Download Light Curves5 for All Objects Observed

Total Page:16

File Type:pdf, Size:1020Kb

Download Light Curves5 for All Objects Observed Kent Academic Repository Full text document (pdf) Citation for published version Evitts, Jack J (2020) An analysis on the photometric variability of V 1490 Cyg. Master of Science by Research (MScRes) thesis, University of Kent,. DOI Link to record in KAR https://kar.kent.ac.uk/80982/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html UNIVERSITY OF KENT CENTRE FOR ASTROPHYSICS AND PLANETARY SCIENCE SCHOOL OF PHYSICAL SCIENCES An analysis on the photometric variability of V 1490 Cyg Author: Jack J. Evitts Supervisor: Dr. Dirk Froebrich Second Supervisor: Dr. James Urquhart A revised thesis submitted for the degree of MSc by Research 10th April 2020 Abstract Variability in Young Stellar Objects (YSOs) is one of their primary characteristics. Long- term, multi-filter, high-cadence monitoring of large samples aids understanding of such sources. Although data from the HOYS citizen science project allows for such monitoring, usage of different filters introduces colour-terms to the photometric data. This thesis outlines the development of a novel colour-term correction method, im- proving photometric error to within a couple of percent. The corrected light curve for the YSO, V 1490 Cyg , is then discussed in detail. The source is observed to be a quasi-periodic dipper with a period of 31.447 ± 0.011 days. Long and short-term variability is observed for B, V, Rc and Ic data, with larger variability on short timescales for U and Ha . U amplitudes were observed to vary on timescales of hours, indicating the source is still accreting. No significant trends were observed in the structure function, with the amount of mass in the occulting structure seen to vary by up to a factor of 10 for both mass increase and decrease. The lower esti- −10 mate of the typical accretion rate of V 1490 Cyg was found of the order 10 M /year, consistent with low levels of accretion as seen in other T-Tauri stars. Investigating the orbiting structure in V vs. V − Ic parameter space suggests low column density mate- rial with roughly ISM dust properties. Embedded in this envelope are denser, small- scale structures, most likely composed of larger dust grains. The scattering properties of this material are consistent and do not change over time. An accurate distance to +70 both IC 5070 and V 1490 Cyg of 870 −55 pc has been determined using Gaia. Litera- ture near-infrared (NIR) and mid-infrared (MIR) data suggest that V 1490 Cyg is most likely a CTTS, with a currently low, but variable accretion rate. It is potentially at the start of the transition into a WTTS or transition disk object. This thesis finds the nature of the variability of the source is most likely attributed to a protoplanet-induced disk warp. Acknowledgements This thesis has only become a reality with the kind support and help of many individ- uals. I would like to extend my sincere thanks to all of them. Firstly, I would like to thank all contributors of data for their efforts towards the success of both the HOYS project and this study. Also many thanks to my fellow researchers who have helped in obtaining and discussing the data that is the backbone of this work. In particular I would like to express my special gratitude and thanks to my supervisor, Dr. Dirk Froebrich for imparting his knowledge and expertise. I am highly indebted to both STFC (Grant no. ST/S505456/1) and the University of Kent for the funding that has enabled me to start and continue with this research. Finally, I wish to thank and acknowledge my loving and supportive wife, Liz. Without her help, I could not have succeeded in this endeavour. Declaration of Authorship I, Jack J. Evitts declare that this thesis titled "An analysis on the photometric variability of V 1490 Cyg" and the work presented in it are my own and has been generated by me as the result of my own original research. I confirm that: 1. This work was done wholly or mainly while in candidature for a research degree at this University; 2. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated; 3. Where I have consulted the published work of others, this is always clearly at- tributed; 4. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work; 5. I have acknowledged all main sources of help; 6. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Jack J. Evitts Date: 10th April 2020 A summarised version of the data and analysis presented in this thesis has been written into a journal paper that has been submitted to, and accepted by, Monthly Notices of the Royal Astronomical Society for publication. Contents 1 Introduction 3 1.1 Star Formation . .4 1.2 Disks . .5 1.3 Planet Formation . .6 1.4 Variable Young Stars . .7 2 HOYS 10 2.1 The Project . 10 2.2 The Beacon Observatory . 11 2.3 Targets . 12 3 Observational Data and Photometric Calibration 13 3.1 V 1490 Cyg Imaging Observations . 13 3.2 Photometry Data Calibration . 13 3.2.1 Basic Relative Photometric Calibration . 14 3.2.2 Photometry Colour Correction . 15 3.3 Spectroscopy Data . 21 4 Analysis of the Data for the Light Curve of V 1490 Cyg 26 4.1 The Quasi-Periodic Light Curve of V 1490 Cyg . 26 1 4.2 Asymmetry of the Light Curve of V 1490 Cyg . 34 4.3 Analysis of the Variability Fingerprints . 35 4.4 Column Density Distribution of Consecutive Dips . 39 4.5 Colour Dependence of Periodic Dips . 49 5 Discussion 54 5.1 Distance of V 1490 Cyg . 54 5.2 Potential Binarity of V 1490 Cyg . 57 5.3 Literature NIR and MIR data for V 1490 Cyg . 58 5.4 Evolutionary Stage of V 1490 Cyg . 58 5.5 The Nature of V 1490 Cyg . 60 5.5.1 Protoplanet-induced Disk Warp . 61 5.5.2 Magnetically-induced Disk Warp . 61 5.5.3 Hill Sphere of Accreting Protoplanet . 62 6 Conclusions 63 Bibliography 76 A Appendix A: Description of Observatories and Data Reduction 77 A.1 Description of Amateur Observatories and Data . 77 A.2 Description of University and Professional Observatories . 86 2 Introduction Young stellar objects (YSOs) were initially discovered by their irregular and large op- tical variability (Joy, 1945). Their fluxes can be affected by a wide variety of physical processes, such as changeable emission from accretion shocks, variable emission from the inner disk, and variable extinction along the line-of-sight (Carpenter et al., 2001). Furthermore, variability in YSOs occurs on a wide variety of timescales. These can range from short term accretion rate changes over minutes, to long term outburst or disk occultation events, spanning in duration from years to tens of years. Thus, ob- serving variable young stars over a wide range of timescales and wavelengths allows us to explore the physical processes, structure and evolution of their environment, and provides key insights into the formation of stars. Numerous photometric variability surveys have been been conducted in the past, aim- ing to address the study of YSO variability. Often they have either focused on high cadence over relatively short periods (e.g. with COROT and Kepler (Cody et al., 2014; Ansdell et al., 2016)), or more long term, but lower cadence (e.g. with UGPS and VVV (Contreras Peña et al., 2014, 2017b)). The recently initiated HOYS project aims to per- form high cadence, long-term and multi-filter optical monitoring of YSOs. It uses a combination of professional, university and amateur observatories (Froebrich et al., 2018a) to study accretion and extinction related short and long-term variability in a number of nearby young clusters and star forming regions. More detail on the project is discussed in Chapter 2. Characterising the structure and properties of the inner accretion disks in YSOs is vital for our understanding of the accretion processes and the formation of terrestrial (in- ner) planets in those systems. However, investigating the innermost disk structure of YSOs on scales below 1 AU is currently only possible through indirect methods such as photometric monitoring of disk occultation events. Of particular interest are periodic, or semi-periodic, occultation events (e.g. in AA Tau (Bouvier et al., 1999) or UX Ori (Herbst and Shevchenko, 1999) type objects, though often aperiodic). They allow us to identify the physical location of the occulting structures in the disks based on the period, and therefore to determine the spatial scales of the material directly.
Recommended publications
  • Chemical Evolution of Protoplanetary Disks-The Effects of Viscous Accretion, Turbulent Mixing and Disk Winds
    Draft version June 5, 2018 Preprint typeset using LATEX style emulateapj v. 11/10/09 CHEMICAL EVOLUTION OF PROTOPLANETARY DISKS – THE EFFECTS OF VISCOUS ACCRETION, TURBULENT MIXING AND DISK WINDS D. Heinzeller1 and H. Nomura Department of Astronomy, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan and C. Walsh and T. J. Millar Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, UK Draft version June 5, 2018 ABSTRACT We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas- phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared LTE line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line emission from the disk and subsequently improving agreement with observations. We find that NH3, CH3OH, C2H2 and sulphur-containing species are greatly enhanced by the inclusion of turbulent mixing.
    [Show full text]
  • Our Place in the Universe (239 Pages)
    OUR PLACE IN THE uNIVERSE Norman k. Glendenning Lawrence Berkeley National Laboratiry World scientific Imperial College Press Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE and World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Glendenning, Norman K. Our place in the universe / Norman K. Glendenning. p. cm. Includes bibliographical references and index. ISBN-13 978-981-270-068-1 -- ISBN-10 981-270-068-4 ISBN-13 978-981-270-069-8 (pbk) -- ISBN-10 981-270-069-2 (pbk) 1. Cosmology. 2. Galaxies--Formation. 3. Galaxies--Evolution. 4. Astrophysics. 5. Solar system--Origin. I. Title. QB981 .G585 2007 523.1--dc22 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Cover picture: The Horsehead is a reflection nebula; it is located in the much larger Orion Nebula, an immense molecular cloud of primordial hydrogen and helium, together dust cast off by the surfaces of stars. The clouds that form the Horsehead are illuminated from behind by a stellar nursery of young bright stars. Credit: Photo taken at Mauna Kea, Hawaii with the Canada-France-Hawaii Telescope. Copyright © 2007 by Imperial College Press and World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.
    [Show full text]
  • Navigating North America
    deep-sky wonders by sue french Navigating North America the north america nebula is one of the most impres- NGC 6997 is the most obvious cluster within the confines sive nebulae glowing in our sky. This nebula’s remarkable of the North America Nebula. To me, it looks as though it’s resemblance to the North American continent makes it bet- been plunked down on the border between Ohio and West ter known by its common name — bestowed not by a resi- Virginia. Putting 4.8-magnitude 57 Cygni at the western dent of North America, but by German astrono- edge of a low-power eyepiece field should bring NGC 6997 Knowing mer Max Wolf. In 1890 Wolf became the first into view. My 4.1-inch scope at 17× displays a dusting of person to photograph the North America Nebula, very faint stars. At 47×, it’s a pretty cluster, rich in faint your and for many years this remained the only way to stars, spanning 10′. Through my 10-inch reflector, I count geography fully appreciate its distinctive shape. With today’s 40 stars, mostly of magnitude 11 and 12. Many are abundance of short-focal-length telescopes and arranged in two incomplete circles, one inside the other. puts you wide-field eyepieces, we can more readily enjoy Is NGC 6997 actually involved in the North America one step this large nebula visually. Nebula? It’s difficult to tell because the distances are poorly The North America Nebula, NGC 7000 or Cald- known. A journal article earlier this year puts NGC 6997 at ahead in well 20, is certainly easy to locate.
    [Show full text]
  • BRAS Newsletter August 2013
    www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell
    [Show full text]
  • Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
    Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars.
    [Show full text]
  • Curriculum Vitae - 24 March 2020
    Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution
    [Show full text]
  • Optical Spectroscopic Monitoring Observations of a T Tauri Star V409 Tau
    International Journal of Astronomy and Astrophysics, 2019, 9, 321-334 http://www.scirp.org/journal/ijaa ISSN Online: 2161-4725 ISSN Print: 2161-4717 Optical Spectroscopic Monitoring Observations of a T Tauri Star V409 Tau Hinako Akimoto, Yoichi Itoh Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, Hyogo, Japan How to cite this paper: Akimoto, H. and Abstract Itoh, Y. (2019) Optical Spectroscopic Mon- itoring Observations of a T Tauri Star V409 We report the results of optical spectroscopic monitoring observations of a T Tau. International Journal of Astronomy Tauri star, V409 Tau. A previous photometric study indicated that this star and Astrophysics, 9, 321-334. experienced dimming events due to the obscuration of light from the central https://doi.org/10.4236/ijaa.2019.93023 star with a distorted circumstellar disk. We conducted medium-resolution (R Received: July 24, 2019 ~10,000) spectroscopic observations with 2-m Nayuta telescope at Ni- Accepted: September 16, 2019 shi-Harima Astronomical Observatory. Spectra were obtained in 18 nights Published: September 19, 2019 between November 2015 and March 2016. Several absorption lines such as Ca Copyright © 2019 by author(s) and I and Li, and the Hα emission line were confirmed in the spectra. The Ic-band Scientific Research Publishing Inc. magnitudes of V409 Tau changed by approximately 1 magnitude during the This work is licensed under the Creative observation epoch. The equivalent widths of the five absorption lines are Commons Attribution International License (CC BY 4.0). roughly constant despite changes in the Ic-band magnitudes. We conclude http://creativecommons.org/licenses/by/4.0/ that the light variation of the star is caused by the obscuration of light from Open Access the central star with a distorted circumstellar disk, based on the relationship between the equivalent widths of the absorption lines and the Ic-band magni- tudes.
    [Show full text]
  • Star Formation in the “Gulf of Mexico”
    A&A 528, A125 (2011) Astronomy DOI: 10.1051/0004-6361/200912671 & c ESO 2011 Astrophysics Star formation in the “Gulf of Mexico” T. Armond1,, B. Reipurth2,J.Bally3, and C. Aspin2, 1 SOAR Telescope, Casilla 603, La Serena, Chile e-mail: [email protected] 2 Institute for Astronomy, University of Hawaii at Manoa, 640 N. Aohoku Place, Hilo, HI 96720, USA e-mail: [reipurth;caa]@ifa.hawaii.edu 3 Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309, USA e-mail: [email protected] Received 9 June 2009 / Accepted 6 February 2011 ABSTRACT We present an optical/infrared study of the dense molecular cloud, L935, dubbed “The Gulf of Mexico”, which separates the North America and the Pelican nebulae, and we demonstrate that this area is a very active star forming region. A wide-field imaging study with interference filters has revealed 35 new Herbig-Haro objects in the Gulf of Mexico. A grism survey has identified 41 Hα emission- line stars, 30 of them new. A small cluster of partly embedded pre-main sequence stars is located around the known LkHα 185-189 group of stars, which includes the recently erupting FUor HBC 722. Key words. Herbig-Haro objects – stars: formation 1. Introduction In a grism survey of the W80 region, Herbig (1958) detected a population of Hα emission-line stars, LkHα 131–195, mostly The North America nebula (NGC 7000) and the adjacent Pelican T Tauri stars, including the little group LkHα 185 to 189 located nebula (IC 5070), both well known for the characteristic shapes within the dark lane of the Gulf of Mexico, thus demonstrating that have given rise to their names, are part of the single large that low-mass star formation has recently taken place here.
    [Show full text]
  • Optical Spectroscopic Monitoring Observations of a T Tauri Star V409
    International Journal of Astronomy & Astrophysics, 2019, *,** Published Online **** 2019 in SciRes. http://www.scirp.org/journal/**** http://dx.doi.org/10.4236/****.2014.***** Optical Spectroscopic Monitoring Observations of a T Tauri Star V409 Tau Hinako Akimoto1 and Yoichi Itoh1 1 Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Sayo, Hyogo 679-5313, Japan Email: [email protected] Received **** 2019 Copyright c 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract We report the results of optical spectroscopic monitoring observations of a T Tauri star, V409 Tau. A previous photometric study indicated that this star experienced dimming events due to the obscuration of light from the central star with a distorted circumstellar disk. We conducted medium-resolution (R ∼ 10000) spectroscopic observations with 2-m Nayuta telescope at Nishi-Harima Astronomical Observatory. Spectra were obtained in 18 nights between November 2015 and March 2016. Several absorption lines such as Ca I and Li, and the Hα emission line were confirmed in the spectra. The Ic-band magnitudes of V409 Tau changed by approximately 1 magnitude during the observation epoch. The equivalent widths of the five absorption lines are roughly constant despite changes in the Ic-band magnitudes. We conclude that the light variation of the star is caused by the obscuration of light from the central star with a distorted circumstellar disk, based on the relationship between the equivalent widths of the absorption lines and the Ic-band magnitudes.
    [Show full text]
  • Binocular Challenge Here
    AHSP Binocular Observing Award Compiled by Phil Harrington www.philharrington.net • To qualify for the BOA pin, you must see 15 of the following 20 binocular targets. Check off each as you spot them. Seen # Object Const. Type* RA Dec Mag Size Nickname 1. M13 Her GC 16 41.7 +36 28 5.9 16' Great Hercules Globular 2. M57 Lyr PN 18 53.6 +33 02 9.7 86"x62" Ring Nebula 3. Collinder 399 Vul AS 19 25.4 +20 11 3.6 60' Coathanger/Brocchi’s Cluster 3.1 4. Albireo Cyg Dbl 19 30.7 +27 57 35” Color Contrasting Double 5.1 5. M27 Vul PN 19 59.6 +22 43 8.1 8’x6’ Dumbbell Nebula 6. NGC 6992 Cyg SNR 20 56.4 +31 43 - 60'x8 Veil Nebula (east) 7. NGC 7000 Cyg BN 20 58.8 +44 20 - 120'x100' North America Nebula 8. M15 Peg GC 21 30.0 +12 10 7.5 12’ Great Pegasus Cluster 9. M39 Cyg OC 21 32.2 +48 26 4.6 32' 10. Barnard 168 Cyg DN 21 53.2 +47 12 - 100'x10' West of Cocoon Nebula 11. IC 5146 Cyg BN/OC 21 53.5 +47 16 - 12'x12' Cocoon Nebula 12. M110 And Gx 00 40.4 +41 41 10 17’x10’ 13. M32 And Gx 00 42.8 +40 52 10 8’x6’ 14. M31 And Gx 00 42.8 +41 16 4.5 178’ Andromeda Galaxy 15. NGC 457 Cas OC 01 19.1 +58 20 6.4 13’ Owl Cluster/ET Cluster 16.
    [Show full text]
  • Discovery of Variable X-Ray Absorption in the Ctts AA Tauri J
    A&A 462, L41–L44 (2007) Astronomy DOI: 10.1051/0004-6361:20066693 & c ESO 2007 Astrophysics Letter to the Editor Discovery of variable X-ray absorption in the cTTS AA Tauri J. H. M. M. Schmitt and J. Robrade Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany e-mail: [email protected] Received 3 November 2006 / Accepted 6 December 2006 ABSTRACT We present XMM-Newton X-ray and UV observations of the classical T Tauri star AA Tau covering almost two rotational periods where Prot ∼ 8.5 days. Clear, but uncorrelated variability is found at both wavebands. The variability observed at ∼2100 Å follows the previously known optical period. Spectral analysis of the X-ray data results in significant variability in the X-ray absorption such that the times of maximal X-ray absorption and UV extinction coincide. Placing the coronal emission in regions at low up to moderate magnetic latitudes and attribution of the variable X-ray absorption to accretion curtains and/or the disk warp provides a consistent physical picture. However, the derived X-ray absorption and optical extinction at times of maximal optical/UV brightness, i.e. outside occultation, are difficult to reconcile, requiring additional absorption in a disk wind or a peculiar dust grain distribution. Key words. X-rays: stars – stars: pre-main sequence – stars: coronae – stars: activity 1. Introduction warp leads to a partial occultation of AA Tau’s photosphere, thus causing the observed almost achromatic brightness variations. T Tauri stars (TTS) are very young low-mass stars evolving to- Polarization measurements (Ménard et al.
    [Show full text]
  • Instruction Manual Meade Instruments Corporation
    Instruction Manual 7" LX200 Maksutov-Cassegrain Telescope 8", 10", and 12" LX200 Schmidt-Cassegrain Telescopes Meade Instruments Corporation NOTE: Instructions for the use of optional accessories are not included in this manual. For details in this regard, see the Meade General Catalog. (2) (1) (1) (2) Ray (2) 1/2° Ray (1) 8.218" (2) 8.016" (1) 8.0" Secondary 8.0" Mirror Focal Plane Secondary Primary Baffle Tube Baffle Field Stops Correcting Primary Mirror Plate The Meade Schmidt-Cassegrain Optical System (Diagram not to scale) In the Schmidt-Cassegrain design of the Meade 8", 10", and 12" models, light enters from the right, passes through a thin lens with 2-sided aspheric correction (“correcting plate”), proceeds to a spherical primary mirror, and then to a convex aspheric secondary mirror. The convex secondary mirror multiplies the effective focal length of the primary mirror and results in a focus at the focal plane, with light passing through a central perforation in the primary mirror. The 8", 10", and 12" models include oversize 8.25", 10.375" and 12.375" primary mirrors, respectively, yielding fully illuminated fields- of-view significantly wider than is possible with standard-size primary mirrors. Note that light ray (2) in the figure would be lost entirely, except for the oversize primary. It is this phenomenon which results in Meade 8", 10", and 12" Schmidt-Cassegrains having off-axis field illuminations 10% greater, aperture-for-aperture, than other Schmidt-Cassegrains utilizing standard-size primary mirrors. The optical design of the 4" Model 2045D is almost identical but does not include an oversize primary, since the effect in this case is small.
    [Show full text]