THE FAMILY ANATIDAE 43 Ernst Map
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bird Report 1999
YELLOWSTONE BIRD REPORT 1999 Terry McEneaney Yellowstone Center for Resources National Park Service Yellowstone National Park, Wyoming YCR–NR–2000–02 Suggested citation: McEneaney, T. 2000. Yellowstone Bird Report, 1999. National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming, YCR–NR–2000–02. Cover: Special thanks to my wife, Karen McEneaney, for the stunning pencil drawing of a Golden Eagle (Aquila chrysaetos) talon. The Golden Eagle is one of Yellowstone’s most formidable avian predators. When viewing Golden Eagle talons up close, one soon realizes why the bird is a force to be reckoned with in the natural world. Title page: Great Horned Owlet. The photographs in this report are courtesy of Terry McEneaney. ii CONTENTS INTRODUCTION ..................................................................... 5 Bird Impression .............................................................. 20 Weather Patterns and Summary ....................................... 5 National Geographic Field Guide .................................... 21 THREATENED AND ENDANGERED SPECIES .............................. 7 Retirement of Yellowstone Pilot Dave Stradley .............. 21 Peregrine Falcon ............................................................... 7 Yellowstone Birds: Their Ecology and Distribution ....... 21 Bald Eagle ........................................................................ 7 Computerized Database ................................................. 21 Whooping Crane ............................................................. -
Air Speeds of Migrating Birds Observed by Ornithodolite and Compared with Predictions from Flight Theory Rsif.Royalsocietypublishing.Org C
Air speeds of migrating birds observed by ornithodolite and compared with predictions from flight theory rsif.royalsocietypublishing.org C. J. Pennycuick1, Susanne A˚kesson2 and Anders Hedenstro¨m2 1School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK 2Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, Sweden Research We measured the air speeds of 31 bird species, for which we had body mass Cite this article: Pennycuick CJ, A˚kesson S, and wing measurements, migrating along the east coast of Sweden in Hedenstro¨m A. 2013 Air speeds of migrating autumn, using a Vectronix Vector 21 ornithodolite and a Gill WindSonic anem- ometer. We expected each species’ average air speed to exceed its calculated birds observed by ornithodolite and compared minimum-power speed (Vmp), and to fall below its maximum-range speed with predictions from flight theory. J R Soc (Vmr), but found some exceptions to both limits. To resolve these discrepancies, Interface 10: 20130419. we first reduced the assumed induced power factor for all species from 1.2 to http://dx.doi.org/10.1098/rsif.2013.0419 0.9, attributing this to splayed and up-turned primary feathers, and then assigned body drag coefficients for different species down to 0.060 for small waders, and up to 0.12 for the mute swan, in the Reynolds number range 25 000–250 000. These results will be used to amend the default values in exist- Received: 8 May 2013 ing software that estimates fuel consumption in migration, energy heights on Accepted: 31 May 2013 arrival and other aspects of flight performance, using classical aeronautical theory. -
Free Download! the Trumpeter Swan
G3647 The Trumpeter Swan by Sumner Matteson, Scott Craven and Donna Compton Snow-white Trumpeter Swans present a truly spectac- Swans of the Midwest ular sight. With a wingspan of more than 7 feet and a rumpeter Swans, along with ducks and geese, belong height of about 4 feet, the Trumpeter Swan (Cygnus buc- to the avian Order Anseriformes, Family Anatidae. cinator) ranks as the largest native waterfowl species in T Trumpeters have broad, flat bills with fine tooth-like North America. serrations along the edges which allow them to strain Because the Trumpeter Swan disappeared as a breed- aquatic plants and water. The birds’ long necks and ing bird in the Midwest, several states have launched strong feet allow them to uproot plants in water up to 4 restoration programs to reintroduce it to the region. This feet deep. publication will provide you with background informa- Most Trumpeter Swans weigh 21–30 pounds, tion on the Trumpeter Swan’s status and life history, and although some males exceed the average weight. The on restoration efforts being conducted in the upper male is called a cob; the female is called a pen; and a swan Midwest. in its first year is called a cygnet or juve- nile. The Trumpeter is often con- fused with the far more common Tundra Swan (formerly Whistling Swan, Cygnus columbianus), the only other native swan found routinely in North America. Tundra Swans can be seen in the upper Trumpeter Swan Midwest only during spring and fall migration. You can distinguish between the two native species most accurately by listening to their calls. -
Mute Swans Make Noise: Lower Great Lakes Population Scrutinized
Mute Swans Make Noise: Lower Great Lakes Population Scrutinized Scott A. Petrie* Introduction and 10 to15 percent per year. At this growth Population Status rate, the southern Ontario population Mute Swans (Cygnus olor), endemic to will double every seven to eight years. Eurasia, were introduced to North Also, given that the lower Great Lakes American city parks, zoos, avicultural includes about 116,000 acres of coastal collections, and estates in the late 1800s wetland habitat, the population could and early 1900s. The intentional releas- potentially reach 30,000 swans. If Mute es and accidental escape of these birds Swans populations increase to the point and their progeny resulted in a rapidly that they begin nesting on inland wet- expanding free-flying feral population lands and man-made waterbodies, as along the northeastern Atlantic Coast of they have in Poland and along the the United States, portions of the Pacific Atlantic Coast of the United States, we Coast, and more recently, much of the could expect that the southern Ontario southern half of the Great Lakes basin. population could even surpass 30,000 It is well known that exotic waterfowl birds. can have negative ecological impacts on The rapid growth rate of southern native species, particularly if the intro- Ontario’s feral Mute Swans can probably duced species is aggressive, competes be attributed to a number of factors. with other waterfowl for food or habi- The lower Great Lakes is climatically tat, and/or hybridizes with native similar to the native Eurasian range of species. Although hybridization is not Mute Swans. -
Wild Discover Zone SWAN LAKE
Wild Discover Zone SWAN LAKE This activity is designed to engage all ages of Zoo visitors. Your duty as an excellent educator, and interpreter is to adjust your approach to fit each group you interact with. Be aware that all groups are on some kind of a time limit. There are no set time requirements for this interaction. Read their behavior and end the interaction when they seem ready to move on. Theme:. It is easy to observe wildlife all around us including our own backyards, parks, and green spaces. Summary: Educators will help visitors observe local wildlife and learn techniques to identify several species of animals on Swan Lake with the help of field guides and technology. Objectives: At the end of the encounter, guests will: Appreciate that wildlife is a part of our communities and accessible to all Use observation skills to compare and contrast field marks on local animals Be able to identify several different species on Swan Lake Engage with technology through the use of binoculars and spotting scope to make observations Location: Cart near Swan Lake between Gibbon Island and Admin Building Materials: Binoculars, spotting scope with tripod, Swan Lake field guides, bird feeder with seed, several hummingbird feeders Background Information: While many visitors consider “wildlife” the exotic animals we have in the Zoo, there is actually native wildlife happening all around us too! One of the most observable types of local wildlife is birds. Correctly identifying birds and other types of plants and animals is possible with a few techniques and tools paired with simple observation. -
European Red List of Birds 2015
Mareca strepera (Gadwall) European Red List of Birds Supplementary Material The European Union (EU27) Red List assessments were based principally on the official data reported by EU Member States to the European Commission under Article 12 of the Birds Directive in 2013-14. For the European Red List assessments, similar data were sourced from BirdLife Partners and other collaborating experts in other European countries and territories. For more information, see BirdLife International (2015). Contents Reported national population sizes and trends p. 2 Trend maps of reported national population data p. 6 Sources of reported national population data p. 9 Species factsheet bibliography p. 17 Recommended citation BirdLife International (2015) European Red List of Birds. Luxembourg: Office for Official Publications of the European Communities. Further information http://www.birdlife.org/datazone/info/euroredlist http://www.birdlife.org/europe-and-central-asia/european-red-list-birds-0 http://www.iucnredlist.org/initiatives/europe http://ec.europa.eu/environment/nature/conservation/species/redlist/ Data requests and feedback To request access to these data in electronic format, provide new information, correct any errors or provide feedback, please email [email protected]. THE IUCN RED LIST OF THREATENED SPECIES™ BirdLife International (2015) European Red List of Birds Mareca strepera (Gadwall) Table 1. Reported national breeding population size and trends in Europe1. Country (or Population estimate Short-term population trend4 Long-term population trend4 Subspecific population (where relevant) 2 territory) Size (pairs)3 Europe (%) Year(s) Quality Direction5 Magnitude (%)6 Year(s) Quality Direction5 Magnitude (%)6 Year(s) Quality Albania 0-5 <1 2002-2012 poor ? ? Armenia 250-400 <1 2002-2012 medium ? ? Austria 250-350 <1 2001-2012 good 0 0 2001-2012 medium + 50-100 1980-2012 medium M. -
The Function and Evolution of the Supraorbital Process in Ducks
THE FUNCTION AND EVOLUTION OF THE SUPRAORBITAL PROCESS IN DUCKS ROBERTJ. RAIKOW THE anteriormargin of the orbit in ducksis formedby the lacrimalbone, which articulateswith the anterolateralmargin of the frontal boneand the posterodorsalcorner of the maxillary processof the nasal bone. The evolu- tion of this bone in birds generally has been dealt with recently by Cracraft (Amer. Midl. Naturalist, 80: 316, 1968), whoseterminology for the parts of the lacrimal bone is followedhere. In many ducksthe postero- dorsalcorner of the lacrimal is marked by a small tubercle,which serves as the site of attachment of the anterior end of the orbital membrane,a sheetof connectivetissue that coversand protectsthe dorsalaspect of the eyeball. In some forms this tubercle has become elongated to form a stout, finger-like projection, the supraorbitalprocess. This appears to provide mechanicalprotection to the eyeball and salt gland (Figure 1). Table 1 lists the occurrenceand degree of developmentof this process in the skulls of all living generaof ducks. CORRELATION WITH FEEDING AND LOCOMOTOR HABITS In the following discussion,data on feeding habits are from Delacour (The waterfowlof the world,vols. 1-3, London,Country Life Ltd., 1954, 1956, 1959). Table 1 showsthat the supraorbital processis developed significantlyonly in certain groupsof ducks that feed underwater. It is absentor rudimentaryin the Tadornini, Cairinini, and Anatini, which are primarily surfacefeeders, but also in Merganetta arma.ta,the Torrent Duck, which feedsunderwater. In the Aythyini it is fairly well-developed in severalspecies of Aythya, which are excellentdivers, but is rudimentary in Netta peposaca,which is moreof a surfacefeeder. It is alsorudimentary in the Canvasback,Aythya valisineria,which dives for vegetation.Among the Mergini the supraorbitalprocess is highly developedin eiders (Poly- sticta, Somateria) , scoters( M elanitta) , and Long-tailed Duck ( Clangula byemalls), all of which feed mainly on invertebratestaken from the bottom. -
Ducks, Geese, and Swans of the World by Paul A
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ducks, Geese, and Swans of the World by Paul A. Johnsgard Papers in the Biological Sciences 2010 Ducks, Geese, and Swans of the World: Index Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciducksgeeseswans Part of the Ornithology Commons Johnsgard, Paul A., "Ducks, Geese, and Swans of the World: Index" (2010). Ducks, Geese, and Swans of the World by Paul A. Johnsgard. 19. https://digitalcommons.unl.edu/biosciducksgeeseswans/19 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ducks, Geese, and Swans of the World by Paul A. Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Index The following index is limited to the species of Anatidae; species of other bird families are not indexed, nor are subspecies included. However, vernacular names applied to certain subspecies that sometimes are considered full species are included, as are some generic names that are not utilized in this book but which are still sometimes applied to par ticular species or species groups. Complete indexing is limited to the entries that correspond to the vernacular names utilized in this book; in these cases the primary species account is indicated in italics. Other vernacular or scientific names are indexed to the section of the principal account only. Abyssinian blue-winged goose. See atratus, Cygnus, 31 Bernier teal. See Madagascan teal blue-winged goose atricapilla, Heteronetta, 365 bewickii, Cygnus, 44 acuta, Anas, 233 aucklandica, Anas, 214 Bewick swan, 38, 43, 44-47; PI. -
NOTES on SUBFOSSIL ANAHDAE from NEW ZEALAND, INCLUDING a NEW SPECBES of PINK-EARED DUCK MALACORHYNCHUS STOR&S L. OLSON Recei
fM NOTES ON SUBFOSSIL ANAHDAE FROM NEW ZEALAND, INCLUDING A NEW SPECBES OF PINK-EARED DUCK MALACORHYNCHUS STOR&S L. OLSON Received 3 October 1976. SUMMARY OLSON, S. L. 1977. Notes on subfossil Anatidae from New Zealand, including a new species of pink-eared duck Malacorhynchus. Emu 77: 132-135. A new species of pink-eared duck, Malacorhynchus scarletti, is described from subfossil deposits at Pyra- mid Valley, South Island, NZ, and is characterized by larger size. Preliminary observations indicate that subfossil specimens of Biziura from New Zealand are larger and differ qualitatively from B. lobata; for the present, the name Biziura delautouri Forbes, 1892, ought to be retained for the New Zealand form. An erroneous record of Mergus australis is corrected. INTRODUCTION Locality. Pyramid Valley Swamp, near Waikari, During two visits to museums in New Zealand, I North Canterbury, South Island, NZ. examined remains of numerous fossil and subfossil Age. Holocene; the bone-bearing sediments at birds, including those of several extinct species of Pyramid Valley Swamp have been determined by ducks. Of these, the form known as Euryanas finschi radio-carbon dating to be about 3,500 years old was represented by thousands of specimens and I (Gregg 1972). plan to treat its osteology and relationships in a Etymology. I take pleasure in naming this new subsequent study. Three other species are the subject species for R. J. Scarlett, osteologist at the Canter- of the present paper. bury Museum, in recognition of his significant con- tributions to New Zealand palaeornithology. MALACORHYNCHUS Diagnosis. Much larger than M, membranaceus In a report on avian remains from Pyramid Valley (see Table I). -
A Molecular Phylogeny of Anseriformes Based on Mitochondrial DNA Analysis
MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 23 (2002) 339–356 www.academicpress.com A molecular phylogeny of anseriformes based on mitochondrial DNA analysis Carole Donne-Goussee,a Vincent Laudet,b and Catherine Haanni€ a,* a CNRS UMR 5534, Centre de Genetique Moleculaire et Cellulaire, Universite Claude Bernard Lyon 1, 16 rue Raphael Dubois, Ba^t. Mendel, 69622 Villeurbanne Cedex, France b CNRS UMR 5665, Laboratoire de Biologie Moleculaire et Cellulaire, Ecole Normale Superieure de Lyon, 45 Allee d’Italie, 69364 Lyon Cedex 07, France Received 5 June 2001; received in revised form 4 December 2001 Abstract To study the phylogenetic relationships among Anseriformes, sequences for the complete mitochondrial control region (CR) were determined from 45 waterfowl representing 24 genera, i.e., half of the existing genera. To confirm the results based on CR analysis we also analyzed representative species based on two mitochondrial protein-coding genes, cytochrome b (cytb) and NADH dehydrogenase subunit 2 (ND2). These data allowed us to construct a robust phylogeny of the Anseriformes and to compare it with existing phylogenies based on morphological or molecular data. Chauna and Dendrocygna were identified as early offshoots of the Anseriformes. All the remaining taxa fell into two clades that correspond to the two subfamilies Anatinae and Anserinae. Within Anserinae Branta and Anser cluster together, whereas Coscoroba, Cygnus, and Cereopsis form a relatively weak clade with Cygnus diverging first. Five clades are clearly recognizable among Anatinae: (i) the Anatini with Anas and Lophonetta; (ii) the Aythyini with Aythya and Netta; (iii) the Cairinini with Cairina and Aix; (iv) the Mergini with Mergus, Bucephala, Melanitta, Callonetta, So- materia, and Clangula, and (v) the Tadornini with Tadorna, Chloephaga, and Alopochen. -
Alpha Codes for 2168 Bird Species (And 113 Non-Species Taxa) in Accordance with the 62Nd AOU Supplement (2021), Sorted Taxonomically
Four-letter (English Name) and Six-letter (Scientific Name) Alpha Codes for 2168 Bird Species (and 113 Non-Species Taxa) in accordance with the 62nd AOU Supplement (2021), sorted taxonomically Prepared by Peter Pyle and David F. DeSante The Institute for Bird Populations www.birdpop.org ENGLISH NAME 4-LETTER CODE SCIENTIFIC NAME 6-LETTER CODE Highland Tinamou HITI Nothocercus bonapartei NOTBON Great Tinamou GRTI Tinamus major TINMAJ Little Tinamou LITI Crypturellus soui CRYSOU Thicket Tinamou THTI Crypturellus cinnamomeus CRYCIN Slaty-breasted Tinamou SBTI Crypturellus boucardi CRYBOU Choco Tinamou CHTI Crypturellus kerriae CRYKER White-faced Whistling-Duck WFWD Dendrocygna viduata DENVID Black-bellied Whistling-Duck BBWD Dendrocygna autumnalis DENAUT West Indian Whistling-Duck WIWD Dendrocygna arborea DENARB Fulvous Whistling-Duck FUWD Dendrocygna bicolor DENBIC Emperor Goose EMGO Anser canagicus ANSCAN Snow Goose SNGO Anser caerulescens ANSCAE + Lesser Snow Goose White-morph LSGW Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Intermediate-morph LSGI Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Blue-morph LSGB Anser caerulescens caerulescens ANSCCA + Greater Snow Goose White-morph GSGW Anser caerulescens atlantica ANSCAT + Greater Snow Goose Intermediate-morph GSGI Anser caerulescens atlantica ANSCAT + Greater Snow Goose Blue-morph GSGB Anser caerulescens atlantica ANSCAT + Snow X Ross's Goose Hybrid SRGH Anser caerulescens x rossii ANSCAR + Snow/Ross's Goose SRGO Anser caerulescens/rossii ANSCRO Ross's Goose -
Eligible Species for the Junior Duck Stamp Competition
Eligible Species for the Junior Duck Stamp Competition Your entry should feature a live portrayal featuring at least one of the species below. Mute swans, loons, grebes, coots and other such waterbirds are not permitted species. For the contest, you may do ones not found in Maine Species found in Maine ● Snow Goose, including blue phase (Anser caerulescens) ● Greater White-fronted Goose (Anser albifrons) ● Brant (Branta bernicla) ● Canada Goose (Branta canadensis) ● Wood Duck (Aix sponsa) ● Blue-winged Teal (Spatula discors) ● Northern Shoveler (Spatula clypeata) ● Gadwall (Mareca strepera) ● American Wigeon (Mareca americana) ● Mallard (Anas platyrhynchos) ● American Black Duck (Anas rubripes) ● Northern Pintail (Anas acuta) ● Green-winged Teal (Anas crecca) ● Ring-necked Duck (Aythya collaris) ● Greater Scaup (Aytha marila) ● Lesser Scaup (Aythya affinis) ● King Eider (Somateria spectabilis) ● Common Eider (Somateria mollissima) ● HarleQuin Duck (Histrionicus histrionicus) Threatened Species ME ● Surf Scoter (Melanitta perspicillata) ● White-winged Scoter (Melanitta fusca) ● Black Scoter (Melanitta americana) ● Long-tailed Duck (Clangula hyemalis) ● Bufflehead (Bucephala albeola) ● Common Goldeneye (Bucephala clangula) ● Barrow's Goldeneye (Bucephala islandica) Threatened Species ME ● Hooded Merganser (Lophodytes cucullatus) ● Common Merganser (Mergus merganser) ● Red-breasted Merganser (Mergus serrator) ● Ruddy Duck (Oxyura jamaicensis) Species not found in Maine (usually) but still eligible ● Black-bellied Whistling-Duck (Dendrocygna