bioRxiv preprint doi: https://doi.org/10.1101/547265; this version posted April 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 96 Eyes: Parallel Fourier Ptychographic Microscopy for high-throughput screening Antony C. S. Chan1, Jinho Kim1,+, An Pan1,2, Han Xu3,++, Dana Nojima3,+++, Christopher Hale3, Songli Wang3, and Changhuei Yang1,∗ 1Division of Engineering & Applied Science, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 2State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China 3Amgen South San Francisco, 1120 Veterans Blvd, South San Francisco, CA 94080 +Current address: Samsung Engineering, 26 Sangil-ro 6-gil, Gangdong-gu, Seoul, Korea ++Current address: A2 Biotherapeutics, 2260 Townsgate Rd, Westlask Village, CA 91361 +++Current address: Merck, 630 Gateway Blvd, South San Francisco, CA 94080 ∗Corresponding author:
[email protected] ABSTRACT We report the implementation of a parallel microscopy system (96 Eyes) that is capable of simultaneous imaging of all wells on a 96-well plate. The optical system consists of 96 microscopy units, where each unit is made out of a four element objective, made through a molded injection process, and a low cost CMOS camera chip. By illuminating the sample with angle varying light and applying Fourier Ptychography, we can improve the effective brightfield imaging numerical apertuure of the objectives from 0.23 to 0.3, and extend the depth of field from ±5µm to ±15µm.