Dual Polarization Is Coming to NEXRAD! Beginning in 2011, All WSR- Functionality

Total Page:16

File Type:pdf, Size:1020Kb

Dual Polarization Is Coming to NEXRAD! Beginning in 2011, All WSR- Functionality NEXRAD Now December 2010 Issue 20 Dual Polarization is Coming to NEXRAD! Beginning in 2011, all WSR- functionality. The contractor had the What’s 88Ds will undergo a modification to requirement to implement dual implement dual polarization capabil- polarization on the existing WSR- Inside? ity. This new technology allows the 88D antenna and integrate new func- Page 3 WSR-88D to simultaneously trans- tionality into the Radar Data Acqui- Improving the VWP mit and receive in the horizontal and sition subsystem. The Government Page 6 vertical planes, providing an addi- retained responsibility to ingest new The New Architectured tional dimension of weather features dual polarization data at the Radar WSR-88D Level II Data and giving the weather forecaster Product Generator and make avail- Collection, Distribution, and Archive Network additional and improved tools to able base and derived dual polariza- serve the public. tion products to the forecaster/users. Page 10 ROC Stars Dual Polarization technology has Throughout the program there been the subject of research since the have been two main technical areas Page 11 Information “Tid Bits” 1970’s. However, it was not until of focus: for Improved WSR-88D the Joint Polarization Experiment Sensitivity – Because dual polar- Operations (JPOLE) was conducted by the ization requires splitting of the trans- Page 16 National Severe Storms Laboratory mitted signal into horizontal and What’s Your Question? (NSSL) in 2002-2003 the technology vertical components we expected Page 17 was demonstrated to provide signifi- slight reduction in radar sensitivity. GIS Methods for cant benefits to the forecaster. The Prior to contract award, NSSL stud- Evaluating Wind operational benefits include ied the subject in a WFO setting and Turbine Impacts on improved rainfall estimation, dis- concluded the effect should not be NEXRAD crimination of precipitation types, operationally significant. In March Page 18 Wind Farms and the discrimination between hydromete- of this year, we utilized data from the WSR-88D -- An Update ors and non-hydrometeors, and Dual Polarization prototype in a Page 23 improvement in data quality. Subject Matter Expert review and Integrated Real-Time Based on the results of JPOLE, reached the same conclusion. The Performance Monitoring the National Weather Service Office Operational Assessment conducted of Observing Networks of Science and Technology entered in August with 20 field forecasters in China into a contract with L3 Communica- was consistent with these earlier Page 31 tions/Baron Services in September findings. An Historical Look at 2007 to develop and deploy this new Continued on Page 2 NEXRAD NEXRAD Now Dual Polarization Continued from Page 1 Calibration – It is critical that any bias between ment to follow beta test completion. The installa- the horizontal and vertical channels be accurately tion requires the site be off-line for up to12 days, determined. The contractor has implemented an requiring careful planning to ensure contiguous automated calibration process to periodically sites are available to provide coverage and to avoid check this differential reflectivity (Zdr) bias. The typical periods of adverse weather in the region. contractor and consulting government subject mat- Production installation will begin slowly with ini- ter experts have also spent a great deal of time tially only two teams in the field. We intend to refining the calibration process which must be ramp to five teams as deployment progresses. conducted by the on-site technician (e.g., when Deployment is scheduled to be completed in Janu- certain parts are replaced). ary 2013. Maintenance and operations training are a big We look forward to bringing this important part of the Dual Polarization program. The con- new technology to the WSR-88D for the benefits it tractor conducted a ‘Train-the-Trainer’ session will bring to the public. Please do not hesitate to with the NWS Training Center in support of dual contact our office with questions. Additional polarization maintenance training curriculum information on the project is available at the “Dual development. The intent is to follow the Open Polarization” section of the ROC web site: RDA training model, with the NEXRAD Product http://www.roc.noaa.gov/WSR88D/. Improvement program paying travel costs for two technicians at each site, and at least one technician Greg Cate trained prior to their site being modified. The NEXRAD Product Improvement deployment schedule will drive the training sched- ule, timing the training of the technicians in a time period not so early the training cannot be retained, and not so late there is inadequate time to assimi- late the training. Operations training takes on new criticality, given the addition of even more data available to the forecaster and the complexity of the dual polar- ized data itself. During the last two years, Warn- ing Decision Training Branch staff have been developing distance-learning courses for forecast- ers, as well as outreach material for public and pri- vate users of radar data (e.g., emergency managers). These materials are available at http://www.wdtb.noaa.gov/. Current plans call for beta test to start in Wich- ita, KS in January 2011, with production deploy- page 2 NEXRAD Now Improving the VWP O ne of the most widely used products in the calculate a representative wind estimate for the par- Weather Surveillance Radar – 1988, Doppler ticular height. However, in many meteorological (WSR-88D) product suite is the Velocity Azimuth situations, this is not a valid assumption. Display Wind Profile (VWP) product. The VWP The Enhanced Velocity Azimuth Display Wind product provides a time verses height wind profile Profile (EVWP) function is designed to improve for the volume above the radar location. the availability and accuracy of VWP wind esti- The VWP product uses the wind estimate mates. The concept behind the EVWP function is derived by the Velocity Azimuth Display (VAD) the fact that each VWP height is achieved at differ- algorithm for each desired VWP height. At the ent slant ranges, depending on the elevation. At the beginning of each volume scan, the VAD algorithm beginning of each volume scan, the EVWP func- calculates the elevation/slant range pair for the tion calculates every possible elevation/slant range active Volume Coverage Pattern (VCP) required to pair for the active VCP that achieves a height spec- achieve the heights specified for the VWP product. ified for the VWP product (see Figure 1). As each The VAD algorithm uses a slant range parameter elevation is scanned, the EVWP function passes (default = 30 km) to guide the selection of the ele- these additional slant ranges to the VAD algorithm vation angle for each required height. For any par- to process. The VAD algorithm computes a wind ticular height, the Continued on Page 4 elevation angle with slant range VCP 12 closest to the slant 0.5 0.9 1.3 1.8 2.4 3.1 4 5.1 6.4 8 10 12.5 15.6 19.5 range parameter is 50000 used to compute 45000 the wind. The VAD wind 40000 estimate for each 35000 height is based on 30000 the data from a sin- 25000 gle elevation/slant FT HGT range pair. (For 20000 Clear Air Mode an 15000 average of three 10000 range bins is used.) This assumes that 5000 adequate return is 0 available, using the 10 20 30 40 50 60 70 80 90 100 110 120 KM single elevation/ slant range pair to Figure 1: VCP 12 Elevations Plotted on Range/Height Grid page 3 NEXRAD Now VWP Continued from Page 3 estimate for each height (identified slant range) inter- sected by the ele- vation scan. Each wind estimate is passed to the EVWP function for validation. Using multiple ele- vation/slant range pairs for a given height increases the likelihood of sampling valid returns from which Figure 2: KTLX Reflectivity Products from 22:30Z and 23:20Z to derive a repre- sentative wind estimate for that height. At the end “best” wind estimates are used to build the final of the volume scan, the EVWP function selects VWP product. the “best” VAD estimate for each height. These To support meteorological testing, the EVWP function was installed on a Radar Operations Center (ROC) test bed Radar Product Gen- erator (RPG) and the associated dis- play code was installed on an Open System Prin- cipal User Proces- sor (OPUP). These test bed assets are used to process Level II data col- lected from multi- ple operational Figure 3: KTLX VWP and EVWP comparison Continued on Page 5 page 4 NEXRAD Now VWP Continued from Page 4 WSR-88Ds. To facilitate evaluation of any line. The design of the EVWP function is to pro- improvement provided by the EVWP function, the vide additional wind estimates to augment the wind test code produces an “Original” VWP product and data available for inclusion on the VWP product. an “Enhanced” VWP (EVWP) product that incor- This implementation will not change the basic for- porates the wind estimates selected by the EVWP mat of the VWP product and, therefore, will not function. The example (Figures 2, 3 and 4) is rep- impact downstream processing and display sys- resentative of the test results, to date. tems. 72363 AMA Amarillo Arpt (Awos) 72357 OUN Norman 00Z 03 Mar 2008 University of Wyoming 00Z 03 Mar 2008 University of Wyoming Figure 4: KAMA and KOUN Skew-Ts 00Z March 3, 2008 The EVWP function is still undergoing devel- Joe N Chrisman opmental testing. Results of testing, to date, indi- ROC Engineering Branch cate that the EVWP function consistently provides additional wind estimates not initially available from the legacy VAD/VWP algorithms. Addition- ally, the inclusion of these supplemental wind esti- mates in the VWP product can improve the overall operational usability of the VWP product.
Recommended publications
  • Bragg Scatter Detection by the WSR-88D
    MARCH 2017 R I C H A R D S O N E T A L . 479 Bragg Scatter Detection by the WSR-88D. Part II: Assessment of ZDR Bias Estimation LINDSEY M. RICHARDSON Radar Operations Center, National Weather Service, and Centuria Corporation, Norman, Oklahoma W. DAVID ZITTEL AND ROBERT R. LEE Radar Operations Center, National Weather Service, Norman, Oklahoma VALERY M. MELNIKOV Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and National Severe Storms Laboratory, Norman, Oklahoma RICHARD L. ICE Radar Operations Center, National Weather Service, Norman, Oklahoma, and 557th Weather Wing, Offutt Air Force Base, Nebraska JEFFREY G. CUNNINGHAM 557th Weather Wing, Offutt Air Force Base, Nebraska (Manuscript received 25 January 2016, in final form 6 December 2016) ABSTRACT Clear-air Bragg scatter (CABS) is a refractivity gradient return generated by turbulent eddies that oper- ational Weather Surveillance Radar-1988 Doppler (WSR-88D) systems can detect. The randomly oriented nature of the eddies results in a differential reflectivity (ZDR) value near 0 dB, and thus CABS can be used as an assessment of ZDR calibration in the absence of excessive contamination from precipitation or biota. An automated algorithm to estimate ZDR bias from CABS was developed by the Radar Operations Center and can be used to assess the calibration quality of the dual-polarized WSR-88D fleet. This technique supplements existing ZDR bias assessment tools, especially the use of other external targets, such as light rain and dry snow. The estimates of ZDR bias from CABS using a 1700–1900 UTC time window were compared to estimates from the light rain and dry snow methods.
    [Show full text]
  • Summary of a Program Review Held at Huntsville, Alabama October 19-21, 1982
    Summary of a program review held at Huntsville, Alabama October 19-21, 1982 - TECH LIBRARY KAFEI, NM lllllllsllllllRlRllffllilrml OOSSE!?b NASA Conference Publication 2259 NASA/MSFCFY-82 Atmospheric Processes Research Review Compiled by Robert E. Turner George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama Summary of a program review held at Huntsville, Alabama October 19-21, 1982 National Aeronautics and Space Administration Sclontlflc and Tochnlcal InformatIon Branch 1983 ACKNOWLEDGMENTS The productive inputs and comments from the participants and attendees in the Atmospheric Processes Research Review contributed very much to the success of the review. The opportunity provided for everyone to become better acquainted with the work of other investigators and to see how the research relates to the overall objective of NASA's Atmospheric Processes Research Program was an important aspect of the review. Appreciation is expressed to all those who participated in the review. The organizers trust that participation will provide each with a better frame of reference from which to proceed with the next year's research activities. ii PREFACE Each year NASA supports research in various disciplinary program areas. The coordination and exchange of information among those sponsored by NASA to conduct research studies are important elements of each program. The Office of Space Science and Applications and the Office of Aeronautics and Space Technology, via Announcements of Opportunity (AO), Application Notices (AN),etc., invites interested investigators throughout the country to communicate their research ideas within NASA and in institutions. The proposals in the Atmospheric Processes Research area selected and assigned to the NASA Marshall Space Flight Center's (MSFC's) Atmospheric Sciences Division for technical monitorship, together with the research efforts included in the FY-82 MSFC Research and Technology Operating Plan (RTOP1 I are the source of principal focus for the NASA/MSFC FY-82 Atmospheric Processes Research Review.
    [Show full text]
  • 6 Improving and Exploiting Polarimetric Weather Radar Data – Plans and Status Richard L. Ice and J. G. Cunningham U.S. Air
    6 Improving and Exploiting Polarimetric Weather Radar Data – Plans and Status Richard L. Ice and J. G. Cunningham U.S. Air Force, Air Weather Agency, Operating Location K, Norman, Oklahoma J. N. Chrisman WSR-88D Radar Operations Center, Norman, Oklahoma 1. INTRODUCTION The program also established a significant infrastructure for capturing, processing, and This paper will present recent and planned archiving the digital output of the radar receiver improvements to the Weather Surveillance Radar through time series recording. 1988 Doppler (WSR-88D), addressing near term operational improvements as well as future signal This capability has been the key to the rapidly processing enhancements. It describes practical increasing pace of signal processing ideas, many proven very recently, that have improvements, and also formed the basis of all potential for enhancing the foundational data engineering evaluations aimed at ensuring new from the WSR-88D Doppler Weather Radar. It is signal processing features meet or exceed forward looking, and intended to aid program system requirements. The infrastructure stakeholders as they sustain and improve resulting from the data quality program was operations for this critical national weather asset. instrumental in the evaluation and resulting It follows the spirit of earlier visionary work that approval of the recently completed polarimetric has made the radar a success (Elvander, 2001). upgrade. This potential technology survey and operational There have been many surveys regarding the status update will first review a range of possible future of weather radar that addressed signal technologies and will then present the status of processing improvements (Fabry, 2003, Keeler, the near term software updates that the WSR- 1990, National Academy of Sciences, 2004, 88D Radar Operations Center (ROC) has been Snow, 2003, Zrnic, 2003).
    [Show full text]
  • Boundary Layer Experiment—1983 Edwin W
    Roland B. Stull and Boundary Layer Experiment—1983 Edwin W. Eloranta Department of Meteorology University of Wisconsin Madison, WI 53706 Abstract flat pasture by ANL. This system measured the three components of velocity, as well as the thermal structure Interactions between fair-weather cumulus clouds and mixed-layer of the lowest 1.5 km of the boundary layer. ANL also thermals were the focus of a one-month field experiment in Oklahoma. erected a 5 m tower equipped with chemistry and fast- This experiment, called Boundary Layer Experiment—1983 (BLX83), response turbulence sensors, installed a net radiometer, combined remote sensors, surface observations, balloon platforms, and aircraft measurements to study the kinematics at the top of the and launched kytoons that provided profiles of the daytime convective boundary layer. Emphasis was placed on the lowest 800 m of the boundary layer. In addition, a stereo study of the entrainment zone, and on the relationship between indi- camera system was used at the ANL site to provide vidual thermals as identified by lidar and turbulent motions and photographs of local cloud conditions. fluxes as measured by aircraft and sodar. 2) An unmanned Portable Automated Mesonet (PAM II) station, which was designed and operated by NCAR, and also was located at the ANL site. In addition to the 1. Introduction standard variables of mean pressure, temperature, hu- midity, rainfall, and wind speed and direction, this sta- A field experiment was conducted in Oklahoma for the pur- tion provided net radiation data. pose of measuring the interaction between the boundary 3) The UW lidar system (Kunkel et al, 1977; Sroga et al., layer and fair-weather cumulus clouds.
    [Show full text]
  • PROJECT CRAFT a Real-Time Delivery System for NEXRAD Level II Data Via the Internet
    PROJECT CRAFT A Real-Time Delivery System for NEXRAD Level II Data Via the Internet BY KEVIN E. KELLEHER, KELVIN K. DROEGEMEIER, JASON J. LEVIT, CARL SINCLAIR, DAVID E. JAHN, SCOTT D. HILL, LORA MUELLER, GRANT QUALLEY, TIM D. CRUM, STEVEN D. SMITH, STEPHEN A. DEL GRECO, S. LAKSHMIVARAHAN, LINDA MILLER, MOHAN RAMAMURTHY, BEN DOMENICO, AND DAVID W. FULKER A multi-institution collaboration demonstrated real time compression and Internet-based transmission technology to make possible an affordable nationwide operational capture, distribution, and archiving of Level II WSR-88D data. he National Oceanic and Atmospheric Admin- severe weather research throughout the country. The istration’s (NOAA’s) National Weather Service Center for Analysis and Prediction of Storms (CAPS) T (NWS) had an underutilized national resource located at the University of Oklahoma (OU) had a in the real-time high-resolution level II radar data. need to use the data to initialize a high-resolution NOAA’s National Severe Storms Laboratory (NSSL) cloud model. NOAA’s National Climatic Data Center had developed a method to access the data in real time, (NCDC) needed a method to improve its data capture but the challenge was finding an affordable way to rate of the level II data for archival purposes. Baron’s disseminate the data given the limitations of the net- Services, a company specializing in radar data for work bandwidth. NSSL needed the data to extend its the commercial television market, needed the data AFFILIATIONS: KELLEHER—NOAA/National Severe Storms Labo- #CURRENT
    [Show full text]
  • Low Elevation Scanning Environmental Assessment For
    Environmental Assessment – Relocation of the KLIX WSR-88D SENSOR ENVIRONMENTAL LLC www.sensorenvirollc.com Draft Environmental Assessment Report • July 2020 ENVIRONMENTAL ASSESSMENT (EA) RELOCATION OF THE WEATHER SURVEILLANCE RADAR - MODEL 1988, DOPPLER (WSR-88D) SERVING NEW ORLEANS / BATON ROUGE, LOUISIANA, AREA Prepared by James Manitakos, Project Manager Sensor Environmental LLC 296 West Arbor Avenue Sunnyvale, CA 94085 Andre Tarpinian, Radio Frequency Engineer Alion Science and Technology 306 Sentinel Drive Suite 300 Annapolis-Junction, MD 20701 Prepared for: WSR-88D Radar Operations Center Norman, Oklahoma Environmental Assessment - Relocation of the KLIX WSR-88D This page intentionally left blank. Environmental Assessment - Relocation of the KLIX WSR-88D EXECUTIVE SUMMARY The National Weather Service (NWS) owns and operates the existing Weather Surveillance Radar, Model 1988 Doppler (WSR-88D) serving the New Orleans/Baton Rouge, LA area. The International Civil Aviation Organization designator for the radar is KLIX and the radar is located adjacent to the Weather Forecast Office (WFO) and Lower Mississippi River Forecast Center (RFC) at Slidell Airport in Slidell, St. Tammany Parish, LA. The radar site is about 30 miles northeast of downtown New Orleans, LA and about 78 miles east of downtown Baton Rouge, LA. The KLIX WSR-88D was commissioned in February 1995 and has been in continuous operation since 1995. It is one of 159 WSR-88Ds in the nationwide network. NWS plans to relocate the KLIX WSR-88D from its current site to a new location at Hammond North Shore Regional Airport (HDC) in Hammond, Tangipahoa Parish, LA (about 40 miles west-northwest of the WSR-88D’s existing location).
    [Show full text]
  • Real-Time Implementation of Refractivity Retrieval: Partnership Between the University of Oklahoma, National Severe Storms Laboratory, and the Radar Operations Center
    P8B.8 1 REAL-TIME IMPLEMENTATION OF REFRACTIVITY RETRIEVAL: PARTNERSHIP BETWEEN THE UNIVERSITY OF OKLAHOMA, NATIONAL SEVERE STORMS LABORATORY, AND THE RADAR OPERATIONS CENTER B. L. Cheong1 ,∗, R. D. Palmer1 , C. Curtis2 ,3 , K. Hondl3 , P. Heinselman2 ,3 , D. Zrnic3 , D. Forsyth3 , R. Murnan4 , R. Reed4 and R. Vogt4 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA 2 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma, USA 3 NOAA/OAR National Severe Storm Laboratory, Norman, Oklahoma, USA 4 NWS NEXRAD Radar Operations Center, Norman, Oklahoma, USA ABSTRACT 1. INTRODUCTION High-resolution, near-surface refractivity measurements Until recently, moisture measurements were normally have the potential of becoming an important tool for only possible by in situ instruments. For example, the ra- operational forecasting and general scientific studies. diosonde network across the nation with approximately Access to measured refractivity fields with high spatial 50-100 km spacing performs hourly measurements. To and temporal resolution near the surface opens a new pursue further understanding and better prediction of paradigm for understanding the convective processes convective processes, e.g., convective precipitation and within the boundary layer. It has been shown via ad- its intensification, the existing surface instruments sim- vanced physical models that surface refractivity plays ply do not provide sufficient spatial and temporal reso- an important role in convective processes and, there- lution [Weckwerth and Parsons, 2003]. Fortunately, sur- fore, is expected to be valuable for forecasting the initi- face moisture is now possible to be retrieved remotely ation and intensity of convective precipitation. For this using radar echoes from ground targets [Fabry et al., project, the refractivity field is retrieved remotely us- 1997].
    [Show full text]
  • Nexrad/Wsr-88D History
    NEXRAD/WSR-88D HISTORY NEXRAD (As of June 22, 2018) 1971 - First Doppler radar installed (at National Severe Storms Laboratory (NSSL), OK) to study morphology of storms (June). 1973 - Second Doppler radar installed (at Cimarron Airport, OK) to study morphology of storms (May). 1976 - DOC, DOD, DOT (tri-agency) formed Joint Doppler Operational Project (JDOP) to explore benefits of Doppler radar observations. 1978 - JDOP report presented three basic findings: .. 20 minute average lead time for detecting storm before occurrence; .. Doppler able to detect gust fronts; .. Doppler information can be processed for display in real time. 1979 - The US Air Force Geophysical Laboratory (AFGL) transferred 5 cm Doppler radar to Norman, OK to compare with NSSL radar (Spring). - April 10th storm (at Wichita Falls, TX) provided evidence that 5 cm radar had; .. More attenuation; .. More range folding; .. More velocity aliasing. - The Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM) approved concept document of NEXRAD (July). - OFCM established NEXRAD Program Council (NPC) (July). - NPC approved formation of Radar Test and Development Branch (RTDB) (Fall). - The Congressional Office of Management and Budget (OMB) directed OFCM to conduct a tri-agency crosscut study for NEXRAD (October). - The National Oceanic and Atmospheric Administration (NOAA) approved establishing of the Joint System Program Office (JSPO) (November). 1980 - NPC approved establishment of Interim Operational Test Facility (IOTF) (forerunner of Operational Support Facility) (OSF). - NPC formed NEXRAD Technical Advisory Committee (TAC) (Spring). - Congress appropriated first funding (1981) for NEXRAD (October). 1981 - RTDB name changed to Interim Operational Test Facility (IOTF). - NPC approved Joint Operational Requirements (JOR) (January).
    [Show full text]
  • Weather Surveillance Radar - 1988 Doppler (WSR-88D) Integrated Logistics Support Plan
    R400-IS301C 15 March 2002 Supercedes R400-IS301B 01 June 1998 Weather Surveillance Radar - 1988 Doppler (WSR-88D) Integrated Logistics Support Plan TABLE OF CONTENTS Page 1. INTRODUCTION ..................................................1-1 1.1 Overview..................................................1-1 1.1.1 Purpose ...........................................1-1 1.1.2 Program Summary...................................1-2 1.2 Applicability ................................................1-2 1.2.1 Background ........................................1-2 1.2.2 Scope.............................................1-2 1.2.3 Program Management Responsibility .....................1-3 1.3 References................................................1-3 1.4 WSR-88D System Description .................................1-4 1.4.1 Radar Data Acquisition ................................1-4 1.4.2 Radar Product Generator ..............................1-4 1.4.3 Principal User Processor ..............................1-5 1.4.4 Communications.....................................1-5 1.4.5 Facilities ...........................................1-5 2. AGENCY, DEPOT AND USER RESPONSIBILITIES ......................2-1 2.1 General ...................................................2-1 2.2 Program Management Committee ..............................2-1 2.3 Department of Commerce, National Weather Service ...............2-2 2.3.1 Office of Science and Technology .......................2-2 2.3.2 Office of Operational Systems ..........................2-4 2.3.3 National Weather
    [Show full text]
  • MEMORANDUM of AGREEMENT Among the Department Of
    MEMORANDUM OF AGREEMENT among the Department of Commerce Department of Defense and Department of Transportation for Interagency Operation of the Weather Surveillance Radar-1988, Doppler (WSR-88D) March 2021 NOAA-DOT-DOD-NEXRAD-2021 CONTENTS Page ACRONYMS AND ABBREVIATIONS.......................................... iv DEFINITION OF TERMS................................................. v 1. PURPOSE........................................................ 1 2. BACKGROUND..................................................... 2 A. NEXRAD Program Council ..................................... 2 B. NEXRAD Program Management Committee ........................ 3 C. Radar Operations Center .................................. 3 D. Technical Advisory Committee ............................. 4 E. WSR-88D Sites .............................................. 4 F. Federal Meteorological Handbook Number 11, Doppler Radar Meteorological Observations ................. 4 G. Recent Changes in Data Distribution to Principal Users .... 5 3. POLICY......................................................... 5 4. UNIT RADAR COMMITTEE........................................... 5 A. Membership ................................................... 6 B. Functions .................................................... 6 C. Responsibilities and Limitations of Authority .............. 8 D. Equitable Apportionment of Costs ........................... 9 5. FOCAL POINTS ................................................. 10 6. DEPARTMENT OF COMMERCE RESPONSIBILITIES.......................
    [Show full text]
  • Comparing Dual-Polarization Radar Lightning Forecast Methods Across Southwest Utah Daniel O
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-22-2019 Comparing Dual-Polarization Radar Lightning Forecast Methods across Southwest Utah Daniel O. Katuzienski Follow this and additional works at: https://scholar.afit.edu/etd Part of the Atmospheric Sciences Commons, and the Meteorology Commons Recommended Citation Katuzienski, Daniel O., "Comparing Dual-Polarization Radar Lightning Forecast Methods across Southwest Utah" (2019). Theses and Dissertations. 2203. https://scholar.afit.edu/etd/2203 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. Comparing Dual-Polarization Radar Lightning Forecast Methods Across Southwest Utah THESIS Daniel O. Katuzienski, 1st Lt, USAF AFIT-ENP-MS-19-M-083 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-MS-19-M-083 COMPARING DUAL-POLARIZATION RADAR LIGHTNING FORECAST METHODS ACROSS SOUTHWEST UTAH THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Atmospheric Science Daniel O.
    [Show full text]
  • Bragg Scatter Detection by the WSR-88D. Part I: Algorithm Development
    VOLUME 34 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY MARCH 2017 Bragg Scatter Detection by the WSR-88D. Part I: Algorithm Development a,b c a LINDSEY M. RICHARDSON, JEFFREY G. CUNNINGHAM, W. DAVID ZITTEL, a a,c d,e ROBERT R. LEE, RICHARD L. ICE, VALERY M. MELNIKOV, f,g f,h NICOLE P. HOBAN, AND JOSHUA G. GEBAUER a Radar Operations Center, National Weather Service, Norman, Oklahoma b Centuria Corporation, Norman, Oklahoma c 557th Weather Wing, Offutt Air Force Base, Nebraska d Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma e National Severe Storms Laboratory, Norman, Oklahoma f Research Experiences for Undergraduates, National Weather Center, Norman, Oklahoma g North Carolina State University, Raleigh, North Carolina h University of Oklahoma, Norman, Oklahoma (Manuscript received 25 January 2016, in final form 6 December 2016) ABSTRACT Studies have shown that echo returns from clear-air Bragg scatter (CABS) can be used to detect the height of the convective boundary layer and to assess the systematic differential reflectivity (ZDR) bias for a radar site. However, these studies did not use data from operational Weather Surveillance Radar-1988 Doppler (WSR-88D) or data from a large variety of sites. A new algorithm to automatically detect CABS from any operational WSR-88D with dual-polarization capability while excluding contamination from precipitation, biota, and ground clutter is presented here. Visual confirmation and tests related to the sounding parameters’ relative humidity slope, refractivity gradient, and gradient Richardson number are used to assess the algo- rithm. Results show that automated detection of CABS in operational WSR-88D data gives useful ZDR bias information while omitting the majority of contaminated cases.
    [Show full text]