Table of Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
APPROVED PLANT LIST Midtown Alliance Tree Well Adoption Program
APPROVED PLANT LIST Midtown Alliance Tree Well Adoption Program Midtown Alliance launched the Tree Well Adoption program with the primary goal of enriching the experience of Midtown’s workers and residents while encouraging sustainability through the use of low-water, urban tolerant plant species. This list of plants was created to aid individuals and organizations in selecting plant material to plant in their adopted tree wells. This plant list is intended to encourage individual character in the tree wells, rather than restrict creativity in the selection of plants. The plants on the approved list were selected based on the following criteria: • Perennial. All plants listed are perennial, meaning they last for two or more growing seasons. Once established, these plants will require less water to maintain than annuals. • Heat tolerant. Plants in tree wells are exposed to high temperatures caused by vehicles and heat reflected from surrounding buildings, asphalt, and other urban surfaces. They must also be tolerant to high daytime temperatures, typical of Atlanta’s summer months, and cold hardy in the winter months. Atlanta is located in USDA Plant Hardiness Zone 7b/8a. • Water wise. Urban tree wells are surrounded by impervious surfaces and thus, are highly susceptible to periods of drought. Suitable plants must be able to survive periods of low rainfall. • Pollution tolerant. Vehicle exhaust may leave deposits and pollutants on plant foliage, which can kill sensitive plants. • Encourage wildlife. Flowering plants attract insects such as butterflies while others provide food sources for birds and other wildlife. • Grown locally. Many of the plants listed are native to the Atlanta area, and all can be found at local nurseries. -
Phlox Subulata1
Fact Sheet FPS-476 October, 1999 Phlox subulata1 Edward F. Gilman, Carol Lord2 Introduction The plant goes unnoticed during the year because it blends in with the grass and other surrounding parts of the landscape until flowers emerge in late winter and spring (Fig. 1). It is one of the signals that spring has arrived. Flower colors vary from red and lavender to pink and white, depending on the cultivar grown. Plants grow no more than about 6-inches-tall forming thick clumps and a good ground cover. The stiff leaves are narrow growing to about 1-inch-long and perhaps to 1/16-inch wide. General Information Scientific name: Phlox subulata Pronunciation: flocks sub-yoo-LAY-tuh Common name(s): Creeping Phlox, Moss Pink, Moss Phlox Family: Polemoniaceae Plant type: perennial; annual; herbaceous USDA hardiness zones: 3B through 10 (Fig. 2) Planting month for zone 7: Jun; Jul Planting month for zone 8: May; Jun; Jul Figure 1. Creeping Phlox. Planting month for zone 9: Apr; May; Jun; Jul; Aug Planting month for zone 10: Feb; Mar; Apr; May; Jun; Jul; Aug; Sep; Oct; Nov; Dec Description Origin: native to North America Height: .5 to 1 feet Uses: ground cover; cascading down a wall Spread: depends upon supporting structure Availablity: generally available in many areas within its Plant habit: spreading; prostrate (flat) hardiness range Plant density: moderate Growth rate: moderate Texture: fine 1.This document is Fact Sheet FPS-476, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. -
Nomenclature of the Main Subdivisions of Phlox (Polemoniaceae)
NUMBER 4 GRANT: PHLOX NOMENCLATURE 25 NOMENCLATURE OF THE MAIN SUBDIVISIONS OF PHLOX (POLEMONIACEAE) Verne Grant Section of Integrative Biology and Plant Resources Center, The University of Texas, Austin, Texas 78712 Abstract: The task of finding the correct names for the main subdivisions of Phlox has been beset with difficulties in interpreting the intent of older authors, particularly Asa Gray. Gray divided Phlox into four main subgroups, some of which have been considered sections, but these are now seen to be only informal groups. Currently Phlox is subdivided into three sections: Phlox, Divaricatae Peter, and Occidentales A. Gray. The name Occidentales A. Gray was not validly published as a section; Gray used it only as part of a heading. The oldest valid name for what has been called sect. Occidentales is sect. Pulvinatae Peter. Recent papers have used the name sect. Annuae A. Gray in place of sect. Divaricatae, on grounds of priority. However, the name that Gray actually used was Annuae, Texenses, and it, like Occidentales, was not validly published. The sections of Phlox are being reconsidered at present in the light of new molecular evidence. Some changes will be needed, but old valid infra generic names will still have a role to play in new infrageneric classifications. Keywords: Phlox, nomenclature, Asa Gray. The genus Phlox has had a history of terms subgenus and section in the nine problems with the nomenclature of the teenth century. Some authors used the cat main infrageneric subgroups. Gray (1870, egory subgenus, others the category section, 1878, 1886) did not make it clear in his still others used both, or neither. -
(12) Patent Application Publication (10) Pub. No.: US 2009/0263516 A1 CYR (43) Pub
US 20090263516A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0263516 A1 CYR (43) Pub. Date: Oct. 22, 2009 (54) PLANT EXTRACT COMPOSITION AND Publication Classification THEIR USE TO MODULATE CELLULAR (51) Int. Cl. ACTIVITY A636/8962 (2006.01) A636/00 (2006.01) (75) Inventor: Benoit CYR, St. Augustin de A6IP35/00 (2006.01) Desmaures (CA) CI2N 5/06 (2006.01) Correspondence Address: A6IR 36/3 (2006.01) SHEPPARD, MULLIN, RICHTER & HAMPTON A 6LX 36/899 (2006.01) LLP (52) U.S. Cl. ......... 424/754; 424/725; 435/375; 424/774; 990 Marsh Road 424/779; 424/755; 424/750; 424/777 Menlo Park, CA 94025 (US) (57) ABSTRACT (73) Assignee: Biopharmacopae Design Extracts from plant material, or semi-purified/purified mol International Inc., Saint-Foy (CA) ecules or compounds prepared from the extracts that demon strate the ability to modulate one or more cellular activities (21) Appl. No.: 12/263,114 are provided. The extracts are capable of slowing down, inhibiting or preventing cell migration, for example, the (22) Filed: Oct. 31, 2008 migration of endothelial cells or neoplastic cells and thus, the use of the extracts to slow down, inhibit or prevent abnormal Related U.S. Application Data cell migration in an animal is also provided. Methods of selecting and preparing the plant extracts and methods of (63) Continuation of application No. 10/526,387, filed on screening the extracts to determine their ability to modulate Oct. 6, 2005, now abandoned, filed as application No. one or more cellular activity are described. The purification or PCT/CA03/01284 on Sep. -
Literature Cited
Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes. -
Combining Applied and Basic Research
Understanding the Powdery Mildew Disease of the Ornamental Plant Phlox: Combining Applied and Basic Research Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Coralie Farinas Graduate Program in Plant Pathology The Ohio State University 2020 Dissertation Committee Dr. Francesca Peduto Hand, Advisor Dr. Pablo S. Jourdan Dr. Thomas K. Mitchell Dr. Pierce A. Paul Dr. Jason C. Slot Copyrighted by Coralie Farinas 2020 1 Abstract The characterization of plant germplasm has tremendous potential to help address the many challenges that the field of plant health is facing, such as climate change continuously modifying the regions of previously known disease occurrence. The worldwide trade of the plant genus Phlox represents an important revenue for the horticultural industry. However, Phlox species are highly susceptible to the fungal disease powdery mildew (PM), and infected materials shipping across borders accelerate the risk of disease spread. Through collaboration with laboratories in the U.S., we investigated the genotypic and phenotypic diversity of a PM population to better understand its capacity to adapt to new environments and new resistant hosts. To do this, we developed tools to grow and study PM pathogens of Phlox in vitro, and then used whole genome comparison and multilocus sequence typing (MLST) analysis to study the genetic structure of the population. Additionally, we explored Phlox germplasm diversity to identify a range of plant responses to PM infection by comparing disease severity progression and length of latency period of spore production across a combination of Phlox species and PM isolates in vitro. -
Floristic Quality Assessment Report
FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al. -
Groundcover Alternatives to Turf Grass
Revision Date: 31 January 2009 Rebecca Pineo, Botanic Gardens Intern Susan Barton, Extension Specialist University of Delaware Bulletin #131 Sustainable Landscapes Series Groundcover Alternatives to Turf Grass Plants that spread over time to cover the ground are referred to as groundcovers. Usually this term denotes low-growing plants, but groundcovers can also refer to taller, spreading shrubs or trees that grow together to create a dense cover of vegetation. Though turf grass is certainly one of the most popular groundcovers and useful for pathways and play surfaces, it is also one that requires relatively high maintenance. The wide range of low-maintenance, highly attractive, wildlife-benefiting groundcovers beckons to home landscapers searching for an alternative to traditional lawn spaces. (For more information about the disadvantages of turf grass lawns, consult the fact sheet “Turf Grass Madness: Reasons to Reduce the Lawn in Your Landscape,” available at http://www.ag.udel.edu/udbg/sl/vegetation.html ). What are the benefits of replacing some of your turf grass lawn with groundcovers? Reduces maintenance requirements and associated pollution. Groundcovers whose requirements fit the existing conditions of the site will require less fertilizer, pesticides and mowing than traditional turf grass. Less fertilizer and pesticides means less potential for pollution of runoff stormwater, and reducing lawn mower use cuts down on a significant source of air pollution. Offers higher wildlife value than a monoculture of turf grass. Diversity of vegetation supports a diversity of insects, the basis of the food web for local and migrating birds, small mammals, amphibians and reptiles as well as a variety of other beneficial wildlife. -
Samenkatalog Graz 2016.Pdf
SAMENTAUSCHVERZEICHNIS Index Seminum Seed list Catalogue de graines des Botanischen Gartens der Karl-Franzens-Universität Graz Ernte / Harvest / Récolte 2016 Herausgegeben von Christian BERG, Kurt MARQUART & Jonathan WILFLING ebgconsortiumindexseminum2012 Institut für Pflanzenwissenschaften, Januar 2017 Botanical Garden, Institute of Plant Sciences, Karl- Franzens-Universität Graz 2 Botanischer Garten Institut für Pflanzenwissenschaften Karl-Franzens-Universität Graz Holteigasse 6 A - 8010 Graz, Austria Fax: ++43-316-380-9883 Email- und Telefonkontakt: [email protected], Tel.: ++43-316-380-5651 [email protected], Tel.: ++43-316-380-5747 Webseite: http://garten.uni-graz.at/ Zitiervorschlag : BERG, C., MARQUART, K. & Wilfling, J. (2017): Samentauschverzeichnis – Index Seminum – des Botanischen Gartens der Karl-Franzens-Universität Graz, Samenernte 2016. – 54 S., Karl-Franzens-Universität Graz. Personalstand des Botanischen Gartens Graz: Institutsleiter: Ao. Univ.-Prof. Mag. Dr. Helmut MAYRHOFER Wissenschaftlicher Gartenleiter: Dr. Christian BERG Gartenverwalter: Jonathan WILFLING, B. Sc. Gärtnermeister: Friedrich STEFFAN GärtnerInnen: Doris ADAM-LACKNER Viola BONGERS Magarete HIDEN Franz HÖDL Kurt MARQUART Franz STIEBER Ulrike STRAUSSBERGER Monika GABER Gartenarbeiter: Philip FRIEDL René MICHALSKI Oliver KROPIWNICKI Gärtnerlehrlinge: Gabriel Buchmann (1. Lehrjahr) Bahram EMAMI (3. Lehrjahr) Mario MARX (3. Lehrjahr) 3 Inhaltsverzeichnis / Contents / Table des matières Abkürzungen / List of abbreviations / Abréviations -
Vascular Plant Inventory and Ecological Community Classification for Cumberland Gap National Historical Park
VASCULAR PLANT INVENTORY AND ECOLOGICAL COMMUNITY CLASSIFICATION FOR CUMBERLAND GAP NATIONAL HISTORICAL PARK Report for the Vertebrate and Vascular Plant Inventories: Appalachian Highlands and Cumberland/Piedmont Networks Prepared by NatureServe for the National Park Service Southeast Regional Office March 2006 NatureServe is a non-profit organization providing the scientific knowledge that forms the basis for effective conservation action. Citation: Rickie D. White, Jr. 2006. Vascular Plant Inventory and Ecological Community Classification for Cumberland Gap National Historical Park. Durham, North Carolina: NatureServe. © 2006 NatureServe NatureServe 6114 Fayetteville Road, Suite 109 Durham, NC 27713 919-484-7857 International Headquarters 1101 Wilson Boulevard, 15th Floor Arlington, Virginia 22209 www.natureserve.org National Park Service Southeast Regional Office Atlanta Federal Center 1924 Building 100 Alabama Street, S.W. Atlanta, GA 30303 The view and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government. This report consists of the main report along with a series of appendices with information about the plants and plant (ecological) communities found at the site. Electronic files have been provided to the National Park Service in addition to hard copies. Current information on all communities described here can be found on NatureServe Explorer at www.natureserveexplorer.org. Cover photo: Red cedar snag above White Rocks at Cumberland Gap National Historical Park. Photo by Rickie White. ii Acknowledgments I wish to thank all park employees, co-workers, volunteers, and academics who helped with aspects of the preparation, field work, specimen identification, and report writing for this project. -
10 Natives for the Kansas City Region
Natives for the Kansas City Region The following are 10 common species of plants, fl owers and trees that grow well in the weather conditions of our region. The plants below are attractive and garden-worthy 10 native plants that are recognized by Powell Gardens as Plants of Merit. Bluestar Amsonia tabernaemontana Star-shaped, powdery-blue fl owers that bloom in clusters in spring atop generally upright stems densely clothed with feathery, soft-textured, almost thread-like leaves. The unique foliage remains green throughout summer, but changes to gold in fall. Foliage clumps grow to 3 feet tall, with stems cascading as the season progresses. Mass or group for best foliage display. Easily grown in borders, open woodland areas and native plant gardens. Blue False Indigo Baptisa australis Erect stalks of blue, lupine-like fl owers cover this native perennial in spring. Flowers give way to infl ated black seed capsules valued for use in dried arrangements. Plants become shrubby after bloom, displaying attractive, clover-like blue-green leaves. Early Americans used the plant as a substitute for true indigo in making blue dyes. Grow as a specimen or in groups in borders, or naturalize in cottage gardens, prairie areas, meadows or native plant gardens. Willowleaf Sunfl ower Helianthus salicifolius Easily grown in average, medium-wet, well-drained soil in full sun. Tolerant of wide range of soil conditions. If grown in part shade, plants tend to be taller and more open, produce fewer fl owers and require support. Spreads over time by creeping rhizomes to form dense colonies. Divide every 3–4 years to control invasiveness and maintain vigor. -
BULLETIN of the AMERICAN ROCK GARDEN SOCIETY • Including SAXIFLORA
AMERICAN ROCK GARDEN SOCIETY BULLETIN of the AMERICAN ROCK GARDEN SOCIETY • including SAXIFLORA Vol.4 March-April, 1946 No. 2 CONTENTS:* Page Edgar T. Wherry 28—SAXIFLORA: Phlox stolonifera 30—Mrs. Henry's Phloxes 32—The American Rock Garden Society Published by the American Rock Garden Society and entered in the United States Post Office at Plainfield, New Jersey, as third class matter; sent free of charge to members of the American Rock Garden Society. DIRECTORATE BULLETIN Editor Dr. Edgar T. Wherry University Pennsylvania Associate Editors „,,. •„• .Carl S. English, Jr. Seattle, Wash. Mrs. J. Norman Henry. Gladwyne, Pa. Peter J. van Melle Poughkeepsie, N. Y. Exchange Editor •„„.,. -Harold Epstein Larchmont, N. Y. Chairman Editorial Comm. —...Mrs. C. I. DeBevoise Greens Farms, Conn. Publishing Agent \rthur H. Osmun Plainfield, N. J. AMERICAN ROCK GARDEN SOCIETY President -Arthur Hunt Osmun -Plainfield, N. J. Vice Presidents JVIrs. C. I. DeBevoise — —Greens Farms, Conn. Dr. Ira N. Cabrielson -Washington, D. C. Roland D. Camwell —Bellingham, Wash. Miss Elizabeth Gregory Hill. -Lynnhaven, Va. Dr. H. H. M. Lyle -New York City Mrs. G. H. Marriage -Colorado Springs, Colo. Secretary . -Walter D. Blair -Tarrytown, N. Y. Treasurer JVIrs. George F. Wilson -Easton, Pa. Directors . -Walter D. Blair - .Tarrytown, N. Y. Peter J. van Melle .Poughkeepsie, N. Y. A. C. Pfander .Bronx, N. Y. Mrs. J. M. Hodson —Greenwich, Conn. Mrs. Clement S. Houghton -Chestnut Hill, Mass. Marcel Le Piniec -Bergenfield, N. J. Harold Epstein ...Larchmont, N. Y. Kurt W. Baasch ...Baldwin, L. I. Leonard J. Buck ...Far Hills, N. J. REGIONAL CHAIRMEN Northwestern -Carl S. English, Jr.