X-Ray Fluorescence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Comparing the Emission Spectra of U and Th Hollow Cathode Lamps and a New U Line-List
Astronomy & Astrophysics manuscript no. HCL_U_Th_Ull_S2018 c ESO 2018 October 1, 2018 Comparing the emission spectra of U and Th hollow cathode lamps and a new U line-list L. F. Sarmiento1,⋆, A. Reiners1, P. Huke1, F. F. Bauer1, E. W. Guenter2,3, U. Seemann1, and U. Wolter4 1 Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany 2 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany 3 Instituto de Astrofísica de Canarias (IAC), 38205 La Laguna, Tenerife, Spain 4 Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany Received , 22 February 2018; accepted , 5 June 2018 ABSTRACT Context. Thorium hollow cathode lamps (HCLs) are used as frequency calibrators for many high resolution astronomical spectro- graphs, some of which aim for Doppler precision at the 1 m/s level. Aims. We aim to determine the most suitable combination of elements (Th or U, Ar or Ne) for wavelength calibration of astronomical spectrographs, to characterize differences between similar HCLs, and to provide a new U line-list. Methods. We record high resolution spectra of different HCLs using a Fourier transform spectrograph: (i) U-Ne, U-Ar, Th-Ne, and Th-Ar lamps in the spectral range from 500 to 1000 nm and U-Ne and U-Ar from 1000 to 1700 nm; (ii) we systematically compare the number of emission lines and the line intensity ratio for a set of 12 U-Ne HCLs; and (iii) we record a master spectrum of U-Ne to create a new U line-list. Results. Uranium lamps show more lines suitable for calibration than Th lamps from 500 to 1000 nm. -
Mössbauer Spectroscopy 9.1 Recoil Free Resonance Absorption
Chapter 9, page 1 9 Mössbauer Spectroscopy 9.1 Recoil free resonance absorption Robert Wood published in 1905 an article "Resonance Radiation of Sodium Vapor" (see Literature) and reported that if a bulb containing pure sodium vapor was illuminated by light from a sodium flame, the vapor emitted a yellow light which spectroscopic analysis showed to be identical with the exciting light, in other words, the two D lines. Sodium is liquid above 98 °C, boiling point 883 °C, thus a remarkable vapor pressure exists, if sodium is heated by the Fig. 9.1: Wood's apparatus for the Bunsen burner above 200 °C. Wood used the name resonance radiation of the sodium "resonance radiation" for the effect of identical D lines. absorbed radiation and fluorescence radiation. Now we use the term "resonance absorption" instead. Since 1900 γ-rays were known as a highly energetic monochromatic radiation, but the anticipated γ-ray resonance fluorescence failed to occur. Werner Kuhn succeeded in publishing such an experiment that don't work and argued in 1929: "The (third) influence, reducing the absorption, arises from the emission process of the γ-rays. The emitting atom will suffer recoil due to the projection of the γ-ray. The wavelength of the radiation is therefore shifted to the red; the emission line is displaced relative to the absorption line.... It is thus possible that by a large γ-shift, the whole emission line is brought out of the absorption region”. (see Literature, Kuhn) Intensity In the case of γ-radiation the atoms suffer recoil, which is not significant for radiation in the visible range, were the recoil energy is small compared with the linewidth of the h δν1/2 radiation (times h), see Fig. -
Stark Broadening of Spectral Lines in Plasmas
atoms Stark Broadening of Spectral Lines in Plasmas Edited by Eugene Oks Printed Edition of the Special Issue Published in Atoms www.mdpi.com/journal/atoms Stark Broadening of Spectral Lines in Plasmas Stark Broadening of Spectral Lines in Plasmas Special Issue Editor Eugene Oks MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Eugene Oks Auburn University USA Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Atoms (ISSN 2218-2004) in 2018 (available at: https://www.mdpi.com/journal/atoms/special issues/ stark broadening plasmas) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-455-0 (Pbk) ISBN 978-3-03897-456-7 (PDF) Cover image courtesy of Eugene Oks. c 2018 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Preface to ”Stark Broadening of Spectral Lines in Plasmas” ..................... ix Eugene Oks Review of Recent Advances in the Analytical Theory of Stark Broadening of Hydrogenic Spectral Lines in Plasmas: Applications to Laboratory Discharges and Astrophysical Objects Reprinted from: Atoms 2018, 6, 50, doi:10.3390/atoms6030050 ................... -
25 Geometric Optics
CHAPTER 25 | GEOMETRIC OPTICS 887 25 GEOMETRIC OPTICS Figure 25.1 Image seen as a result of reflection of light on a plane smooth surface. (credit: NASA Goddard Photo and Video, via Flickr) Learning Objectives 25.1. The Ray Aspect of Light • List the ways by which light travels from a source to another location. 25.2. The Law of Reflection • Explain reflection of light from polished and rough surfaces. 25.3. The Law of Refraction • Determine the index of refraction, given the speed of light in a medium. 25.4. Total Internal Reflection • Explain the phenomenon of total internal reflection. • Describe the workings and uses of fiber optics. • Analyze the reason for the sparkle of diamonds. 25.5. Dispersion: The Rainbow and Prisms • Explain the phenomenon of dispersion and discuss its advantages and disadvantages. 25.6. Image Formation by Lenses • List the rules for ray tracking for thin lenses. • Illustrate the formation of images using the technique of ray tracking. • Determine power of a lens given the focal length. 25.7. Image Formation by Mirrors • Illustrate image formation in a flat mirror. • Explain with ray diagrams the formation of an image using spherical mirrors. • Determine focal length and magnification given radius of curvature, distance of object and image. Introduction to Geometric Optics Geometric Optics Light from this page or screen is formed into an image by the lens of your eye, much as the lens of the camera that made this photograph. Mirrors, like lenses, can also form images that in turn are captured by your eye. 888 CHAPTER 25 | GEOMETRIC OPTICS Our lives are filled with light. -
Quantitative Analysis of Cerium-Gallium Alloys Using a Hand-Held Laser Induced Breakdown Spectroscopy Device
atoms Article Quantitative Analysis of Cerium-Gallium Alloys Using a Hand-Held Laser Induced Breakdown Spectroscopy Device Ashwin P. Rao 1 , Matthew T. Cook 2 , Howard L. Hall 2,3 and Michael B. Shattan 1,* 1 Air Force Institute of Technology, 2950 Hobson Way, WPAFB, OH 45433, USA 2 Institute for Nuclear Security, University of Tennessee, Knoxville, TN 37996, USA 3 Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA * Correspondence: michael.shattan@afit.edu Received: 26 July 2019; Accepted: 20 August 2019; Published: 22 August 2019 Abstract: A hand-held laser-induced breakdown spectroscopy device was used to acquire spectral emission data from laser-induced plasmas created on the surface of cerium-gallium alloy samples with Ga concentrations ranging from 0–3 weight percent. Ionic and neutral emission lines of the two constituent elements were then extracted and used to generate calibration curves relating the emission line intensity ratios to the gallium concentration of the alloy. The Ga I 287.4-nm emission line was determined to be superior for the purposes of Ga detection and concentration determination. A limit of detection below 0.25% was achieved using a multivariate regression model of the Ga I 287.4-nm line ratio versus two separate Ce II emission lines. This LOD is considered a conservative estimation of the technique’s capability given the type of the calibration samples available and the low power (5 mJ per 1-ns pulse) and resolving power (l/Dl = 4000) of this hand-held device. Nonetheless, the utility of the technique is demonstrated via a detailed mapping analysis of the surface Ga distribution of a Ce-Ga sample, which reveals significant heterogeneity resulting from the sample production process. -
Emission Mössbauer Spectroscopy at ISOLDE/CERN
Emission Mössbauer Spectroscopy at ISOLDE/CERN Torben Esmann Mølholt ISOLDE Seminar, 25. Nov. 2015 Outline Experimental setup at ISOLDE Brief on the Mössbauer spectroscopy technique Examples and Results Future/ongoing measurements 2 Acknowledgements The Mössbauer collaboration at ISOLDE/CERN, >30 active members with new members (2014) from China, Russia, Bulgaria, Austria, Spain: Four experiments Existing members New members 2014 (IS-501, IS-576, IS-578, I-161) 3 Emission Mössbauer Spectroscopy at ISOLDE/CERN http://e-ms.web.cern.ch/ GLM (GPS) LA1-2 (HRS) 4 119In RILIS 2014 2015 57Mn 119 RILIS In 15 μSi/h - 57Mn 10 μSi/h - RILIS 5 μSi/h - 0 μSi/h - 5 Mössbauer Experimental setup Implantation chamber Incoming 60 keV beam Sample Faraday cup Be window Mössbauer drive with resonance detector Container: 25 mbar acetone • Intensity (~1×108 atoms/s) • High statistics spectrum (5 – 10 min.) •On-line (short lived) •Collections for Off-line (long lived) 6 •Hours - days Mössbauer Experimental setup Sample holder •Temperature range 90 – 700 K • Measurements at different emission angles • Applied magnetic field (Bext ≤ 0.6 T) 7 Mössbauer Experimental setup Sample holder • Quenching: Implant at high temperature Measure at low temperature (off-line) 8 Mössbauer Experimental setup Resonance detector - G. Weyer, Mössbauer Eff. Meth., 10 (1976) 301 PPAD: Parallel Plate Avalanche Detector - Single line resonance detector. 0.1 cps (~0.1 µCi) – 50k cps (~500 mCi) 9 Mössbauer spectroscopy technique 10 40-60 keV Ion-implantation of Mössbauer Probe Emission -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
9.2 Refraction and Total Internal Reflection
9.2 refraction and total internal reflection When a light wave strikes a transparent material such as glass or water, some of the light is reflected from the surface (as described in Section 9.1). The rest of the light passes through (transmits) the material. Figure 1 shows a ray that has entered a glass block that has two parallel sides. The part of the original ray that travels into the glass is called the refracted ray, and the part of the original ray that is reflected is called the reflected ray. normal incident ray reflected ray i r r ϭ i air glass 2 refracted ray Figure 1 A light ray that strikes a glass surface is both reflected and refracted. Refracted and reflected rays of light account for many things that we encounter in our everyday lives. For example, the water in a pool can look shallower than it really is. A stick can look as if it bends at the point where it enters the water. On a hot day, the road ahead can appear to have a puddle of water, which turns out to be a mirage. These effects are all caused by the refraction and reflection of light. refraction The direction of the refracted ray is different from the direction of the incident refraction the bending of light as it ray, an effect called refraction. As with reflection, you can measure the direction of travels at an angle from one medium the refracted ray using the angle that it makes with the normal. In Figure 1, this to another angle is labelled θ2. -
Glossary of Terms Absorption Line a Dark Line at a Particular Wavelength Superimposed Upon a Bright, Continuous Spectrum
Glossary of terms absorption line A dark line at a particular wavelength superimposed upon a bright, continuous spectrum. Such a spectral line can be formed when electromag- netic radiation, while travelling on its way to an observer, meets a substance; if that substance can absorb energy at that particular wavelength then the observer sees an absorption line. Compare with emission line. accretion disk A disk of gas or dust orbiting a massive object such as a star, a stellar-mass black hole or an active galactic nucleus. An accretion disk plays an important role in the formation of a planetary system around a young star. An accretion disk around a supermassive black hole is thought to be the key mecha- nism powering an active galactic nucleus. active galactic nucleus (agn) A compact region at the center of a galaxy that emits vast amounts of electromagnetic radiation and fast-moving jets of particles; an agn can outshine the rest of the galaxy despite being hardly larger in volume than the Solar System. Various classes of agn exist, including quasars and Seyfert galaxies, but in each case the energy is believed to be generated as matter accretes onto a supermassive black hole. adaptive optics A technique used by large ground-based optical telescopes to remove the blurring affects caused by Earth’s atmosphere. Light from a guide star is used as a calibration source; a complicated system of software and hardware then deforms a small mirror to correct for atmospheric distortions. The mirror shape changes more quickly than the atmosphere itself fluctuates. -
Arxiv:Cond-Mat/0404626V1
LA-UR-03-8735 Nuclear Magnetic Resonance Studies of δ-Stabilized Plutonium N. J. Curro Condensed Matter and Thermal Physics, Los Alamos National Laboratory, Los Alamos, NM 87545, [email protected] L. Morales Nuclear Materials and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (Dated: July 14, 2018) Nuclear Magnetic Resonance studies of Ga stabilized δ-Pu reveal detailed information about the local distortions surrounding the Ga impurities as well as provides information about the local spin fluctuations experienced by the Ga nuclei. The Ga NMR spectrum is inhomogeneously broadened by a distribution of local electric field gradients (EFGs), which indicates that the Ga experiences local distortions from cubic symmetry. The Knight shift and spin lattice relaxation rate indicate that the Ga is dominantly coupled to the Fermi surface via core polarization, and is inconsistent with magnetic order or low frequency spin correlations. Introduction tuations of of the electron spin S relax the nuclei so fast that their signal is rendered invisible. On the other hand, The investigavtion of the low temperature properties the hyperfine coupling to the nuclei of the secondary el- of plutonium and its compounds has experienced a re- ement (Al, Ga or In) are typically one to three orders of naissance in recent years, and several important experi- magnitude smaller, so by measuring the secondary nuclei ments have revealed unusual correlated electron behavior one can gain considerable insight into the spin dynamics [1, 2, 3]. The 5f electrons in elemental plutonium are on of the system. the boundary between localized and itinerant behavior, One of the challenges facing band theorists calculating so that slight perturbations in the Pu-Pu spacing can give the electronic structure of δ-Pu is the role of the sec- rise to dramatic changes in the ground state character. -
Rapid Analysis of Plutonium Surrogate Material Via Hand-Held Laser-Induced Breakdown Spectroscopy
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2020 Rapid Analysis of Plutonium Surrogate Material via Hand-Held Laser-Induced Breakdown Spectroscopy Ashwin P. Rao Follow this and additional works at: https://scholar.afit.edu/etd Part of the Atomic, Molecular and Optical Physics Commons, and the Nuclear Engineering Commons Recommended Citation Rao, Ashwin P., "Rapid Analysis of Plutonium Surrogate Material via Hand-Held Laser-Induced Breakdown Spectroscopy" (2020). Theses and Dissertations. 3599. https://scholar.afit.edu/etd/3599 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. RAPID ANALYSIS OF PLUTONIUM SURROGATE MATERIAL VIA HAND-HELD LASER-INDUCED BREAKDOWN SPECTROSCOPY THESIS Ashwin P. Rao, Second Lieutenant, USAF AFIT-ENP-MS-20-M-115 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-MS-20-M-115 RAPID ANALYSIS OF PLUTONIUM SURROGATE MATERIAL VIA HAND-HELD LASER-INDUCED BREAKDOWN SPECTROSCOPY THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Nuclear Engineering Ashwin P.