3. Historie Algoritmického Umění

Total Page:16

File Type:pdf, Size:1020Kb

3. Historie Algoritmického Umění Masarykova univerzita Filozofická fakulta Ústav hudební vědy Teorie interaktivních médií Bc. Veronika Zapletalová Algoritmický obraz v českém výtvarném umění Magisterská diplomová práce Vedoucí práce: Mgr. Tomáš Staudek, Ph.D. 2014 Čestné prohlášení Prohlašuji, že jsem tuto diplomovou práci zpracovala samostatně s využitím všech uvedených zdrojů a literatury. ……………………………………………… Veronika Zapletalová V Brně 2. května 2014 - 3 - Poděkování Velmi děkuji Tomášovi, svému milému vedoucímu práce, za jeho chytrou a důmysl- nou zpětnou vazbu, za dobré rady, za poskytnutí materiálů a informací, za trpělivost a roz- hodně za uklidňující zásahy do mých krizových nálad. Děkuji Zdeňce Čechové za její milou spolupráci, za spoustu času, který mi věnovala, za úžasné množství materiálů a informací, které mi předala, a za opravy všech nesmyslů, kterým jsem věřila. Velmi děkuji Ivovi Serbovi. Děkuji své rodině a svým rodičům za to, že mě mají rádi, jsou na mě hodní a hezky se o mě starají. Děkuji všem knihovnicím a knihovníkům za to, že mi z archívů přitáhli spoustu knížek, které jsem hned vrátila, protože jsem zjistila, že je vlastně nepotřebuju. Děkuji svým učitelům z oděvního a textilního designu za to, že se mnou mají slitování. Děkuji svým bargirls a svému barmanovi za to, že za mě berou směny i na poslední chvíli. Děkuji svým kamarádům. Po použití jednoduchého algoritmu rozluštíte poslední poděkování: C d J t i ch O q r j n k d s d . E f L v k j Q s t l p m f u f ? a b c d e f g h ch i j k l m n o p q r s t u v w x y z - 4 - Obsah Čestné prohlášení ................................................................................................................... - 3 - Poděkování ............................................................................................................................. - 4 - Obsah ...................................................................................................................................... - 5 - 1. Úvod ................................................................................................................................... - 6 - 2. Teoretická východiska ........................................................................................................ - 8 - 3. Historie algoritmického umění ......................................................................................... - 11 - 3.1 Předchůdci algoritmického umění ............................................................................. - 11 - 3.2 Historie světového algoritmického umění ................................................................. - 13 - 3.3 Historie českého algoritmického umění ..................................................................... - 17 - 4. Profily jednotlivých autorů ............................................................................................... - 20 - 4.1 Zdeněk Sýkora ............................................................................................................ - 20 - 4.2 Vladislav Mirvald ........................................................................................................ - 25 - 4.3 Dalibor Chatrný .......................................................................................................... - 28 - 4.4 Ivan Chatrný ............................................................................................................... - 32 - 4.5 Miroslav Klivar ............................................................................................................ - 35 - 4.6 Ivo Serba ..................................................................................................................... - 39 - 4.7 Lubomír Sochor .......................................................................................................... - 40 - 4.8 Pavel Rudolf ................................................................................................................ - 41 - 4.9 Zdeňka Čechová ......................................................................................................... - 43 - 4.10 Aleš Svoboda ............................................................................................................ - 48 - 5. Srovnání ............................................................................................................................ - 51 - 5.1 Jaký je generační vztah mezi autory? ......................................................................... - 52 - 5.2 Jak probíhal autorův osobní a tvůrčí vývoj? ............................................................... - 52 - 5.3 Jakou měl autor motivaci k tvoření algoritmických děl? ........................................... - 54 - 5.4 Jak velkou část autorovy celkové tvorby lze označit za algoritmické umění? (kompletní tvorba x část tvorby x minimum tvorby) .......................................................................... - 55 - 5.5 Pracuje autor s počítačem? ........................................................................................ - 55 - 5.6 Pracuje autor s počítačem sám, nebo spolupracuje s odborníky? ............................ - 56 - 5.7 Mělo na autorovu tvorbu vliv studium na odborné škole? ........................................ - 57 - 5.8 Jak byl autor přijat uměleckou obcí? ......................................................................... - 57 - 5.9 Jaké jsou charakteristické znaky algoritmických děl analyzovaných autorů? Jaké je konečné vyznění obrazu? (geometrické x organické x lyrické) ........................................ - 58 - 6. Závěr ................................................................................................................................. - 61 - Resumé ................................................................................................................................. - 64 - Summary .............................................................................................................................. - 64 - Das Resümee ........................................................................................................................ - 64 - Seznam pramenů a literatury ............................................................................................... - 65 - Seznam použité literatury ................................................................................................ - 65 - Seznam online zdrojů ....................................................................................................... - 68 - Doplňková literatura ........................................................................................................ - 71 - Seznam příloh ................................................................................................................... - 72 - Přílohy ................................................................................................................................... - 83 - - 5 - 1. Úvod „Kde kolemjdoucí vidí pouze půvabnou kapli – čtyři sloupy, jednoduchý styl – tam já uložil vzpomínku na jeden krásný den svého života. Ó, sladká proměno! Nikdo neví, že ten křehký chrám je matematický obraz korintské dívky, již jsem šťastně miloval. Věrně opisuje jednotli- vé proporce jejího těla.“ Paul Valéry Umění mělo už ve svých počátcích vždy něco společného s technikou a vědou. Umělci často reagovali na nové vynálezy, experimentovali s nimi a reflektovali je, podobně jako reagovali na vlivy náboženské, společenské, politické či filozofické. S 20. stoletím se vzájemný vztah vědy a umění ještě prohloubil. Technologických a vědeckých novinek a objevů výrazně přibý- valo, mnozí umělci se oprostili od tradičních uměleckých prostředků a forem a našli si cestu k novým médiím. V posledních letech začaly vznikat mnohé mezioborové laboratoře a místa, kde se potkávají umělci s vědci, aby spolu navzájem spolupracovali. Algoritmické umění, kte- ré je náplní této práce, má s vědou také mnoho styčných bodů. Je založeno na přesných po- stupech a dodržování daných pravidel, což je velmi podobné vědecké práci. Obvykle využívá počítač, který je jednou z nejmodernějších technologií. A mnohdy vzniká na základě pravidel systému nebo jevu, které popisují přírodovědné, matematické, chemické, biologické, fyzikál- ní a jiné obory. Tomuto tématu jsem se začala věnovat proto, abych vytvořila obecný přehled o čes- kém algoritmickém umění, které nebylo dosud v žádné literatuře souhrnně popsáno a reflek- továno. Umělci, kteří jsou na následujících stránkách rozebráni, nejsou novými osobnostmi na poli české výtvarné kultury, ale prozatím nebyli integrováni a dáni do jednotné souvislosti s algoritmickou tvorbou, která v české umělecké teoretické reflexi není chápána jako samo- statné téma. Jednotliví autoři se často objevují v jiných kontextech. Proto jsem si také jako metodu práce zvolila komparaci, abych mohla popsat, jaké jsou mezi nimi spojitosti, styčná témata a společné znaky. Výsledná práce je zmapováním různorodého českého algoritmického umění, které má statickou formu a dalo by se tedy teoreticky orámovat. Postupy tohoto uměleckého směru lze aplikovat i na hudbu, literaturu, architekturu, sochařství, video art, multimedia art a na mnohé další druhy umění. Mé zaměření na statickou formu je dáno rozsahem diplomové magisterské práce, která by nebyla schopná pojmout veškeré algoritmické umění. Nicméně tímto směrem by se mohlo orientovat případné rozšíření práce. - 6 - Cílem bylo také představení ukázek děl jednotlivých autorů. Některé obrazy v příloze jsou skenované z archivů novin a časopisů, které
Recommended publications
  • Technologies of Expression, Originality and the Techniques of the Observer
    Technologies of Expression, Originality and the Techniques of the Observer A dissertation presented in fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) Art and Design at the Art and Design Faculty of the Bauhaus University Weimar By Mirette Bakir Born on 16.12.1980 Matriculation Nº 90498 2014 Defended on 22.04.2015 Supervisors: 1. Prof. Dr. phil. habil. Frank Hartmann Faculty of Art and Design, Bauhaus University – Weimar 2. Prof. Dr. Abobakr El Nawawy Faculty of Applied Arts, Helwan University – Cairo 1 To Ziad 2 Contents Part 1 (Theoretical Work) .............................................................................. 5 1. Introduction ......................................................................................... 6 2. The observer: ..................................................................................... 12 2.1. Preface .................................................................................................... 12 2.2. The Nineteenth Century ...................................................................... 13 2.3. Variations of the Observer’s Perception ........................................... 20 2.4. The Antinomies of Observation ......................................................... 20 3. Science, Art, Technology and Linear Perspective ........................ 25 3.1. The Linear Perspective ........................................................................ 27 3.2. Linear perspective in use ...................................................................
    [Show full text]
  • Transformations in Sirigu Wall Painting and Fractal Art
    TRANSFORMATIONS IN SIRIGU WALL PAINTING AND FRACTAL ART SIMULATIONS By Michael Nyarkoh, BFA, MFA (Painting) A Thesis Submitted to the School of Graduate Studies, Kwame Nkrumah University of Science and Technology in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Faculty of Fine Art, College of Art and Social Sciences © September 2009, Department of Painting and Sculpture DECLARATION I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of the University, except where due acknowledgement has been made in the text. Michael Nyarkoh (PG9130006) .................................... .......................... (Student’s Name and ID Number) Signature Date Certified by: Dr. Prof. Richmond Teye Ackam ................................. .......................... (Supervisor’s Name) Signature Date Certified by: K. B. Kissiedu .............................. ........................ (Head of Department) Signature Date CHAPTER ONE INTRODUCTION Background to the study Traditional wall painting is an old art practiced in many different parts of the world. This art form has existed since pre-historic times according to (Skira, 1950) and (Kissick, 1993). In Africa, cave paintings exist in many countries such as “Egypt, Algeria, Libya, Zimbabwe and South Africa”, (Wilcox, 1984). Traditional wall painting mostly by women can be found in many parts of Africa including Ghana, Southern Africa and Nigeria. These paintings are done mostly to enhance the appearance of the buildings and also serve other purposes as well. “Wall painting has been practiced in Northern Ghana for centuries after the collapse of the Songhai Empire,” (Ross and Cole, 1977).
    [Show full text]
  • Glossaire Infographique
    Glossaire Infographique André PASCUAL [email protected] Glossaire Infographique Table des Matières GLOSSAIRE ILLUSTRÉ...............................................................................................................................................................1 des Termes techniques & autres,.....................................................................................................................................1 Prologue.......................................................................................................................................................................................2 Notice Légale...............................................................................................................................................................................3 Définitions des termes & Illustrations.......................................................................................................................................4 −AaA−...........................................................................................................................................................................................5 Aberration chromatique :..................................................................................................................................................5 Accrochage − Snap :........................................................................................................................................................5 Aérosol,
    [Show full text]
  • Biological Agency in Art
    1 Vol 16 Issue 2 – 3 Biological Agency in Art Allison N. Kudla Artist, PhD Student Center for Digital Arts and Experimental Media: DXARTS, University of Washington 207 Raitt Hall Seattle, WA 98195 USA allisonx[at]u[dot]washington[dot]edu Keywords Agency, Semiotics, Biology, Technology, Emulation, Behavioral, Emergent, Earth Art, Systems Art, Bio-Tech Art Abstract This paper will discuss how the pictorial dilemma guided traditional art towards formalism and again guides new media art away from the screen and towards the generation of physical, phenomenologically based and often bio-technological artistic systems. This takes art into experiential territories, as it is no longer an illusory representation of an idea but an actual instantiation of its beauty and significance. Thus the process of making art is reinstated as a marker to physically manifest and accentuate an experience that takes the perceivers to their own edges so as to see themselves as open systems within a vast and interweaving non-linear network. Introduction “The artist is a positive force in perceiving how technology can be translated to new environments to serve needs and provide variety and enrichment of life.” Billy Klüver, Pavilion ([13] p x). “Art is not a mirror held up to reality, but a hammer with which to shape it.” Bertolt Brecht [2] When looking at the history of art through the lens of a new media artist engaged in several disciplines that interlace fields as varying as biology, algorithmic programming and signal processing, a fairly recent paradigm for art emerges that takes artistic practice away from depiction and towards a more systems based and biologically driven approach.
    [Show full text]
  • Camera Obscura Vs
    MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2006 PREPRINT 307 Erna Fiorentini Camera Obscura vs. Camera Lucida – Distinguishing Early Nineteenth Century Modes of Seeing TABLE OF CONTENTS 1. Distinguishing Technologies: a Box and a Prism 5 2. Untangling Stories: an Old and a New Device 6 3. Parting Fortunes: the New Eclipses the Old 10 4. Diverging Necessities: Old and New Demands 12 5. Discerning Visual Modalities: Projective vs. Prismatic Seeing 20 5.1. Accuracy and Perceptual Experience: Criteria in Comparison 21 5.1.1. Degrees of ‘Truth to Nature’ 21 5.1.2. Degrees of Perceptual Experience 27 5.2. Projective vs. Prismatic: Optical Principles in Comparison 29 6. An Epilogue: the ‘Prismatic’ as the Camera-Lucida-Mode of Seeing 37 CAMERA OBSCURA VS. CAMERA LUCIDA 1 DISTINGUISHING EARLY NINETEENTH CENTURY MODES OF SEEING Erna Fiorentini If we look at Fig. 1, we see a painter holding an inspired pose while beholding and recording the landscape. Although he appears to beindulging in purely aesthetic rapture, he is equipped with optical drawing devices and with many other instruments for observation, tracing and measuring. A Camera Lucida is arrayed on a tripod on the right, surrounded by a telescope, a setsquare, a ruler, a pair of compasses and other devices, while in the background a tent-type Camera Obscura is in use. This motif belonged to Carl Jacob Lindström’s well-known satiric, illustrated book I Stranieri in Italia, printed and distributed in Naples in 1830.2 Moreover, Lindström produced countless further exemplars of this scene in watercolour, engraving and lithography.
    [Show full text]
  • Extending Mandelbox Fractals with Shape Inversions
    Extending Mandelbox Fractals with Shape Inversions Gregg Helt Genomancer, Healdsburg, CA, USA; [email protected] Abstract The Mandelbox is a recently discovered class of escape-time fractals which use a conditional combination of reflection, spherical inversion, scaling, and translation to transform points under iteration. In this paper we introduce a new extension to Mandelbox fractals which replaces spherical inversion with a more generalized shape inversion. We then explore how this technique can be used to generate new fractals in 2D, 3D, and 4D. Mandelbox Fractals The Mandelbox is a class of escape-time fractals that was first discovered by Tom Lowe in 2010 [5]. It was named the Mandelbox both as an homage to the classic Mandelbrot set fractal and due to its overall boxlike shape when visualized, as shown in Figure 1a. The interior can be rich in self-similar fractal detail as well, as shown in Figure 1b. Many modifications to the original algorithm have been developed, almost exclusively by contributors to the FractalForums online community. Although most explorations of Mandelboxes have focused on 3D versions, the algorithm can be applied to any number of dimensions. (a) (b) (c) Figure 1: Mandelbox 3D fractal examples: (a) Mandelbox exterior , (b) same Mandelbox, but zoomed in view of small section of interior , (c) Juliabox indexed by same Mandelbox. Like the Mandelbrot set and other escape-time fractals, a Mandelbox set contains all the points whose orbits under iterative transformation by a function do not escape. For a basic Mandelbox the function to apply iteratively to each point �" is defined as a composition of transformations: �#$% = ��ℎ�������1,3 �������6 �# ∗ � + �" Boxfold and Spherefold are modified reflection and spherical inversion transforms, respectively, with parameters F, H, and L which are described below.
    [Show full text]
  • Hockney–Falco Thesis
    Hockney–Falco thesis discussions. 1 Setup of the 2001 publication Part of Hockney’s work involved collaboration with Charles Falco, a condensed matter physicist and an expert in optics. While the use of optical aids would generally enhance accuracy, Falco calculated the types of distortion that would result from specific optical devices; Hockney and Falco argued that such errors could in fact be found in the work of some of the Old Masters.[2] Hockney’s book prompted intense and sustained debate among artists, art historians, and a wide variety of other scholars. In particular, it has spurred increased interest in the actual methods and techniques of artists among sci- entists and historians of science, as well as general histo- rians and art historians. The latter have in general reacted unfavorably, interpreting the Hockney–Falco thesis as an accusation that the Old Masters “cheated” and intention- ally obscured their methods.[3] Physicist David G. Stork and several co-authors have argued against the Hockney– Falco thesis from a technical standpoint.[4][5][6] 2 Origins of the thesis A diagram of the camera obscura from 1772. According to the As described in Secret Knowledge, in January 1999 dur- Hockney–Falco thesis, such devices were central to much of the ing a visit to the National Gallery, London, Hockney con- great art from the Renaissance period to the dawn of modern art. ceived of the idea that optical aids were the key factor in the development of artistic realism. He was struck by the accuracy of portraits by Jean Auguste Dominique Ingres, The Hockney–Falco thesis is a theory of art history, ad- and became convinced that Ingres had used a camera lu- vanced by artist David Hockney and physicist Charles M.
    [Show full text]
  • Insight: Algorithmic Art in the Digital Age," the State Press, September 14, 2020
    Ellefson, Sam. "Insight: Algorithmic art in the digital age," The State Press, September 14, 2020 Insight: Algorithmic art in the digital age Artists working with algorithms have existed for centuries, and computers have helped bolster their work Photo by Nghi Tran (https://www.statepress.com/staff/nghi-tran) | The State Press "Algorithmic art predates the rise of technology with evidence found from Islamic tessellation to 15th-century Renaissance art." Illustration published on Sunday Sept. 13 2020 By Sam Ellefson (https://www.statepress.com/staff/sam-ellefson) | 09/14/2020 8:10pm In our present-day, digital art is de ned by its limitless stylistic possibilities and methodologies. During its formative years, neoterics sought to further the existing relationship between mathematics and art through the burgeoning technologies of the postmodern age. One of the earliest instances of digital art, born out of an urge to challenge conventional means of creating work and explore technology's relationship between aesthetic and intellectual value, is Ben Laposky's "Oscillon (http://www.vasulka.org/archive/Artists3/Laposky,BenF/ElectronicAbstractions.pdf)" works. These abstract electrical compositions, as the Iowa-born mathematician-turned-abstractionist Laposky described them, were generated by photographing electronic beams outputted by a cathode ray oscilloscope with sine wave generators. As computers gradually became more accessible to academics in the latter portion of the 20th century, mathematicians and scientists began to delve into artistic
    [Show full text]
  • 1875–2012 Dr. Jan E. Wynn
    HISTORY OF THE DEPARTMENT OF MATHEMATICS BRIGHAM YOUNG UNIVERSITY 1875–2012 DR. LYNN E. GARNER DR. GURCHARAN S. GILL DR. JAN E. WYNN Copyright © 2013, Department of Mathematics, Brigham Young University All rights reserved 2 Foreword In August 2012, the leadership of the Department of Mathematics of Brigham Young University requested the authors to compose a history of the department. The history that we had all heard was that the department had come into being in 1954, formed from the Physics Department, and with a physicist as the first chairman. This turned out to be partially true, in that the Department of Mathematics had been chaired by physicists until 1958, but it was referred to in the University Catalog as a department as early as 1904 and the first chairman was appointed in 1906. The authors were also part of the history of the department as professors of mathematics: Gurcharan S. Gill 1960–1999 Lynn E. Garner 1963–2007 Jan E. Wynn 1966–2000 Dr. Gill (1956–1958) and Dr. Garner (1960–1962) were also students in the department and hold B. S. degrees in Mathematics from BYU. We decided to address the history of the department by dividing it into three eras of quite different characteristics. The first era (1875–1978): Early development of the department as an entity, focusing on rapid growth during the administration of Kenneth L. Hillam as chairman. The second era (1978–1990): Efforts to bring the department in line with national standards in the mathematics community and to establish research capabilities, during the administration of Peter L.
    [Show full text]
  • Visual Mathematics
    25/01/2017 Visual Mathematics http://home.gwu.edu/~robinson/vm/visual.html Go MAY 29 captures 9 May 04 ­ 23 Mar 16 2003 Visual Mathematics The official public web page for Math 801­10 : Visual Mathematics A Dean's Seminar for Freshmen (This page remains: currently under construction!) Recommended Visual Math Software: Fractint: http://spanky.triumf.ca/www/fractint/fractint.html The classic PC fractal program.Try Winfract MS Windows version. Winfeed: http://math.exeter.edu/rparris/winfeed.html A great program that draws many types of fractals Tyler:http://www.superliminal.com/geometry/tyler/Tyler.htm, Draws regular and semi­regular tessellations, and more. Web based applet is also available as java appliacation. MusiNum: http://www.mns.brain.riken.jp/~kinderma/musinum/musinum.html: Fractal music software. Jeff Week's amazing software including Kali and Kaleidotile : http://geometrygames.org/ Tess32: http://www.soft411.com/company/Pedagoguery­Software­Inc/Tess.htm Pretzangles: http://www.pretzangles.com/index.html Anamorph Me!: http://www.anamorphosis.com (see also http://myweb.tiscali.co.uk/artofanamorphosis/AnamorphMe­README.txt ) QuasiG: http://condellpark.com/kd/quasig.htm A program for drawing Penrose tilings Boids: http://www.navgen.com/3d_boids/ Simulation of bird flocking behavior Life32: http://psoup.math.wisc.edu/Life32.html Fully featured program to play Conway's game of Life Life http://www.robmaeder.com/projects/code/life.php Easy & basic program to play Conway's game of Life Artists & Mathematicians: Thomas Banchoff: http://www.math.brown.edu/~banchoff/ Dror Bar­Natan: http://www.math.toronto.edu/~drorbn/Gallery/index.html Paul Bourke: http://astronomy.swin.edu.au/~pbourke/ Brent Collins: http://www.mi.sanu.ac.yu/vismath/col/col1.htm Santiago Calatrava: http://www.calatrava.com/ Bill Casselman: http://www.math.ubc.ca/~cass/ H.
    [Show full text]
  • Universidad Autónoma De Nuevo León Facultad De Artes Visuales División De Estudios De Posgrado
    UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE ARTES VISUALES DIVISIÓN DE ESTUDIOS DE POSGRADO ANÁLISIS ESTÉTICO DE LA OBRA “FLOWERS OF LEARNING” DE ROMAN VEROSTKO COMO REPRESENTANTE DEL ARTE ALGORÍTMICO Por PAUL FIDEL MARTÍNEZ MARTÍNEZ Director de Tesis M.A. José Alfredo Herrera Pescador Como requisito parcial para obtener el Grado de Maestría en Artes con Especialidad en Educación en el Arte Monterrey, N.L. Junio de 2008 1 INDICE DE CONTENIDOS INDICE DE CONTENIDOS 2 INTRODUCCIÓN 4 CAPÍTULO I 8 Naturaleza y Dimensión del tema de investigación 8 1.1 Marco Contextual 8 1.2 Planteamiento del Problema 11 1.3 Objetivos de la investigación 12 1.3.1 Objetivo General 13 1.3.2 Objetivos específicos 13 1.4 Hipótesis 13 1.5 Justificación 14 1.6 Metodología 14 CAPÍTULO II 16 Precedentes 16 2.1 La Función Estética del Arte a partir de las Vanguardias del S.XX 16 2.2 Las Vanguardias 23 2.2.1 El cubismo 25 2.2.2 Futurismo 27 2.2.3 Dadaísmo 30 2.2.5. Fluxus 36 2.3. Arte digital 37 CAPÍTULO III 43 ESTETICA DIGITAL 43 3.1 Perspectivas de la estética digital 43 3.2 Estética de la percepción 47 3.3 Estética Generativa y Estética Participativa 50 2 CAPITULO IV 55 ARTE ALGORÍTMICO 55 4. 1 CONCEPTO DE ALGORITMO 55 4.1.1 ¿Qué es un Algoritmo? 55 4.1.2 La máquina de Turing 61 4.1.3 Especificación de algoritmos 63 4.1.4 Implementación de algoritmos 65 4.1.5 Clases de algoritmos 67 4.
    [Show full text]
  • The Eightfold Way: a Mathematical Sculpture by Helaman Ferguson
    The Eightfold Way MSRI Publications Volume 35, 1998 The Eightfold Way: A Mathematical Sculpture by Helaman Ferguson WILLIAM P. THURSTON This introduction to The Eightfold Way andtheKleinquarticwaswritten for the sculpture’s inauguration. On that occasion it was distributed, to- gether with the illustration on Plate 2, to a public that included not only mathematicians but many friends of MSRI and other people with an in- terest in mathematics. Thurston was the Director of MSRI from 1992 to 1997. Mathematics is full of amazing beauty, yet the beauty of mathematics is far removed from most people’s everyday experience. The Mathematical Sciences Research Institute is committed to the search for ways to convey the beauty and spirit of mathematics beyond the circles of professional mathematicians. As a step in this effort, MSRI (pronounced “Emissary”) has installed a first mathematical sculpture, The Eightfold Way, by Helaman Ferguson. The sculp- ture represents a beautiful mathematical construction that has been studied by mathematicians for more than a century, from many points of view: geometry, symmetry, group theory, algebraic geometry, topology, number theory, complex analysis. The surface depicted by the sculpture was discovered, along with many of its amazing properties, by the German mathematician Felix Klein in 1879, and is often referred to as the Klein quartic or the Klein curve in his honor. The abstract surface is impossible to render exactly in three-dimensional space, so the sculpture should be thought of as a kind of topological sketch. Ridges and valleys carved into the white marble surface divide it into 24 regions. Each region has 7 sides, and represents the ideal of a regular heptagon (7-gon).
    [Show full text]