be meaningful, or even possible, to Dr. Damián H. Zanette Centro Atómico Bariloche, 8400 attempt a classification? Bariloche, Río Negro, Argentina Detection: Can we detect it automatically—either the [email protected] process or the outcome? Or do we need a human observer Dr. Carlos Gershenson to classify a system as “self-organizing”? This issue may be Computer Science Department, related to the construction of quantifiers, e.g., in terms of Instituto de Investigaciones en functions on phase space, such as entropy measures. Matemáticas Aplicadas y en Sistemas, Universidad Nacional Complexity: Is a system self-organizing only when the Autónoma de México, A.P. 20- resulting dynamical state is “complex”? What does 726, México 01000, D.F., Mexico “complex” mean exact;ly? Are there many types of [email protected] complexity, or just a single one? E.g., it has never been settled whether complexity should be intensive or extensive, if any. Deadline for manuscript submissions: Domains: Where do we find self-organizing processes? Are 15 October 2021 the properties of self-organizing systems domain-specific or universal? In which class of systems does self- organization show up most clearly? mdpi.com/si/77921 SpeciaIslsue IMPACT FACTOR 2.524 an Open Access Journal by MDPI Editor-in-Chief Message from the Editor-in-Chief Prof.
    [Show full text]
  • How a Virus Circumvents Energy Barriers to Form Symmetric Shells Sanaz Panahandeh, Siyu Li, Laurent Marichal, Rafael Leite Rubim, Guillaume Tresset, Roya Zandi
    How a Virus Circumvents Energy Barriers to Form Symmetric Shells Sanaz Panahandeh, Siyu Li, Laurent Marichal, Rafael Leite Rubim, Guillaume Tresset, Roya Zandi To cite this version: Sanaz Panahandeh, Siyu Li, Laurent Marichal, Rafael Leite Rubim, Guillaume Tresset, et al.. How a Virus Circumvents Energy Barriers to Form Symmetric Shells. ACS Nano, American Chemical Society, 2020, 14 (3), pp.3170-3180. 10.1021/acsnano.9b08354. hal-03035711 HAL Id: hal-03035711 https://hal.archives-ouvertes.fr/hal-03035711 Submitted on 4 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. How a virus circumvents energy barriers to form symmetric shells Sanaz Panahandeh,y Siyu Li,y Laurent Marichal,z Rafael Leite Rubim,z Guillaume Tresset,z and Roya Zandi∗,y yDepartment of Physics and Astronomy, University of California, Riverside, California 92521, USA zLaboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France E-mail: [email protected] Abstract Previous self-assembly experiments on a model icosahedral plant virus have shown that, under physiological conditions, capsid proteins initially binds to the genome through an en masse mechanism and form nucleoprotein complexes in a disordered state, which raises the questions as to how virions are assembled into a highly or- dered structure in the host cell.
    [Show full text]
  • From the President's Desk
    APRIL 2005 From the President’s desk: The sequence of the human genome underscores the necessity for genetic analysis to define gene function and validates the importance of genomic and genetic approaches in model organisms for gene discovery. The GSA promotes genetic research in model organisms and its application to human genetics via our journal Genetics, supporting public education and congressional lobbying through the Joint Steering Committee for Public Policy (www.jscpp.org) and in its sponsorship of scientific meetings. The GSA support of scientific meetings includes providing the crucial infrastructure, organization, administration, and financial foundation, as well as recognition for students and postdocs through the awards we sponsor. The society’s sponsorship of model organisms meetings in C. elegans, Drosophila, Fungi, Yeast and Zebrafish has enabled those research communities to hold conferences that are particularly accessible to students and postdocs who are our future. The support of the GSA has been key in enabling these very successful meetings while permitting each of the model organism communities the independence to organize the meeting according to their needs. In recognition of the importance of genomics in our field, this year the GSA will support a new meeting of biocurators and database developers with the goal of bringing together developers of these bioinformatics tools for a variety of organisms. Your membership in the GSA entitles you to a reduced registration fee for all of these meetings. The GSA will organize its own meeting “Genetic Analysis: Model Organisms to Human Biology,” Jan. 5-7, 2006 in San Diego to draw together the entire constituency of our society and to promote interactions with our colleagues directly studying human disease.
    [Show full text]
  • Comments to “Investigations” by Stuart Kauffman
    Comments to “Investigations” by Stuart Kauffman Carlos Gershenson Warning: This is not a review of Kauffman’s book (read it!), only sparse informal comments. “Investigations” is a great book. It is a huge step in bringing closer biology and physics, the so called “soft” and “hard” sciences. Not because it is able to reduce biology to physics. Quite the opposite. It argues for the need of new laws for understanding biospheres, but nevertheless related to the physical laws. It is just that living organisms have properties that systems which can be studied with classical physics lack. Mainly the fact that living organisms change their environment. Therefore it is difficult (tending to silly) to study them as isolated systems... Moreover, the classic way of studying systems (initial conditions, boundary conditions, laws, and compute away1) falls too short when studying systems which change their own boundaries and environment. Classical physics always assumes “anything else being equal”... but with living organisms, not anything keeps being equal! Once we begin to observe living systems as open, we see that they affect each other’s fitness. As Kauffman notes, living organisms co-construct each other, their niches, and their search procedures (e.g. sexual reproduction as a way of exploring new genetic combinations). Not only organisms and species are selected according to their fitness, since the fitness landscapes of different species affect each other. But probably also we can speak about selection of fitness landscapes, since those which are more easily searchable by a particular method (mutation, recombination) will have an advantage. But then, the search methods will be selected accordingly to the current fitness landscapes.
    [Show full text]
  • Assembly and Disassembly of Viral Capsids
    Journal of Theoretical Medicine, Vol. 6, No. 2, June 2005, 69–72 Assembly and disassembly of viral capsids ROYA ZANDI†*, DAVID REGUERA†, ROBIJN BRUINSMA‡, WILLIAM GELBART† and JOSEPH RUDNICK‡{ †Department of Chemistry, University of California, Los Angeles, LA 90095, USA ‡Department of Physics, University of California, Los Angeles, LA 90095, USA We address here a theoretical basis for the icosahedral symmetry that is observed so commonly for viral capsids, i.e., the single-protein-thick rigid shells that protect the viral genome. In particular, we outline the phenomenological hamiltonian approach developed recently (see Zandi, R., Reguera, D., Bruinsma, R., Gelbart, W.M. and Rudnick, J. (2004), Original of icosahedral symmetry in viruses, Proc. Natl. Acad. Sci., 101, 15556–15560) to account for the overwhelming prevalence of the Caspar-Klug “T- number” structures that are found for “spherical” viruses. We feature the role of “conformational switching energies” defining the competing multimeric states of the protein subunits. The results of Monte Carlo simulation of this model are argued to shed light as well on the mechanical properties and genome release mechanism for these viruses. Keywords: Viral self-assembly; Icosahedral symmetry; Structural transitions; T-number 1. Introduction believed to describe the generic structure of protein shells.§ However, with current computational capabilities The cowpea rotic mottle virus (CCMV) is a classical it is neither possible to verify this claim through all-atom T ¼ 3 RNA virus with a shell composed of 180 identical molecular dynamics simulations nor can we design subunits, [2] see also A. Zlotnick, this volume. Figure 1(a) artificial protein shells by all-atom simulations.
    [Show full text]
  • Assembly from Atoms to Life October 3 to 5, 2016
    Self-assembly from atoms to life October 3 to 5, 2016. Tuxtla Gutiérrez, Chiapas, México. Organizers: Prof. Charles M. Knobler / University of California Los Angeles (USA) Prof. Alexander J. Levine / University of California Los Angeles (USA) Prof. Jaime Ruiz García / Universidad Autónoma de San Luis Potosí (México) Dr. Elías Castellano Alcantara / Mesoamerican Centre for Theoretical Physics (MCTP) Sponsor: UCLA Center for Biological Physics, UCLA College of Letters and Sciences, UCLA ICAM branch, ICAM, 12 ICAM (http://icam-i2cam.org/), ICTP, MCTP, UNACH and CONACYT. The three-day October 2016 workshop in Mexico will honor of Professor William Gelbart’s 70th birthday. The "Self-assembly from atoms to life" workshop will bring together both young and senior scientists from around the world and it covers research areas that match UCLA physical chemistry professor Gelbart's broad range of interests that he has pursued over a 45- year career in research. It will take place October 3-5, 2016, at the Mesoamerican Centre for Theoretical Physics in Tuxtla Gutiérrez, Chiapas, Mexico. To facilitate travel to and from the event, the Marriott Tuxtla Gutiérrez Hotel has reserved a block a rooms at the special conference rate for October 2 through October 6. The workshop organizers are Profs. Alex Levine and Chuck Knobler from the UCLA Department of Chemistry and Biochemistry and Prof. Jaime Ruiz-Garcia, of the Physics Institute of the University of San Luis Potosi, in Mexico. One archetypal example of emergent phenomena in nature is found in the self-assembly of complex spatio-temporal structures, either in the relaxation of many-body systems toward their thermal equilibrium or in non-equilibrium steady states characterized by continuous energy throughput.
    [Show full text]
  • 2005-Gershenson-1.Pdf
    Self-Organizing Traffic Lights Carlos Gershenson Centrum Leo Apostel, Vrije Universiteit Brussel ∗ Krijgskundestraat 33 B-1160 Brussel, Belgium (Dated: February 6, 2008) Steering traffic in cities is a very complex task, since improving efficiency involves the coordi- nation of many actors. Traditional approaches attempt to optimize traffic lights for a particular density and configuration of traffic. The disadvantage of this lies in the fact that traffic densities and configurations change constantly. Traffic seems to be an adaptation problem rather than an optimization problem. We propose a simple and feasible alternative, in which traffic lights self- organize to improve traffic flow. We use a multi-agent simulation to study three self-organizing methods, which are able to outperform traditional rigid and adaptive methods. Using simple rules and no direct communication, traffic lights are able to self-organize and adapt to changing traffic conditions, reducing waiting times, number of stopped cars, and increasing average speeds. PACS numbers: 89.40.-a, 05.65.+b, 45.70.Vn, 05.10.-a I. INTRODUCTION optimizing methods are blind to ”abnormal” situations, such as many vehicles arriving or leaving a certain place at the same time, e.g. a stadium, a financial district, Anyone living in a populated area suffers from traffic a university. In most cases, traffic agents need to over- congestion. Traffic is time, energy, and patience consum- ride the traffic lights and personally regulate the traffic. ing. This has motivated people to regulate traffic flow Nevertheless, traffic modelling has improved greatly our in order to reduce the congestion. The idea is simple: understanding of this complex phenomenon, especially if vehicles are allowed to go in any direction, there is during the last decade [2, 3, 4, 5, 6, 7], suggesting differ- a high probability that one will obstruct another.
    [Show full text]