<<

Emission Mössbauer at ISOLDE/CERN

Torben Esmann Mølholt

ISOLDE Seminar, 25. Nov. 2015 Outline

Experimental setup at ISOLDE

Brief on the Mössbauer spectroscopy technique

Examples and Results

Future/ongoing measurements

2 Acknowledgements

The Mössbauer collaboration at ISOLDE/CERN, >30 active members with new members (2014) from China, Russia, Bulgaria, Austria, Spain: Four experiments Existing members New members 2014 (IS-501, IS-576, IS-578, I-161)

3 Emission Mössbauer Spectroscopy at ISOLDE/CERN http://e-ms.web.cern.ch/

GLM (GPS)

LA1-2 (HRS)

4 119In RILIS 2014 2015 57Mn 119 RILIS In

15 μSi/h - 57Mn 10 μSi/h - RILIS

5 μSi/h -

0 μSi/h -

5 Mössbauer Experimental setup

Implantation chamber Incoming 60 keV beam

Sample

Faraday cup Be window Mössbauer drive with detector Container: 25 mbar acetone

• Intensity (~1×108 /s) • High statistics spectrum (5 – 10 min.) •On-line (short lived)

•Collections for Off-line (long lived) 6 •Hours - days Mössbauer Experimental setup Sample holder

range 90 – 700 K • Measurements at different emission angles

• Applied magnetic field

(Bext ≤ 0.6 T)

7 Mössbauer Experimental setup Sample holder

• Quenching:

 Implant at high temperature

 Measure at low temperature (off-line)

8 Mössbauer Experimental setup Resonance detector - G. Weyer, Mössbauer Eff. Meth., 10 (1976) 301 PPAD: Parallel Plate Avalanche Detector - Single line resonance detector. 0.1 cps (~0.1 µCi) – 50k cps (~500 mCi)

9 Mössbauer spectroscopy technique

10 40-60 keV -implantation of Mössbauer Probe Emission Mössbauer spectroscopy

Measurement of spectrum

 v  E(v)  Eγ 1  γ  c 

Source/sample: – v + v ion-implanted crystal Absorber/detector: Single line resonance detector

Mössbauer spectroscopy: Counts High spectral resolution v = ±10 mm/s (Doppler) E = ±4.8×10-7 eV –10 0 +10 Velocity (mm/s) Emission11 Mössbauer spectrum Emission Mössbauer spectroscopy

Measure hyperfine interactions

Important info on an atomic scale:

• Valence/Spin state (line position, d) Hyperfine interactions • Site symmetry Mössbauer transition E = 10-8 eV (doublet?) • Magnetic interactions (Sextet) • Binding properties Dilute Probe: Below 10-3 at.% • Relaxation effects 1×1018 atoms/cm3 • Diffusion ….. 12 The resolution of Mössbauer spectroscopy can measure hyperfine interactions Cubic: Single line

• Position of spectral line

Valence state emission Relative

Velocity [mm/s]

Non-cubic: Split line

• Quadropol splitting

 Cubic?

emission Relative

Velocity [mm/s]

13 Valence/Spin state 57Fe emission Mössbauer spectroscopy Spectral line position, Isomer shift, d

Shielding ↑ r(0) ↓, d ↑

1 mm/s = 48 neV 14 57Fe emission Mössbauer spectroscopy Magnetic hf. splitting of 57Fe  Sextet m 1 2 3 4 5 6 I If the spin is stable for longer +3/2 than 140 ns – Sextet is observed 57* Fe 14.4 keV +1/2 I = 3/2 -1/2 Ferromagnetic material -3/2

57Fe -1/2 I = 1/2 57*Fe +1/2

Bhf  0, Vzz  0 1 2 3 4 5 6

 Slow relaxing paramagnetism

(not only one sextet) Relative emission Relative

- v 0 + v 57*Fe Relative velocity

15 Angular dependence 57*Fe in Bext Magnetic order

Bext m = 0 I g Sample

Individual line ratios depend on the angle

between Bext and the γ direction

Relative line ratios: 3 40 1 1 40 3 3:4:1 (90º)  3:0:1 (0º)

16 Angular dependence in Bext 57*Fe (same as ordered, but Kramer doublets) Paramagnetism (slow relaxation)

mI = 0 from SZ = ±3/2 Bext g Sample

SZ = ±5/2 Individual line ratios depend on the angle SZ = ±3/2 between Bext and the γ direction SZ = ±1/2

Relative line ratios: 3:4:1 (90º)  3:0:1 (0º) 17 Sample of interest (Crystal, solid)

- Implant Radioactive probes / impurities

- Decay  Probe the crystal

- The radioactive decay gives information about the probe sites  SPECTRUM (data)

- Analysis of Spectra (data)  Crystal properties Ion-implantation

Beam

19 Examples and results

20 Interstitial in MgO 77 K Quenched from ca. 650 K

-6 -4 -2 0 2 4 6 Velocity (mm/s)

Quenching setup: ca. 650 K

Reduction of FeD (damage) - “More clear” FeI line

- Low statistics spectrum (no FeMag)

-6 -4 -2 0 2 4 6 Velocity (mm/s)

21 T. E. Mølholt et al. J. Appl. Phys. 115, 023508 (2014) Magnetic identification

ZnO at 300 K D2 D3 B = 0.6 T║c g Magnetic structure originate ext Bext θ ~ 60° from Kramers doublets is

mI = 0 from SZ = ±3/2 clearly observed.

±1/2 ±3/2 ± 5/2

B ext= 0.6 T║c • NO ordered magnetism Bext θ ~ 0° g

Relative emission (arb. units) Relative emission (arb. • Slow relaxing Paramagnetism 

±1/2 ±3/2 ± 5/2

-12 -9 -6 -3 0 3 6 9 12 Velocity (mm/s) - T. E Mølholt, Paramagnetism in ion-implanted oxides (2012) ISBN: 978-9935-9069-5-3 - H. P. Gunnlaugsson et al. , Appl. Phys. Lett. 97 (2010) 142501 22 Paramagnetic relaxation of dilute 57Fe? ZnO at 300 K D2 Ion-implanted D3 57Mn+ , c ~ 30° g Know it is of paramagnetic origin: B = 0 ext (a)  Examine temperature dependence of the c ~ 60° g paramagnetic structure

g B = 0 T: B = 0.6 T║c Bext ext ext (b)  More complex magnetic sextet structure θ ~ 60°

±1/2 ±3/2 ± 5/2

Bext B ext= 0.6 T║c g Relative emission (arb. units) emission Relative (arb. θ ~ 0° (c)

±1/2 ±3/2 ± 5/2

-12 -9 -6 -3 0 3 6 9 12 Velocity (mm/s) 23 Temperature ↑ : Broadening ↑

ZnO: B = 0 T Blume M. and Tjon J.A.: ext simulation Phys. Rev. 165, 446 (1968) B = ±50 T  ~ 2 ns 445 K 664 K hf

 ~ 4 ns 411 K 644 K  ~ 13 ns

 ~ 50 ns

mission 373 K 607 K

e e  ~ 140 ns

Relative emission Relative tiv

a 338 K 552 K

l

e R  >> 140 ns 300 K 515 K

-12 -8 -4 0 4 8 12 -10 -5 0 5 10 -10 -5 0 5 10 Velocity (mm/s) 2c Velocity (mm/s)    1 E0 - T. E Mølholt et al. Physica Scripta, T148 (2012) 014006 - T. E Mølholt et al. Hyp. Int. 197(2010)24 89-94 Spin-lattice relaxation rates in studied oxides - T. E Mølholt et al. Physica Scripta, T148 (2012) 014006 - T. E Mølholt et al. Hyp. Int. 197 (2010) 89-94 - H.P. Gunnlaugsson et al. Hyp. Int. 198 (2010) 5-14 1×109- R. Mantovan et. al. Advan. Elec. Mat. 1 (2015) 1400039

) ZnO

1 Theory -

s a-Al2O3 ( 8

 1×10 MgO Direct 2 phonon /

1 process T 2 process , 2

e T t 7

a 1×10 r

T 5-9

on

i t

a 9 6 T

x 1×10 Log(rate) a 1

l T e R θ /3 1×105 D ~20 K ~qD/3 70 100 300 1000 Log(T) Temperature (K) MgO: ~ 730 K 

qD α-Al2O3: ~ 1050 K  ZnO: ~ 300 – 700 K  25 On-going and future Mössbauer studies at ISOLDE

Make use of more ISOLDE beams - On-line - Off-line (longer lived Mossbauer isotopes), b508

Please see Talk at the ISOLDE Workshop by Haraldur Páll Gunnlaugsson: - Friday 4th Dec. 09:30

26 151Eu Mössbauer

151 151 June/July 2015: Dy-beam, T½~124d ( Gd)  RE doping: manipulate optical properties in semiconductors  Samples made in minutes  Measurements of ~20 samples ongoing

3 Period 2 4 Au Cu 5 1 6 Ni 0 2 4 6 8 10 Ag 12 14 16 -1

-2

-3

Isomer shift(mm/s) -4 Pd Nb Pt Ta W Ir -5 Mo -6 Group

F.E. Wagner27 et. al., Letters A 42, 7, (1973) 483 151 1.02 Cu sample. Eu

1.01 Measured at RT

1 As implanted

0.99

0.98

Exprerimental 0.97 Simulation

Relative Transmission Relative Eu3+

0.96 Eu2+ Eu3+

0.95 Implantation related sites -20 -15 -10 -5 0 5 10 15 20 - Damage (not perfect lattice) - Vacancies 1.04 Velocity (mm/s) - Interstitial

1.02

1 After annealing: 0.98 350°C for 30 min.

0.96

0.94

Exprerimental Relative Transmission Relative Simulation 0.92 Eu3+ Substitutional site Eu2+ 0.9 -20 -15 -10 -5 0 5 10 15 20

Velocity (mm/s) 28 197Au Mössbauer

197 November 2015: Hg beam, T½~64h Test for Bio-physics (INTC-2015-008, I-161). Low Hg-yields to LA2 (sample made in several hours): → No bio-physics. But proof of feasibility/calibration. 1.020

1.015

1.010

1.005

1.000

Relative Transmission Relative 197 197 0.995 Hg → Au Au foil at 77 K (LN2) Measured for 3 days. On-going measurement. as implanted. 0.990 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 Velocity (mm/s)

29 Emission Mössbauer at ISOLDE

! The ISOLDE isotope beams are our tools for Mössbauer studies !

Usage of additional isotopes for extended studies and possibilities

30 Conclusions

Mössbauer is a unique atomic-scale measurements of electronic, magnetic, and structural properties within materials.  ISOLDE is the perfect tool to create and study doping and defects in materials.

Showed some specific results.  Interstitial Fe in MgO.  Paramagnetism is oxides.

Expanding the isotopes used for eMS at ISOLDE.  Further doping possibilities.  Bio-physics. Thanks for your attention

31