AB Aurigae 106, 107 Absolute Magnitude 3–4, 211 Absorption
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meeting Program
A A S MEETING PROGRAM 211TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY WITH THE HIGH ENERGY ASTROPHYSICS DIVISION (HEAD) AND THE HISTORICAL ASTRONOMY DIVISION (HAD) 7-11 JANUARY 2008 AUSTIN, TX All scientific session will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez St. Austin, TX 78701 EXHIBITS ........................... 4 FURTHER IN GRATITUDE INFORMATION ............... 6 AAS Paper Sorters SCHEDULE ....................... 7 Rachel Akeson, David Bartlett, Elizabeth Barton, SUNDAY ........................17 Joan Centrella, Jun Cui, Susana Deustua, Tapasi Ghosh, Jennifer Grier, Joe Hahn, Hugh Harris, MONDAY .......................21 Chryssa Kouveliotou, John Martin, Kevin Marvel, Kristen Menou, Brian Patten, Robert Quimby, Chris Springob, Joe Tenn, Dirk Terrell, Dave TUESDAY .......................25 Thompson, Liese van Zee, and Amy Winebarger WEDNESDAY ................77 We would like to thank the THURSDAY ................. 143 following sponsors: FRIDAY ......................... 203 Elsevier Northrop Grumman SATURDAY .................. 241 Lockheed Martin The TABASGO Foundation AUTHOR INDEX ........ 242 AAS COUNCIL J. Craig Wheeler Univ. of Texas President (6/2006-6/2008) John P. Huchra Harvard-Smithsonian, President-Elect CfA (6/2007-6/2008) Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) Robert W. O’Connell Univ. of Virginia Vice-President (6/2006-6/2009) Lee W. Hartman Univ. of Michigan Vice-President (6/2007-6/2010) John Graham CIW Secretary (6/2004-6/2010) OFFICERS Hervey (Peter) STScI Treasurer Stockman (6/2005-6/2008) Timothy F. Slater Univ. of Arizona Education Officer (6/2006-6/2009) Mike A’Hearn Univ. of Maryland Pub. Board Chair (6/2005-6/2008) Kevin Marvel AAS Executive Officer (6/2006-Present) Gary J. Ferland Univ. of Kentucky (6/2007-6/2008) Suzanne Hawley Univ. -
Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis, -
FY13 High-Level Deliverables
National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................ -
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C. -
Episodic Accretion in Young Stars
Episodic Accretion in Young Stars Marc Audard University of Geneva Peter´ Abrah´ am´ Konkoly Observatory Michael M. Dunham Yale University Joel D. Green University of Texas at Austin Nicolas Grosso Observatoire Astronomique de Strasbourg Kenji Hamaguchi National Aeronautics and Space Administration and University of Maryland, Baltimore County Joel H. Kastner Rochester Institute of Technology Agnes´ Kosp´ al´ European Space Agency Giuseppe Lodato Universit`aDegli Studi di Milano Marina M. Romanova Cornell University Stephen L. Skinner University of Colorado at Boulder Eduard I. Vorobyov University of Vienna and Southern Federal University Zhaohuan Zhu Princeton University In the last twenty years, the topic of episodic accretion has gained significant interest in the star formation community. It is now viewed as a common, though still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied arXiv:1401.3368v1 [astro-ph.SR] 14 Jan 2014 examples of this phenomenon. FUors are believed to undergo accretion outbursts during which −7 −4 −1 the accretion rate rapidly increases from typically 10 to a few 10 M⊙ yr , and remains elevated over several decades or more. EXors, a loosely defined class of pre-main sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main sequence evolutionary sequence, is an open question: do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been developed to explain the origin of FUor and EXor outbursts. -
The Astronomical Zoo: Discovery and Classification
Theme 6: The Astronomical Zoo: discovery and classification 6.1 Discovery As discussed earlier, astronomy is atypical among the exact sciences in that discovery normally precedes understanding, sometimes by many years. Astronomical discovery is usually driven by availability of technology rather than by theoretical predictions or speculation. Figure 6.1, redrawn from Martin Harwit’s Cosmic Discovery (MIT Press, 1984), show how the rate of disco- very of “astronomical phenomena” (i.e. classes of object, rather than properties such as dis- tance) has increased over time (the line is a rough fit to an exponential), and 50 the age of the necessary technology at the time the discovery was made. (I 40 have not attempted to update Harwit’s data, because the decision as to what 30 constitutes a new phenomenon is sub- 20 jective to some degree; he puts in seve- ral items that I would not have regar- 10 ded as significant, omits some I would total numberof classes have listed, and doesn’t always assign 0 the same date as I would.) 1550 1600 1650 1700 1750 1800 1850 1900 1950 date Note that the pace of discoveries accel- erates in the 20th century, and the time Impact of new technology lag between the availability of the ne- 15 cessary technology and the actual dis- covery decreases. This is likely due to 10 the greater number of working astro- <1954 nomers: if the technology to make the 5 discovery exists, someone will make it. 1954-74 However, Harwit also makes the point 0 that the discoveries made in the period Numberof discoveries <5 5-10 10-25 25-50 >50 1954−74 were generally (~85%) made Age of required technology (years) by people who were not initially trained in astronomy (mostly physi- Figure 6.1: astronomical discoveries. -
Fermi Establishes Classical Novae As a Distinct Class of Gamma-Ray Sources
Fermi Establishes Classical Novae as a Distinct Class of Gamma-Ray Sources The Fermi-LAT Collaboration∗y Science, submitted March 26; accepted June 20, 2014 A classical nova results from runaway thermonuclear explosions on the sur- face of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in γ rays and stood in contrast to the first γ-ray detected nova V407 Cygni 2010, which be- longs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classi- cal novae are similarly characterized as soft spectrum transient γ-ray sources detected over 2−3 week durations. The γ-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic γ-ray sources. The Fermi-LAT [Large Area Telescope; (1)], launched in 2008, continuously scans the sky in γ rays, thus enabling searches for transient sources. When a nova explodes in a symbiotic binary system, the ejecta from the white dwarf surface expand within the circumstellar wind of the red giant companion and high-energy particles can be accelerated in a blast wave driven in the high-density environment (2) so that variable γ-ray emission can be produced, as was detected at >100 MeV energies by the LAT in V407 Cygni 2010 (V407 Cyg) (3). In a classical nova, by contrast, the ejecta quickly expand beyond the confines of the compact binary into a much lower density environment. -
Astronomy and Astrophysics Books in Print, and to Choose Among Them Is a Difficult Task
APPENDIX ONE Degeneracy Degeneracy is a very complex topic but a very important one, especially when discussing the end stages of a star’s life. It is, however, a topic that sends quivers of apprehension down the back of most people. It has to do with quantum mechanics, and that in itself is usually enough for most people to move on, and not learn about it. That said, it is actually quite easy to understand, providing that the information given is basic and not peppered throughout with mathematics. This is the approach I shall take. In most stars, the gas of which they are made up will behave like an ideal gas, that is, one that has a simple relationship among its temperature, pressure, and density. To be specific, the pressure exerted by a gas is directly proportional to its temperature and density. We are all familiar with this. If a gas is compressed, it heats up; likewise, if it expands, it cools down. This also happens inside a star. As the temperature rises, the core regions expand and cool, and so it can be thought of as a safety valve. However, in order for certain reactions to take place inside a star, the core is compressed to very high limits, which allows very high temperatures to be achieved. These high temperatures are necessary in order for, say, helium nuclear reactions to take place. At such high temperatures, the atoms are ionized so that it becomes a soup of atomic nuclei and electrons. Inside stars, especially those whose density is approaching very high values, say, a white dwarf star or the core of a red giant, the electrons that make up the central regions of the star will resist any further compression and themselves set up a powerful pressure.1 This is termed degeneracy, so that in a low-mass red 191 192 Astrophysics is Easy giant star, for instance, the electrons are degenerate, and the core is supported by an electron-degenerate pressure. -
Fuor and Exor Variables: a NIR High-Resolution Spectroscopic Survey Joseph Liskowsky Clemson University, [email protected]
Clemson University TigerPrints All Theses Theses 12-2010 FUor and EXor Variables: A NIR High-Resolution Spectroscopic Survey Joseph Liskowsky Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Astrophysics and Astronomy Commons Recommended Citation Liskowsky, Joseph, "FUor and EXor Variables: A NIR High-Resolution Spectroscopic Survey" (2010). All Theses. 977. https://tigerprints.clemson.edu/all_theses/977 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. FUor and EXor Variables, a NIR High-Resolution Spectroscopic Survey A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Physics and Astronomy by Joseph Paul Liskowsky Dec 2010 Accepted by: Dr. Sean Brittain, Committee Chair Dr. Dieter Hartmann Dr. Mark Leising Dr. Bradley Meyer Abstract To better understand the labyrinth of heating and cooling processes in YSOs (young stellar objects), we study systems where there exists a large variability in the heating of this gas due to accretion. This research project focuses on several classes of early young eruptable T-Tauri stars, namely the FUors, the EXors and the so-called FU Ori-like, which all have the property of large amplitude oscillations in accretion rate. Each of these categories may well represent specific stages in early low-mass stellar evolution. While these objects have specific spectroscopic and circumstellar diagnostics (as means of identification) our research suggests that there are at least several objects that defy (typical) classification. -
Arxiv:1211.6741V1 [Astro-Ph.SR] 28 Nov 2012 Accreting Young Low Mass Stars
ApJ Accepted: July , 6 2011 Preprint typeset using LATEX style emulateapj v. 5/2/11 CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY Laurent Pueyo 1, Lynne Hillenbrand 2, Gautam Vasisht 3, Ben R. Oppenheimer 4, John D. Monnier 5, Sasha Hinkley 2, Justin Crepp 7, Lewis C. Roberts Jr3, Douglas Brenner 4, Neil Zimmerman 4, Ian Parry 8, Charles Beichman 6, Richard Dekany 2, Mike Shao 3, Rick Burruss 3, Eric Cady 3, Jenny Roberts 2,Remi´ Soummer 1 ApJ Accepted: July , 6 2011 ABSTRACT We report low resolution near infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0:500 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J and H band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low resolution near infrared spectrum in conjunction with 10:2 micron interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. -
Phase-Resolved Infrared Spectroscopy and Photometry of V1500 Cygni, and a Search for Similar Old Classical Novae
Phase-Resolved Infrared Spectroscopy and Photometry of V1500 Cygni, and a Search for Similar Old Classical Novae Thomas E. Harrison1;2 Department of Astronomy, New Mexico State University, Box 30001, MSC 4500, Las Cruces, NM 88003-8001 [email protected] Randy D. Campbell, James E. Lyke W. M. Keck Observatory, 65-1120 Mamalahoa Hwy., Kamuela, HI 96743 [email protected], [email protected] ABSTRACT We present phase-resolved near-infrared photometry and spectroscopy of the clas- sical nova V1500 Cyg to explore whether cyclotron emission is present in this system. While the spectroscopy do not indicate the presence of discrete cyclotron harmonic emission, the light curves suggest that a sizable fraction of its near-infrared fluxes are due to this component. The light curves of V1500 Cyg appear to remain dominated by emission from the heated face of the secondary star in this system. We have used infrared spectroscopy and photometry to search for other potential magnetic systems amongst old classical novae. We have found that the infrared light curves of V1974 Cyg superficially resemble those of V1500 Cyg, suggesting a highly irradiated companion. The old novae V446 Her and QV Vul have light curves with large amplitude variations like those seen in polars, suggesting they might have magnetic primaries. We extract photometry for seventy nine old novae from the 2MASS Point Source Catalog and use those data to derive the mean, un-reddened infrared colors of quiescent novae. We also extract W ISE data for these objects and find that forty five of them were detected. Surprisingly, a number of these systems were detected in the W ISE 22 µm band. -
A Photometric Variability Survey of Field K and M Dwarf Stars With
Draft version October 25, 2018 A Preprint typeset using LTEX style emulateapj v. 11/10/09 A PHOTOMETRIC VARIABILITY SURVEY OF FIELD K AND M DWARF STARS WITH HATNET J. D. Hartman1, G. A.´ Bakos1, R. W. Noyes1, B. Sipocz˝ 1,2, G. Kovacs´ 3, T. Mazeh4, A. Shporer4, A. Pal´ 1,2 Draft version October 25, 2018 ABSTRACT Using light curves from the HATNet survey for transiting extrasolar planets we investigate the optical broad-band photometric variability of a sample of 27, 560 field K and M dwarfs selected by color and proper-motion (V − K & 3.0, µ > 30 mas/yr, plus additional cuts in J − H vs. H − KS and on the reduced proper motion). We search the light curves for periodic variations, and for large- amplitude, long-duration flare events. A total of 2120 stars exhibit potential variability, including 95 stars with eclipses and 60 stars with flares. Based on a visual inspection of these light curves and an automated blending classification, we select 1568 stars, including 78 eclipsing binaries, as secure variable star detections that are not obvious blends. We estimate that a further ∼ 26% of these stars may be blends with fainter variables, though most of these blends are likely to be among the hotter stars in our sample. We find that only 38 of the 1568 stars, including 5 of the eclipsing binaries, have previously been identified as variables or are blended with previously identified variables. One of the newly identified eclipsing binaries is 1RXS J154727.5+450803, a known P = 3.55 day, late M-dwarf SB2 system, for which we derive preliminary estimates for the component masses and radii of M1 = M2 = 0.258 ± 0.008 M⊙ and R1 = R2 = 0.289 ± 0.007 R⊙.