The New Mutation Theory of Phenotypic Evolution

Total Page:16

File Type:pdf, Size:1020Kb

The New Mutation Theory of Phenotypic Evolution PERSPECTIVE The new mutation theory of phenotypic evolution Masatoshi Nei* Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802 Edited by Daniel L. Hartl, Harvard University, Cambridge, MA, and approved June 13, 2007 (received for review April 16, 2007) Recent studies of developmental biology have shown that the genes controlling phenotypic characters expressed in the early stage of development are highly conserved and that recent evolutionary changes have occurred primarily in the characters expressed in later stages of development. Even the genes controlling the latter characters are generally conserved, but there is a large component of neutral or nearly neutral genetic variation within and between closely related species. Phenotypic evolution occurs primarily by mutation of genes that interact with one another in the developmental process. The enormous amount of phenotypic diversity among different phyla or classes of organisms is a product of accumulation of novel mutations and their conservation that have facilitated adaptation to different environments. Novel mutations may be incorporated into the genome by natural selection (elimi- nation of preexisting genotypes) or by random processes such as genetic and genomic drift. However, once the mutations are incor- porated into the genome, they may generate developmental constraints that will affect the future direction of phenotypic evolution. It appears that the driving force of phenotypic evolution is mutation, and natural selection is of secondary importance. or the last six decades, the domi- occur at the molecular level, but be- families (26, 27). Many multigene fami- nant theory of evolution has cause they do not affect phenotypic lies are of ancient origin and are shared been neo-Darwinism, which was characters, they are of little interest to by animals, plants, and fungi. Good ex- F developed by the three founders evolutionists. In this respect, it is inter- amples are homeobox genes that encode of theoretical population genetics, esting to note that even Kimura (15), transcription factors controlling various Fisher (1), Wright (2), and Haldane (3), protagonist of the neutral theory of aspects of morphogenesis. The genomes and was later supported by various evo- molecular evolution, believed in neo- of animals and plants contain a large lutionists (4–9). Neo-Darwinism asserts Darwinism with respect to phenotypic superfamily of homeobox genes, with that natural selection is the driving force evolution. By contrast, Nei (17, 24, 25) Ͼ200 genes in the human and Ϸ80 of evolution, and mutation merely pro- argued that because phenotypic charac- genes in the flowering plant Arabidopsis vides raw genetic materials with which ters are ultimately controlled by DNA thaliana. Animal homeobox genes can natural selection produces novel charac- sequences, both molecular and pheno- be divided into at least 49 families (28, ters. This view is based on the argument typic evolution must occur in similar 29). The most well studied is the HOX that natural selection enhances the fre- ways. He also suggested that a consider- gene family that controls the anterior– quencies of advantageous alleles at able portion of morphological evolution posterior segmentation of the animal many loci and makes it easy to recom- is caused by neutral or nearly neutral body. The homeodomains encoded by bine them into a single individual and mutations, and the driving force of evo- orthologous and paralogous HOX genes produce a novel character, especially in lution is mutation at both molecular and from different animals are known to the presence of gene interaction (1–3). phenotypic levels. However, the evi- have the same or very similar amino By following this principle, evolutionary dence for supporting this argument was acid sequences (28, 30, 31). In general, biologists have developed various theo- rather weak. the transcription factor genes involved ries of natural selection to explain the In recent years substantial progress in the early stages of development are evolution of sex (9), formation of new has occurred in the study of the molecu- highly conserved (26). This suggests that species (10), development of social life lar basis of phenotypic evolution, so that the early stages of development are con- in insects (11), evolution of altruism we can examine the relative importance trolled by the same or similar sets of (12), etc. In these studies, it is custom- of mutation and selection in detail. In genes in many different phyla or classes ary to assume that there is a sufficient this article, I will first consider pheno- of organisms. amount of genetic variation within pop- typic evolution controlled by multigene The highly conserved genes stay in ulations, and therefore what is necessary families, because there is a large amount the genome not because of a low muta- is to study how natural selection pro- of interesting data, and the interpreta- tion rate but because of a high degree duces complex characters or complex tion of new findings in this area is rela- of purifying selection. The degree of ways of life. tively simple. I will then discuss the purifying selection can be measured by In the last four decades, the study of evolutionary changes of protein-coding comparing the number of synonymous molecular evolution has shown that a and regulatory regions of genes in rela- nucleotide substitutions per synonymous majority of amino acid substitutions in tion to phenotypic evolution and their site (dS) and the number of nonsynony- proteins are neutral or nearly neutral implications for the general theory of mous substitutions per nonsynonymous and that only a minority of the substitu- evolution. tions change protein function (13–18). It has also been shown that the major fac- Multigene Families and Author contributions: M.N. wrote the paper. tor of evolution at the molecular level is Phenotypic Evolution The author declares no conflict of interest. mutation, including gene duplication Conservative and Divergent Evolution. This article is a PNAS Direct Submission. and other genetic changes (15–17). Recent genomic studies of model organ- Abbreviations: GRN, gene regulatory network; MC1R, However, most evolutionists still believe isms have made it clear that the ge- melanocortin-1 receptor; OR, olfactory receptor. in neo-Darwinism with respect to phe- nomes of eukaryotes contain a large *E-mail: [email protected]. notypic evolution and are not interested number of multigene families and that This article contains supporting information online at in neutral evolution (19–22). Mayr (23) most physiological and morphological www.pnas.org/cgi/content/full/0703349104/DC1. stated that neutral mutations apparently characters are controlled by multigene © 2007 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0703349104 PNAS ͉ July 24, 2007 ͉ vol. 104 ͉ no. 30 ͉ 12235–12242 Downloaded by guest on September 26, 2021 Table 1. Numbers of member genes of several homeobox gene families in animal species Invertebrates Vertebrates Gene family Caenorhabditis elegans Fruitfly Tunicate Puffer fish Zebrafish Frog Mouse Rat Human NKX5 1 1 1 4 3 3 2 2 2 DLX 1 1 3 8 5 6 7 6 6 CDX 1 1 2 2 3 3 3 2 3 HOX 6 8 10 45 40 35 39 39 39 PAX 2 8 4 9 7 3 4 4 4 POU 3 5 2 16 13 15 14 13 16 LIM 7 7 7 21 14 12 12 11 12 Table is modified from Nam and Nei (29). site (dN) under the assumption that dS the organism or the character involved. cause they are equipped with trichro- represents the number of neutral mu- For example, the number of gene copies matic color vision (35). For this reason, tations. In the presence of purifying in the HOX gene family is only 8 in they appear to have smaller numbers of selection, nonsynonymous nucleotide fruitflies but 39 in mammals (Table 1). OR genes. However, dogs and cows, substitutions resulting in amino acid This increase is understandable, because which have large numbers of functional changes may be eliminated. We there- vertebrates need more homeobox genes OR genes, also possess large numbers of fore expect that dN is smaller than dS, to develop complex morphological pseudogenes. In rats, it is known that and the extent of purifying selection can characters. A large-scale study of this even if up to 80% of glomeruli in the be measured by 1 Ϫ dN/dS. When I ap- problem was conducted for 1,219 super- olfactory bulb are removed (OR genes plied this equation to the concatenated families of genes from 38 eukaryotic knocked out), the individual still can nucleotide sequences (2,340 codons) of species, and it was shown that the num- live a normal life in the laboratory con- the homeoboxes of the 39 pairs of hu- ber of genes within each superfamily is dition. Furthermore, Shepherd (36) man and mouse HOX genes, I obtained generally correlated with the number of pointed out the importance of process- 1 Ϫ 0.001/0.313 ϭ 0.997. This suggests cell types of the organism (26). ing of odor distinction in the brain, stat- that 99.7% of nonsynonymous mutations The increase of gene number is, of ing that although humans have a smaller are eliminated by purifying selection in course, generally caused by gene dupli- number of OR genes, the proportion of homeobox regions. cation, but gene number sometimes de- brain concerned with olfaction is appar- However, most proteins are not as creases by gene deletion. Therefore, ently greater in humans than in mice. If conserved as HOX homeodomains, and multigene families are generally subject we consider these factors, variation in the average dN/dS ratio obtained from to birth-and-death evolution (27, 33). In the number of functional OR genes 1,000 randomly chosen human and multigene families controlling physiolog- among different species may not be di- mouse genes is Ϸ0.15 (18).
Recommended publications
  • Random Mutation and Natural Selection in Competitive and Non-Competitive Environments
    ISSN: 2574-1241 Volume 5- Issue 4: 2018 DOI: 10.26717/BJSTR.2018.09.001751 Alan Kleinman. Biomed J Sci & Tech Res Mini Review Open Access Random Mutation and Natural Selection In Competitive and Non-Competitive Environments Alan Kleinman* Department of Medicine, USA Received: : September 10, 2018; Published: September 18, 2018 *Corresponding author: Alan Kleinman, PO BOX 1240, Coarsegold, CA 93614, USA Abstract Random mutation and natural selection occur in a variety of different environments. Three of the most important factors which govern the rate at which this phenomenon occurs is whether there is competition between the different variants for the resources of the environment or not whether the replicator can do recombination and whether the intensity of selection has an impact on the evolutionary trajectory. Two different experimental models of random mutation and natural selection are analyzed to determine the impact of competition on random mutation and natural selection. One experiment places the different variants in competition for the resources of the environment while the lineages are attempting to evolve to the selection pressure while the other experiment allows the lineages to grow without intense competition for the resources of the environment while the different lineages are attempting to evolve to the selection pressure. The mathematics which governs either experiment is discussed, and the results correlated to the medical problem of the evolution of drug resistance. Introduction important experiments testing the RMNS phenomenon. And how Random mutation and natural selection (RMNS) are a does recombination alter the evolutionary trajectory to a given phenomenon which works to defeat the treatments physicians use selection pressure? for infectious diseases and cancers.
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Interpreting the History of Evolutionary Biology Through a Kuhnian Prism: Sense Or Nonsense?
    Interpreting the History of Evolutionary Biology through a Kuhnian Prism: Sense or Nonsense? Koen B. Tanghe Department of Philosophy and Moral Sciences, Universiteit Gent, Belgium Lieven Pauwels Department of Criminology, Criminal Law and Social Law, Universiteit Gent, Belgium Alexis De Tiège Department of Philosophy and Moral Sciences, Universiteit Gent, Belgium Johan Braeckman Department of Philosophy and Moral Sciences, Universiteit Gent, Belgium Traditionally, Thomas S. Kuhn’s The Structure of Scientific Revolutions (1962) is largely identified with his analysis of the structure of scientific revo- lutions. Here, we contribute to a minority tradition in the Kuhn literature by interpreting the history of evolutionary biology through the prism of the entire historical developmental model of sciences that he elaborates in The Structure. This research not only reveals a certain match between this model and the history of evolutionary biology but, more importantly, also sheds new light on several episodes in that history, and particularly on the publication of Charles Darwin’s On the Origin of Species (1859), the construction of the modern evolutionary synthesis, the chronic discontent with it, and the latest expression of that discon- tent, called the extended evolutionary synthesis. Lastly, we also explain why this kind of analysis hasn’t been done before. We would like to thank two anonymous reviewers for their constructive review, as well as the editor Alex Levine. Perspectives on Science 2021, vol. 29, no. 1 © 2021 by The Massachusetts Institute of Technology https://doi.org/10.1162/posc_a_00359 1 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/posc_a_00359 by guest on 30 September 2021 2 Evolutionary Biology through a Kuhnian Prism 1.
    [Show full text]
  • Local Drift Load and the Heterosis of Interconnected Populations
    Heredity 84 (2000) 452±457 Received 5 November 1999, accepted 9 December 1999 Local drift load and the heterosis of interconnected populations MICHAEL C. WHITLOCK*, PAÈ R K. INGVARSSON & TODD HATFIELD Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 We use Wright's distribution of equilibrium allele frequency to demonstrate that hybrids between populations interconnected by low to moderate levels of migration can have large positive heterosis, especially if the populations are small in size. Bene®cial alleles neither ®x in all populations nor equilibrate at the same frequency. Instead, populations reach a mutation±selection±drift±migration balance with sucient among-population variance that some partially recessive, deleterious mutations can be masked upon crossbreeding. This heterosis is greatest with intermediate mutation rates, intermediate selection coecients, low migration rates and recessive alleles. Hybrid vigour should not be taken as evidence for the complete isolation of populations. Moreover, we show that heterosis in crosses between populations has a dierent genetic basis than inbreeding depression within populations and is much more likely to result from alleles of intermediate eect. Keywords: deleterious mutations, heterosis, hybrid ®tness, inbreeding depression, migration, population structure. Introduction genetic drift, producing ospring with higher ®tness than the parents (see recent reviews on inbreeding in Crow (1948) listed several reasons why crosses between Thornhill, 1993). Decades of work in agricultural individuals from dierent lines or populations might genetics con®rms this pattern: when divergent lines are have increased ®tness relative to more `pure-bred' crossed their F1 ospring often perform substantially 1individuals, so-called `hybrid vigour'. Crow commented better than the average of the parents (Falconer, 1981; on many possible mechanisms behind hybrid vigour, Mather & Jinks, 1982).
    [Show full text]
  • Adaptive Tuning of Mutation Rates Allows Fast Response to Lethal Stress In
    Manuscript 1 Adaptive tuning of mutation rates allows fast response to lethal stress in 2 Escherichia coli 3 4 a a a a a,b 5 Toon Swings , Bram Van den Bergh , Sander Wuyts , Eline Oeyen , Karin Voordeckers , Kevin J. a,b a,c a a,* 6 Verstrepen , Maarten Fauvart , Natalie Verstraeten , Jan Michiels 7 8 a 9 Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Kasteelpark Arenberg 20, 10 3001 Leuven, Belgium b 11 VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie (VIB) Bioincubator 12 Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium c 13 Smart Systems and Emerging Technologies Unit, imec, Kapeldreef 75, 3001 Leuven, Belgium * 14 To whom correspondence should be addressed: Jan Michiels, Department of Microbial and 2 15 Molecular Systems (M S), Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 16 2460, 3001 Leuven, Belgium, [email protected], Tel: +32 16 32 96 84 1 Manuscript 17 Abstract 18 19 While specific mutations allow organisms to adapt to stressful environments, most changes in an 20 organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often 21 considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in 22 cellular mutation rates as a response to changes in selective pressure. We show that hypermutation 23 independently evolves when different Escherichia coli cultures adapt to high ethanol stress. 24 Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation 25 rate. Specifically, population mutation rates rise when cells experience higher stress and decline again 26 once cells are adapted.
    [Show full text]
  • Mendelism, Plant Breeding and Experimental Cultures: Agriculture and the Development of Genetics in France Christophe Bonneuil
    Mendelism, plant breeding and experimental cultures: Agriculture and the development of genetics in France Christophe Bonneuil To cite this version: Christophe Bonneuil. Mendelism, plant breeding and experimental cultures: Agriculture and the development of genetics in France. Journal of the History of Biology, Springer Verlag, 2006, vol. 39 (n° 2 (juill. 2006)), pp.281-308. hal-00175990 HAL Id: hal-00175990 https://hal.archives-ouvertes.fr/hal-00175990 Submitted on 3 Oct 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mendelism, plant breeding and experimental cultures: Agriculture and the development of genetics in France Christophe Bonneuil Centre Koyré d’Histoire des Sciences et des Techniques, CNRS, Paris and INRA-TSV 57 rue Cuvier. MNHN. 75005 Paris. France Journal of the History of Biology, vol. 39, no. 2 (juill. 2006), 281-308. This is an early version; please refer to the original publication for quotations, photos, and original pagination Abstract The article reevaluates the reception of Mendelism in France, and more generally considers the complex relationship between Mendelism and plant breeding in the first half on the twentieth century. It shows on the one side that agricultural research and higher education institutions have played a key role in the development and institutionalization of genetics in France, whereas university biologists remained reluctant to accept this approach on heredity.
    [Show full text]
  • Microevolution and the Genetics of Populations ​ ​ Microevolution Refers to Varieties Within a Given Type
    Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations ​ ​ Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait ​ ​ ​ ​ within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift.
    [Show full text]
  • The Role of Mutation Bias in Adaptive Molecular Evolution: Insights from 2 Convergent Changes in Protein Function 3
    bioRxiv preprint doi: https://doi.org/10.1101/580175; this version posted March 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 1 The role of mutation bias in adaptive molecular evolution: insights from 2 convergent changes in protein function 3 4 5 Jay F. Storz1*, Chandrasekhar Natarajan1, Anthony V. Signore1, Christopher C. Witt2,3, David M. 6 McCandlish4, Arlin Stoltzfus5* 7 8 1School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 9 2Department of Biology, University of New Mexico, Albuquerque, NM 87131 10 3Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131 11 4Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724 12 5Office of Data and Informatics, Material Measurement Laboratory, NIST, and Institute for Bioscience 13 and Biotechnology Research, Rockville, MD 20850 14 15 *Corresponding authors: Jay F. Storz ([email protected]), Arlin Stoltzfus ([email protected]) 16 17 18 Abstract 19 An underexplored question in evolutionary genetics concerns the extent to which mutational bias in the 20 production of genetic variation influences outcomes and pathways of adaptive molecular evolution. In the 21 genomes of at least some vertebrate taxa, an important form of mutation bias involves changes at CpG 22 dinucleotides: If the DNA nucleotide cytosine (C) is immediately 5’ to guanine (G) on the same coding 23 strand, then – depending on methylation status – point mutations at both sites occur at an elevated rate 24 relative to mutations at non-CpG sites.
    [Show full text]
  • •How Does Microevolution Add up to Macroevolution? •What Are Species
    Microevolution and Macroevolution • How does Microevolution add up to macroevolution? • What are species? • How are species created? • What are anagenesis and cladogenesis? 1 Sunday, March 6, 2011 Species Concepts • Biological species concept: Defines species as interbreeding populations reproductively isolated from other such populations. • Evolutionary species concept: Defines species as evolutionary lineages with their own unique identity. • Ecological species concept: Defines species based on the uniqueness of their ecological niche. • Recognition species concept: Defines species based on unique traits or behaviors that allow members of one species to identify each other for mating. 2 Sunday, March 6, 2011 Reproductive Isolating Mechanisms • Premating RIMs Habitat isolation Temporal isolation Behavioral isolation Mechanical incompatibility • Postmating RIMs Sperm-egg incompatibility Zygote inviability Embryonic or fetal inviability 3 Sunday, March 6, 2011 Modes of Evolutionary Change 4 Sunday, March 6, 2011 Cladogenesis 5 Sunday, March 6, 2011 6 Sunday, March 6, 2011 7 Sunday, March 6, 2011 Evolution is “the simple way by which species (populations) become exquisitely adapted to various ends” 8 Sunday, March 6, 2011 All characteristics are due to the four forces • Mutation creates new alleles - new variation • Genetic drift moves these around by chance • Gene flow moves these from one population to the next creating clines • Natural selection increases and decreases them in frequency through adaptation 9 Sunday, March 6, 2011 Clines
    [Show full text]
  • Explanatory Unification and the Early Synthesis 597
    Brit. J. Phil. Sci. 56 (2005), 595–609 Explanatory Unification and the Early Synthesis Anya Plutynski ABSTRACT The object of this paper is to reply to Morrison’s ([2000]) claim that while ‘structural unity’ was achieved at the level of the mathematical models of population genetics in the early synthesis, there was explanatory disunity. I argue to the contrary, that the early synthesis effected by the founders of theoretical population genetics was unifying and explanatory both. Defending this requires a reconsideration of Morrison’s notion of explanation. In Morrison’s view, all and only answers to ‘why’ questions which include the ‘cause or mechanism’ for some phenomenon count as explanatory. In my view, mathematical demonstrations that answer ‘how possibly’ and ‘why necessarily’ ques- tions may also count as explanatory. The authors of the synthesis explained how evolution was possible on a Mendelian system of inheritance, answered skepticism about the sufficiency of selection, and thus explained why and how a Darwinian research program was warranted. While today we take many of these claims as obvious, they required argument, and part of the explanatory work of the formal sciences is providing such arguments. Surely, Fisher and Wright had competing views as to the optimal means of generating adaptation. Nevertheless, they had common opponents and a common unifying and explanatory goal that their mathematical demonstrations served. 1 Introduction: Morrison’s challenge 2 Fisher v. Wright revisited 3 The early synthesis 4 Conclusion: unification and explanation reconciled 1 Introduction: Morrison’s challenge Morrison ([2000]) has recently argued that unification and explanation are often at odds in science.
    [Show full text]
  • Chapter 2: Why Would We Call for a New Evolutionary Synthesis? the Variation Issue and the Explanatory Alternatives
    Chapter 2: Why would we call for a new evolutionary synthesis? The variation issue and the explanatory alternatives. Philippe Huneman It is pervasively claimed that the framework of evolutionary theory, the Modern Synthesis (MS), which has been built between the 1930s and the 1950s through the synthesis of Mendelian genetics and Darwinian theory, has to be deeply revised, changed, “extended” (Pigliucci and Muller 2011, Odling-Smee Laland and Feldman 2003, Danchin et al 2011) or “expanded” (Gould 2002). Empirical and conceptual reasons are supposedly converging to support such a move. Supporters of a new Synthesis (e.g. Gilbert, Opitz and Raff 1996, Pigliucci and Muller 2011, Odling-Smee Laland and Feldman 2003, Danchin et al 2011, Jablonka and Lamb 2005, Oyama, Griffiths and Gray 2001 etc.) may disagree on many things but they generally think that the Modern Synthesis, as a scientific theory through which explanations for biological phylogeny, adaptation and diversity should be sought, gave too much importance to natural selection or that its focus on genes, exemplified by the textbook definition of evolution as a change in genotypic frequencies, was exaggerate. In this paper I pose the question what kind of empirical findings would be likely to force a dramatic theoretical change, meaning that the core claims of MS regarding natural selection and genetics. I will focus on one strain of critiques, that targeted the explanatory weight of natural selection as selection for the fittest traits (provided that variant traits arise by mutation and recombination). I will distinguish several critiques, according to their content and to the strength of the challenge: whereas some challenges necessitate a complete rethinking of the core concepts of evolutionary theory, others are solved by adding or amending the main concepts or modeling assumptions.
    [Show full text]
  • Statement About Pnas Paper “The New Mutation Theory of Phenotypic Evolution”
    July 30, 2007 (revised) Brief Historical Perspectives of the Paper “THE NEW MUTATION THEORY OF PHENOTYPIC EVOLUTION” Proceedings of the National Academy of Sciences, USA, 104:12235-12242, Published July 17, 2007 online. Masatoshi Nei The following is the author’s account of the history of development of the mutation theory of phenotypic evolution and related matters. Darwinism (1) Charles Darwin proposed that evolution occurs by natural selection in the presence of fluctuating variation. (2) At his time, the mechanism of generation of new variation was not known, and he assumed that new variation is generated by climatic changes, inheritance of acquired characters, spontaneous variations, etc. However, he believed that new variation occurs in random direction and evolutionary change is caused by natural selection. (3) He assumed that enormous phenotypic diversity among different phyla and classes is the result of accumulation of gradual evolution by natural selection. Saltationism Several biologists such as Thomas Huxley, William Bateson, and Hugo de Vries argued that the extent of variation between species is much greater than that within 1 species and therefore saltational or macromutational change is necessary to form new species rather than gradual evolution as proposed by Darwin. In this view a new species can be produced by a single macromutation, and therefore natural selection is unimportant. This view was strengthened when de Vries discovered several new forms of evening primroses which were very different from the parental species (Oenothera lamarckiana) and appeared to be new species. This discovery suggested that new species can arise by a single step of macromutation. However, it was later shown that O.
    [Show full text]