Vci Corrosion Protection

Total Page:16

File Type:pdf, Size:1020Kb

Vci Corrosion Protection VCI CORROSION PROTECTION PAPER A TRANSCENDIA BUSINESS VCI corrosion inhibitor papers by MetPro VCI Paper – spread the vapour, not the rust! MetPro has over 60 years of knowledge, technology and a proven track record in the development and production of high performance VCI systems end solutions. MetPro VCI papers are available in a variety of grades and constructions to protect metal products. These corrosion protection papers can be used like normal wrapping paper – that fully wrap around the metallic goods. lt can also be used as an interleave or for case lining. The high-quality MetPro VCI formula provides you with rapid corrosion protection – both on contact and in the vapor phase. They are designed to address the many challenges in the long term protection of steel, cast iron, chrome, copper, brass and zinc, and they are available in a wide range of options. It is also possible to completely avoid the use of protective oils and liquids. Simply remove the paper and the previously protected part can be used immediately! Whether you want to wrap steel parts or parts made of copper, our technical team of experts will help find a safe and economical solution for you. Health and Safety is a priority for MetPro. We meet with TRGS 900, TRGS 615, GADSL and multiple other industry-specific standards. Our approach to customer satisfaction is achieved by clearly under- standing our clients needs, so that we meet both industry health and safety standards and those of our customers. What are the VCI Papers designed for? n Long-time protection of steel, cast iron, chrome, copper, brass and zinc n Protection of metals from corrosion during transportation n Interim storage of metallic parts between the various stages of manufacturing n As interleaves or for the individual wrapping of parts n To extend the product life cycle of metallic components and machines n To be environmentally friendly and cost effective Contact us today for advice from our technical specialists on your corrosion prevention and packaging requirements www.metprogroup.com. Perfectly wrapped individual parts, ideal for industry Well protected with BioCor® VCI Paper MetPro BioCor® VCI inhibitor papers based on BioVCI® Simply safe! MetPro VCI-products are nitrite-free and tested by accredited laboratories. VCI Paper range: Paper VCI coated Series D/A/CH Weight Metals BioCor® 100 50 – 85 g/m2 Ferrous metals, nickel, chrome, aluminium BioCor® + PE 300 57 – 97 g/m2 Copper, ferrous metals, chrome, bronze, Universal Primex 600 50 – 70 g/m2 brass, tin Barrier 900 50 – 85 g/m2 Ferrous metals, nickel, chrome, aluminium Zincotex® 700 70 g/m2 Zinc, steel, galvanised steel Crepe 500 100 – 120 g/m2 Ferrous metals, nickel, chrome, aluminium Crepe + PE 800 160 g/m2 Additional features: PE coating, Barrier coating, protective both sides, customised prints and shapes. PE coating for added moisture and grease resistance. Barrier with built-in moisture and grease resistance. Crepe for extensibility and durability. All of the above product recommendations should be validated for compatibility with customers’ metals and alloys. Special solutions or variations on the above products, as well as detailed product data sheets can be provided to you upon request, so please call us! Our VCI Papers are available in a wide range of options to help meet your needs: n Flat sheet n Extensible, creped versions, reinforced n Rolls n Cut sheets according to size preference n Various weights n Wrappers, interleaves, inserts for bags and boxes n Customer specific solutions such as boards, VCI discs, etc. n Polyethylene coated paper n Specialised barrier coated paper to provide even greater protection The MetPro Group product range. The full MetPro Group range of products includes a comprehensive range of VCI products, including but not limited to VCI polyethylene film, VCI polypropylene plaques, and VCI liquids as well as sup- port products such as VCI power cards, foams and desiccants. We know that optimising your efficiency and effectiveness as a company is one of your key priorities, so why not contact us today and find out how MetPro can help. Combatting losses in profit caused by corrosion: VCI inhibitor papers for every application We can win the race against corrosion: VCI inhibitor papers by MetPro were developed specifically for storage and transport of ferrous and non-ferrous metals. VCI papers completely replace the need for corrosion protection methods such as grease and oil, leaving the metals residue free and ready to use Your components, machines and pre-fabricated metal parts can be easily and cost effectively wrapped and remain corrosion free. Call us today for advice from our technical specialists on all of your packaging needs. MetPro VCI-products – spread the vapours not the rust! Simply safe! VCI-products by MetPro are nitrite-free and tested by accredited laboratories. All production facilities are certified according to ISO 9001 and have the ISO 14001 environmental certification. CERTIFICATE The Certification Body of TÜV SÜD Management Service GmbH certifies that MetPro Verpackungs-Service GmbH Robert-Bosch-Straße 17 71701 Schwieberdingen Germany has established and applies a Quality Management System for Procurement and Distribution of industrial packaging. An audit was performed, Report No. 70007586. Proof has been furnished that the requirements according to ISO 9001:2015 are fulfilled. The certificate is valid in conjunction with the main certificate from 2017-08-28 until 2020-08-26. Certificate Registration No.: 12 100 20760/06 TMS. Product Compliance Management Munich, 2017-08-28 PROTECTING YOUR WORLD BioCor® – Protected by nature. BioCor® VCI-paper based on BioVCI® technologiy is the natural progression of the successfully introduced BioCor® film to create a comprehensive range of packaging materials which meet today’s needs of optimum metal protection combined with responsibility for employee Health and Safety. How does the VCI packaging process work? VCI (Volatile Corrosion Inhibitor) = Vapour corrosion protection from the carrier material The MetPro range of VCI packaging products contain special chemicals, which are emitted to form a protective layer which prevents oxygen and moisture from corroding the metal product. + + O2 = + + O2 = VCI corrosion inhibitor paper Removes the metal from the formula by its passivating effect There are many advantages to using the range of VCI papers from MetPro: n Reliable corrosion free and long term protection for a wide range of your products n Cost savings for your company n No environmental or health and safety hazards n Simple and secure applications n Reliable and prompt technical advice from the MetPro team, together with a wide range of products and options to address your particular needs n Approved by global leaders in the automotive industry n Nitrite and heavy metal free n Irritant free n Environmentally friendly, recyclable ond non-toxic Goods after transport with VCI protection Goods after transport without VCI protection MetPro France MetPro Verpackungs-Service GmbH MetPro UK 15 Rue Jean Zay MetPro Germany Leipzig: Glasgow Branch: 69800 Saint Priest, France An der Linde 21 24 Baronald Street G73 1AF Rutherglen, Glasgow, UK Tel: +33 472 09 11 18 D-04838 Jesewitz Phone: + 44 141 613 1869 Fax: +33 472 22 36 97 MetPro Germany Stuttgart: Fax: + 44 141 647 6999 [email protected] Robert-Bosch-Straße 17 www.metpro.fr D-71701 Schwieberdingen Cardiff Branch: Tel: +49 7150 92 697-0 Unit 7, Stuart Close, Cardiff, CF11 8QF MetPro Technology Africa (PTY) Ltd. Fax: +49 7150 92 697-80 Tel: +44 292 066 7070 ATI Business Park, Fairbanks Street Fax: +44 292 066 8080 [email protected] Vanderbijlpark Gauteng, 1911, South Africa [email protected] www.metpro.de Tel: +27 16 987 1640 www.metprogroup.com Fax: +27 86 510 7764 MetPro Ireland India MetPro Products (P) Ltd. Clash Industrial Estate, 145-C, HSIIDC, Sector-16 Tralee, Co. Kerry, Bahadurgarh – 124507, Haryana, India V92 RC0V Ireland, Tel: +91 1276 64 57 33 Tel: +353 66 717 8900 Fax: +91 1166 17 36 49 Fax: +353 66 718 1172 [email protected] Partners Shanghai www.metprogroup.com San Tai Wrapper Co. Ltd 1998, Qian Ming East Road, Fengjing Industrial Park, Shanghai, China Tel: +86 21 673 565 80 Fax: +86 21 673 565 96 MetPro Group North America 904 East Allegan Street, Martin MI 49070 Toll free no 800-410-8597 www.metprogroup.com.
Recommended publications
  • Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone
    International Journal of Molecular Sciences Article Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone Viktor A. Timoshnikov 1,*, Tatyana V. Kobzeva 1, Nikolay E. Polyakov 1 and George J. Kontoghiorghes 2,* 1 Institute of Chemical Kinetics & Combustion, 630090 Novosibirsk, Russia; [email protected] (T.V.K.); [email protected] (N.E.P.) 2 Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus * Correspondence: [email protected] (V.A.T.); [email protected] (G.J.K.); Tel./Fax: +7-383-3332947 (V.A.T.); +357-2627-2076 (G.J.K.) Received: 21 February 2020; Accepted: 28 May 2020; Published: 31 May 2020 Abstract: Ascorbic acid (AscH2) is one of the most important vitamins found in the human diet, with many biological functions including antioxidant, chelating, and coenzyme activities. Ascorbic acid is also widely used in medical practice especially for increasing iron absorption and as an adjuvant therapeutic in iron chelation therapy, but its mode of action and implications in iron metabolism and toxicity are not yet clear. In this study, we used UV–Vis spectrophotometry, NMR spectroscopy, and EPR spin trapping spectroscopy to investigate the antioxidant/pro-oxidant effects of ascorbic acid in reactions involving iron and the iron chelator deferiprone (L1). The experiments were carried out in a weak acidic (pH from 3 to 5) and neutral (pH 7.4) medium. Ascorbic acid exhibits predominantly pro-oxidant activity by reducing Fe3+ to Fe2+, followed by the formation of dehydroascorbic acid. As a result, ascorbic acid accelerates the redox cycle Fe3+ Fe2+ in the Fenton reaction, which leads $ to a significant increase in the yield of toxic hydroxyl radicals.
    [Show full text]
  • VCI Powder Corrosion Inhibitors
    VCI POWDERS FOR CORROSION PREVENTION ARE IDEAL FOR SHORT TERM LAY UP AND LONG TERM CORROSION PROTECTION OF TANKS, COOLING TOWERS, VESSELS AND ENCLOSED SPACES Vci powders can also be used in water for • Hydro Static Testing and test stands including cast iron • A flush through application of corrosion inhibitors • A final rinse additive for corrosion control in production lines cleaning and protecting metal parts Ideal for hard to reach areas and the protection of: • Tanks • Pipes • Lay Up of Plant & Equipment • Lay up of cooling towers • Preservation of boilers, tubes and condensers • Protection of metal parts and equipment inside any enclosed container * Additive to shot blast, hydro test and metalworking solutions for corrosion control * Corrosion Protection VCI Powder Features: • Corrosion protection in the contact and vapor phase • Vapor Corrosion Inhibitor (VCI) provides a component that is attracted to all metal surfaces and forms a molecular barrier that provides protection from rust and corrosion • Nitrite, Silica and heavy metals free • Environmentally Friendly • Non-hazardous • Easy to Use • Economical Choose from the following types of VCI corrosion control powders available in 5 pound, 50 pound or 100 pound quantities: VCI-1 Powder • Corrosion protection for ferrous metals and aluminum • Apply by dry fogging, spray solution or sprinkling • Use as a hydrotesting additive to water @ ½ to 2 % percent by weight • Great for preservation of plant, cooling towers and equipment • 100% biodegradable and non-hazardous VCI Powder 1010 • Provides continuous long and short-term corrosion protection for ferrous metals and is compatible with copper, brass, zinc and galvanized steel • Water soluable up to 10 % in water by weight • Includes all of the features of VCI Powder 1 and is also compatible with non-ferrous metals Distributed by: KPR ADCOR INC.
    [Show full text]
  • Corrosion Basics
    CORROSION BASICS (from Swain (1996) and Schultz (1997)) What is corrosion? • Webster’s Dictionary - corrode (v.) To eat away or be eaten away gradually, especially by chemical action. • NACE Corrosion Basics - corrosion may be defined as the deterioration of a material (usually a metal) because of a reaction with the environment. Why do metals corrode? Most metals are found in nature as ores. The manufacturing process of converting these ores into metals involves the input of energy. During the corrosion reaction the energy added in manufacturing is released, and the metal is returned to its oxide state. Metal Ore reduction (add electrons)→ Metal oxidation (strip electrons)→ Corrosion Products In the marine environment, the corrosion process generally takes place in aqueous solutions and is therefore electrochemical in nature. Corrosion consequences Economic - corrosion results in the loss of $8 - $126 billion annually in the U.S. alone. This impact is primarily the result of: 1. Downtime 2. Product Loss 3. Efficiency Loss 4. Contamination 5. Overdesign Safety / Loss of Life Corrosion can lead to catastrophic system failures which endanger human life and health. Examples include a 1967 bridge collapse in West Virginia which killed 46. The collapse was attributed to stress corrosion cracking (SCC). In another example, the fuselage of an airliner in Hawaii ripped open due to the combined action of stress and atmospheric corrosion. Corrosion cell Corrosion occurs due to the formation of electrochemical cells. In order for the corrosion reaction to occur five things are necessary. If any of these factors are eliminated, galvanic corrosion will not occur. THIS IS THE KEY TO CORROSION CONTROL! The necessary factors for corrosion to proceed are: 1.
    [Show full text]
  • Effects of Chloride Ions on Corrosion of Ductile Iron and Carbon Steel in Soil
    www.nature.com/scientificreports OPEN Efects of chloride ions on corrosion of ductile iron and carbon steel in soil environments Received: 7 February 2017 Yarong Song1,2, Guangming Jiang2, Ying Chen1, Peng Zhao1 & Yimei Tian1,3 Accepted: 22 June 2017 Chloride is reported to play a signifcant role in corrosion reactions, products and kinetics of ferrous Published online: 31 July 2017 metals. To enhance the understanding of the efects of soil environments, especially the saline soils with high levels of chloride, on the corrosion of ductile iron and carbon steel, a 3-month corrosion test was carried out by exposing ferrous metals to soils of six chloride concentrations. The surface morphology, rust compositions and corrosion kinetics were comprehensively studied by visual observation, scanning electron microscopy (SEM), X-Ray difraction (XRD), weight loss, pit depth measurement, linear polarization and electrochemical impedance spectroscopy (EIS) measurements. It showed that chloride ions infuenced the characteristics and compositions of rust layers by diverting and participating in corrosion reactions. α-FeOOH, γ-FeOOH and iron oxides were major corrosion products, while β-Fe8O8(OH)8Cl1.35 rather than β-FeOOH was formed when high chloride concentrations were provided. Chloride also suppressed the decreasing of corrosion rates, whereas increased the difculty in the difusion process by thickening the rust layers and transforming the rust compositions. Carbon steel is more susceptible to chloride attacks than ductile iron. The corrosion kinetics of ductile iron and carbon steel corresponded with the probabilistic and bilinear model respectively. Corrosion of ferrous metals in soil is one of the major causes of durability problems of water, sewage, oil and gas distribution systems.
    [Show full text]
  • Complexes of Ferrous Iron with Tannic Acid Fy J
    Complexes of Ferrous Iron With Tannic Acid fy J. D. HEM :HEMISTRY OF IRON IN NATURAL WATER GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1459-D IITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1960 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Abstract. _________________________________________________________ 75 Acknowledgments. ________________________________________________ 75 Organic complexing agents________-______-__-__-__-______-____-___-- 75 Tannic acid_______________________________________________________ 77 Properties ____________________________________________________ 78 Dissociation._________________________________________________ 78 Reducing action_____--_-______________________________________ 79 Laboratory studies_______________________________________________ 79 Analytical procedures__________________________________________ 80 Chemical reactions in test solutions._____________________________ 81 No tannic acid____________________-_________________-_--__ 84 Five parts per million of tannic acid- ________________________ 84 Fifty parts per million of tannic acid_____-________-____------ 85 Five hundred parts per million of tanni c acid _________________ 86 Rate of oxidation and precipitation of iron______________________ 87 Stability constants for tannic acid complexes______________________ 88 Comparison of determined and estimated Eh______________________
    [Show full text]
  • Data Mining of Iron(II) and Iron(III) Bond-Valence Parameters, and Their
    research papers Data mining of iron(II) and iron(III) bond- valence parameters, and their relevance for macromolecular crystallography ISSN 2059-7983 Heping Zheng,a* Karol M. Langner,a Gregory P. Shields,b Jing Hou,a Marcin Kowiel,a,c Frank H. Allen,b‡ Garib Murshudovd and Wladek Minora* Received 7 September 2016 aDepartment of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22901, USA, Accepted 12 January 2017 bCambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England, cCenter for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland, and dMRC Laboratory of Molecular Biology, Cambridge CB2 0QH, England. *Correspondence e-mail: [email protected], Edited by J. L. Martin, Griffith University, [email protected] Australia The bond-valence model is a reliable way to validate assumed oxidation states ‡ On 10 November 2014, Dr Frank H. Allen passed away, after a short illness, aged 70. based on structural data. It has successfully been employed for analyzing metal- binding sites in macromolecule structures. However, inconsistent results for Keywords: bond-valence model; metal– heme-based structures suggest that some widely used bond-valence R0 organics; oxidation state; Cambridge Structural parameters may need to be adjusted in certain cases. Given the large number Database; nonlinear conjugate gradients. of experimental crystal structures gathered since these initial parameters were determined and the similarity of binding sites in organic compounds and macromolecules, the Cambridge Structural Database (CSD) is a valuable resource for refining metal–organic bond-valence parameters. R0 bond-valence parameters for iron(II), iron(III) and other metals have been optimized based on an automated processing of all CSD crystal structures.
    [Show full text]
  • Ferrous Chemistry in Aqueous Solution Unravelled 11 May 2016
    Ferrous chemistry in aqueous solution unravelled 11 May 2016 but not the whole story either. So it is with measurement techniques: they show a particular aspect very well, yet others not at all. Now an HZB Institute of Methods for Material Development team headed by Professor Emad Aziz has succeeded in combining two different methods in such a way that a practically complete picture of the electronic states and interactions of a molecule in an aqueous solution results. Simple model system The hexaaqua(II) cation [Fe(H2O)6]2+ served as the model. It consists of a central iron atom with six water molecules arranged symmetrically about it and is well-understood. A group of theorists headed by Oliver Kühn from the University of Rostock was Combining the results from radiative and non-radiative relaxation processes enabled a complete picture of the able to calculate the electronic states and the filled and unfilled energy levels to be obtained. Credit: possible excitations for this system in advance so HZB/R. Golnak that the predictions could be comprehensively tested against the empirical data. Exploring the L-edge with two methods An HZB team has combined two different analytical methods at the BESSY II synchrotron source in "The primary soft X-ray emissions generated at order to extract more information about the BESSY II were perfectly suited for investigating the chemistry of transition-metal compounds in L-edge, as it is known", explains Ronny Golnak, solution. These kinds of compounds can act as who carried out the experiments during the course catalysts to promote desirable reactions in energy of his doctoral studies.
    [Show full text]
  • Technical Document: Acid Mine Drainage Prediction
    EPA 530-R-94-036 NTIS PB94-201829 TECHNICAL DOCUMENT ACID MINE DRAINAGE PREDICTION December 1994 U.S. Environmental Protection Agency Office of Solid Waste Special Waste Branch 401 M Street, SW Washington, DC 20460 Acid Mine Drainage Prediction DISCLAIMER AND ACKNOWLEDGEMENTS This document was prepared by the U.S. Environmental Protection Agency (EPA). The mention of company or product names in this document is not to be considered an endorsement by the U.S. Government or by the EPA. This technical document consists of a brief review of acid forming processes at mine sites, followed by a summary of the current methods used to predict acid formation, selected state regulatory requirements, and case histories. This report was distributed for review to the U.S. Department of the Interior's Bureau of Mines and Bureau of Land Management, the U.S. Department of Agriculture's Forest Service, the Interstate Mining Compact Commission, the American Mining Congress, the Mineral Policy Center, representatives of state agencies, and public interest groups. EPA is grateful to all individuals who took the time to review this technical document. The use of the terms "extraction," "beneficiation," and "mineral processing" in this document is not intended to classify any waste stream for the purposes of regulatory interpretation or application. Rather, these terms are used in the context of common industry terminology. Acid Mine Drainage Prediction TABLE OF CONTENTS Page 1. INTRODUCTION ................................................................ 1 1.1 Oxidation of Metal Sulfides ..................................................... 4 1.2 Source of Acid and Contributing Factors ........................................... 5 2. ACID GENERATION PREDICTION ................................................. 9 2.1 Sampling .................................................................... 11 2.2 Static Tests .................................................................
    [Show full text]
  • Acid Mine Drainage Overview
    Acid Mine Drainage and Effects on Fish Health and Ecology: A Review For: U.S. Fish and Wildlife Service, Anchorage Fish and Wildlife Field Office, Anchorage, Alaska, 99501 Prepared by: Reclamation Research Group, LLC, Bozeman, Montana June 2008 Suggested Citation: Jennings, S.R., Neuman, D.R. and Blicker, P.S. (2008). “Acid Mine Drainage and Effects on Fish Health and Ecology: A Review”. Reclamation Research Group Publication, Bozeman, MT. ii Table of Contents Purpose ................................................................................................................................ 1 Acid Mine Drainage Overview ........................................................................................... 1 Chemistry of Acid Rock Drainage .................................................................................. 1 Acid Mine Drainage ........................................................................................................ 3 Effect of Acid Mine Drainage on Aquatic Resources ........................................................ 5 Major Environmental Incidents Caused by Acid Mine Drainage ....................................... 7 Prediction of Acid Mine Drainage ...................................................................................... 7 Assessment of Acid Rock Drainage and Metals Release ................................................. 11 Water Quality and Acid Mine Drainage: Pre-mine Predictions and Post-mine Comparisons ....................................................................................................................
    [Show full text]
  • An Introduction to Acid Mine Drainage
    An Introduction to Acid Mine Drainage by George Mitchell and Tim Craddock AMD affects over 2000 miles of streams in West Virginia Extent of AMD in the mid-Appalachian region What is Acid Mine Drainage? Basically, AMD formation is an oxidation process Oxidation is defined as the interaction between oxygen molecules and all the different substances they may contact, from metal to living tissue. Technically, however, with the discovery of electrons, oxidation came to be more precisely defined as the loss of at least one electron when two or more substances interact. Those substances may or may not include oxygen. (Incidentally, the opposite of oxidation is reduction — the addition of at least one electron when substances come into contact with each other.) The culprit Pyrite or other sulfide minerals Pyrite Oxygen Water Acid Mine Drainage The chemistry of oxidation of pyrites, the production of ferrous ions and subsequently ferric ions, is very complex, and this complexity has considerably inhibited the design of effective treatment options. Although a host of chemical processes contribute to AMD, pyrite oxidation is by far the greatest contributor. General equations for this process are: 2+ 2- + 2FeS2 + 7O2+ 2H2O → 2Fe + 4SO4 + 4H The oxidation of the sulfide to sulfate solubilizes the ferrous iron (iron(II)), which is subsequently oxidized to ferric iron (iron(III)): 2+ + 3+ 4Fe + O2 + 4H → 4Fe + 2H2O Either of these reactions can occur spontaneously or can be catalyzed by microorganisms that derive energy from the oxidation reaction. The ferric irons produced can also oxidize additional pyrite: 3+ 2+ 2- + FeS2 + 14Fe + 8H2O → 15Fe + 2SO4 + 16H The net effect of these reactions is to release H+, which lowers the pH and maintains the solubility of the ferric ion.
    [Show full text]
  • Iron Removal from Acid Mine Drainage by Wetlands'
    Iron Removal from Acid Mine Drainage by Wetlands' by A.J. Sexstone*, J.G.'Skousen, J. Calabrese, D.K. Bhumbla, J. Cliff, J.C. Sencindiver, and G.K. Bissonnette' Abstract: Neutralization of acid mine drainage (AMD) in man-made cattail (Typha) wetlands was mvestlgated over a four-year period utilizing experimental models (480 x 60 x 60 cm) constructed in a greenhouse. A naturally occurring AMD (430 mg/L Fe, 5 mg/L Mn, 2900 mg/L sulfate, pH 2.75) was collected in the field and added to the greenhouse wetlands at 60.5 L/day. Monthly water· samples were collected at the wetland influent and effluent at 35 cm depth. Sediments and sediment pore water samples from four depths (IO, 20, 30, and 40 cm) were obtained from the influent, midpoint, and effluent locations of the wetland. During the first year of AMD treatment, near neutral pH (6.5) and anoxic conditions (-300 mV) were observed in subsurface sediments of wetlands. The wetlands retained au estimated 65% of the total applied iron in the first year, primarily in the exchangeable, organically bound, and oxide form. During later years, 20 to 30% of the influent iron was retained predominantly as precipitated oxides. Iron sulfides resulting from sulfate reduction accounted for less than 5% of the iron retained, and were recovered primarily as monosulfides during the first year and as disulfides in the fourth year. Improvement in effluent pH was primarily attributed to limestone dissolution in the anaerobic subsurface sediments, which decreased with time. Constructed wetlands exhibit finite lives for effective AMD treatment and provisions should be made for their periodic rejuvenation or replacement.
    [Show full text]
  • AECL EACL AECL Research EACL Recherche
    CA9501017 AECL EACL AECL Research EACL Recherche AECL-10821, COG-93-81 Oxidation of Magnetite in Aerated Aqueous Media Oxydation de la magnetite dans des milieux aqueux aérés Peter Taylor, Derrek G. Owen MOL 2 7 Ri 0 f A -, 1Q0, -, * April 1993 avril AECL RESEARCH OXIDATION OF MAGNETITE IN AERATED AQUEOUS MEDIA by Peter Taylor and Derrek. G. Owen Whiteshell Laboratories Pinawa, Manitoba ROE 1LO 1993 AECL-10821 COG-93-81 OXYDATION DE LA MAGNETITE DANS DES MILIEUX AQUEUX AÉRÉS par Peter Taylot et Derrek G. Owen RÉSUMÉ Les équilibres métastables entraînant des phases moins stables que la phase hématite peuvent être considérablement plus oxydants que l'équilibre cal- culé entre l'hématite bien cristallisée et la magnetite. On tire, dans ce rapport, les relations de solubilité et de stabilité généralisées entre les phases magnetite et Fe2O3»xH2O pour décrire les équilibres métastables. Des essais sur des poudres de magnetite synthétiques dans des solutions aqueuses aérées montrent que l'hématite cristalline se forme en l'espace de quelques jours à des températures supérieures à 100°C dans l'eau pure ou dans les solutions contenant des anions (par exemple, Cl-, S0£-, HCOj) qui ne forment pas de complexes très forts avec les oxydes de fer. Toutefois, la présence de phosphate ou de silice dissout, le moyen de formation de l'hématite par la dissolution-précipitation est fortement inhibé et la maghémite est un produit métastable persistant. Far conséquent, on pense que le phosphate ou la silice retarde la tendance à l'établissement de l'équilibre entre la magnetite et l'hématite dans les eaux souterraines aérées conditionnées par la magnetite.
    [Show full text]