Book II Optics

Total Page:16

File Type:pdf, Size:1020Kb

Book II Optics V VV VVV VVVVon.com VVVV Basic Photography in 180 Days Book II - Optics Editor: Ramon F. aeroramon.com Contents 1 Day 1 1 1.1 History of optics ............................................ 1 1.1.1 Early history of optics ..................................... 1 1.1.2 Optics and vision in the Islamic world ............................ 3 1.1.3 Optics in medieval Europe .................................. 3 1.1.4 Renaissance and early modern optics ............................. 6 1.1.5 Lenses and lensmaking .................................... 7 1.1.6 Quantum optics ........................................ 8 1.1.7 See also ............................................ 8 1.1.8 Notes ............................................. 8 1.1.9 References .......................................... 10 2 Day 2 11 2.1 Geometrical optics ........................................... 11 2.1.1 Explanation .......................................... 11 2.1.2 Reflection ........................................... 11 2.1.3 Refraction ........................................... 12 2.1.4 Underlying mathematics ................................... 16 2.1.5 See also ............................................ 18 2.1.6 References .......................................... 18 2.1.7 Further reading ........................................ 19 2.1.8 External links ......................................... 19 3 Day 3 20 3.1 Optics ................................................. 20 3.1.1 History ............................................ 20 3.1.2 Classical optics ........................................ 26 3.1.3 Modern optics ......................................... 38 3.1.4 Applications .......................................... 39 3.1.5 See also ............................................ 42 3.1.6 References .......................................... 42 3.1.7 External links ......................................... 46 3.2 Optical instrument ........................................... 57 i ii CONTENTS 3.2.1 Image enhancement ...................................... 57 3.2.2 Analysis ............................................ 57 3.2.3 Other optical devices ..................................... 57 3.2.4 See also ............................................ 57 3.2.5 References .......................................... 57 3.2.6 External links ......................................... 58 4 Day 4 59 4.1 Lens (optics) .............................................. 59 4.1.1 History ............................................ 60 4.1.2 Construction of simple lenses ................................. 60 4.1.3 Imaging properties ...................................... 62 4.1.4 Aberrations .......................................... 64 4.1.5 Compound lenses ....................................... 66 4.1.6 Other types .......................................... 67 4.1.7 Uses .............................................. 67 4.1.8 See also ............................................ 68 4.1.9 References .......................................... 68 4.1.10 Bibliography ......................................... 70 4.1.11 External links ......................................... 70 5 Day 5 76 5.1 Focus (optics) ............................................. 76 5.1.1 See also ............................................ 77 5.1.2 References .......................................... 78 5.2 Cardinal point (optics) ......................................... 78 5.2.1 Explanation .......................................... 79 5.2.2 Modeling optical systems as mathematical transformations .................. 80 5.2.3 See also ............................................ 81 5.2.4 Notes and references ..................................... 81 5.2.5 External links ......................................... 81 6 Day 6 87 6.1 Hyperfocal distance .......................................... 87 6.1.1 Acceptable sharpness ..................................... 87 6.1.2 Formulae ........................................... 87 6.1.3 Example ............................................ 88 6.1.4 Mathematical phenomenon .................................. 90 6.1.5 History ............................................ 90 6.1.6 See also ............................................ 93 6.1.7 References .......................................... 93 6.1.8 External links ......................................... 93 CONTENTS iii 7 Day 7 95 7.1 Angle of view ............................................. 95 7.1.1 Calculating a camera’s angle of view ............................. 96 7.1.2 Measuring a camera’s field of view .............................. 100 7.1.3 Lens types and effects .................................... 101 7.1.4 Common lens angles of view ................................. 103 7.1.5 Sensor size effects (“crop factor”) .............................. 104 7.1.6 Cinematography and video gaming .............................. 104 7.1.7 References and notes ..................................... 104 7.1.8 See also ............................................ 105 7.1.9 External links ......................................... 105 7.2 Field of view .............................................. 107 7.2.1 Humans and animals ..................................... 108 7.2.2 Conversions ......................................... 109 7.2.3 Machine vision ........................................ 109 7.2.4 Remote sensing ........................................ 109 7.2.5 Astronomy .......................................... 109 7.2.6 Photography ......................................... 110 7.2.7 Video games ......................................... 110 7.2.8 See also ............................................ 110 7.2.9 References .......................................... 110 8 Day 8 112 8.1 Depth of field ............................................. 112 8.1.1 Circle of confusion criterion for depth of field ........................ 112 8.1.2 Factors affecting depth of field ................................ 113 8.1.3 DOF scales .......................................... 116 8.1.4 Zone focusing ......................................... 117 8.1.5 Hyperfocal distance ...................................... 117 8.1.6 Limited DOF: selective focus ................................. 118 8.1.7 Near:far distribution ..................................... 118 8.1.8 Optimal f-number ....................................... 118 8.1.9 Other applications ....................................... 119 8.1.10 DOF formulae ........................................ 119 8.1.11 Derivation of the DOF formulae ............................... 123 8.1.12 See also ............................................ 133 8.1.13 Notes ............................................. 134 8.1.14 References .......................................... 135 8.1.15 Further reading ........................................ 136 8.1.16 External links ......................................... 136 8.2 Focal length .............................................. 149 8.2.1 Thin lens approximation ................................... 149 iv CONTENTS 8.2.2 General optical systems ................................... 149 8.2.3 In photography ........................................ 150 8.2.4 See also ............................................ 151 8.2.5 References .......................................... 152 9 Day 9 155 9.1 Magnification ............................................. 155 9.1.1 Examples of magnification .................................. 156 9.1.2 Magnification as a number (optical magnification) ...................... 156 9.1.3 Magnification and micron bar ................................. 159 9.1.4 See also ............................................ 160 9.1.5 References .......................................... 160 9.2 Distortion (optics) ........................................... 160 9.2.1 Radial distortion ....................................... 161 9.2.2 Software correction ...................................... 163 9.2.3 Related phenomena ...................................... 165 9.2.4 See also ............................................ 165 9.2.5 References .......................................... 165 9.2.6 External links ......................................... 166 9.3 Optical aberration ........................................... 166 9.3.1 Overview ........................................... 166 9.3.2 Monochromatic aberration .................................. 167 9.3.3 Analytic treatment of aberrations ............................... 173 9.3.4 Practical elimination of aberrations .............................. 175 9.3.5 Chromatic or color aberration ................................. 176 9.3.6 See also ............................................ 180 9.3.7 References .......................................... 180 9.3.8 External links ......................................... 181 9.4 Orb (optics) .............................................. 181 9.4.1 Cause ............................................. 181 9.4.2 See also ............................................ 182 9.4.3 References .......................................... 182 9.4.4 External links ......................................... 182 10 Day 10 183 10.1 f-number ............................................... 183 10.1.1 Notation ........................................... 183 10.1.2 Stops, f-stop conventions, and exposure ........................... 184 10.1.3 Effects on image sharpness .................................. 188 10.1.4 Human eye .......................................... 189 10.1.5
Recommended publications
  • Strehl Ratio for Primary Aberrations: Some Analytical Results for Circular and Annular Pupils
    1258 J. Opt. Soc. Am./Vol. 72, No. 9/September 1982 Virendra N. Mahajan Strehl ratio for primary aberrations: some analytical results for circular and annular pupils Virendra N. Mahajan The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts 02139 Received February 9,1982 Imaging systems with circular and annular pupils aberrated by primary aberrations are considered. Both classical and balanced (Zernike) aberrations are discussed. Closed-form solutions are derived for the Strehl ratio, except in the case of coma, for which the integral form is used. Numerical results are obtained and compared with Mar6- chal's formula for small aberrations. It is shown that, as long as the Strehl ratio is greater than 0.6, the Markchal formula gives its value with an error of less than 10%. A discussion of the Rayleigh quarter-wave rule is given, and it is shown that it provides only a qualitative measure of aberration tolerance. Nonoptimally balanced aberrations are also considered, and it is shown that, unless the Strehl ratio is quite high, an optimally balanced aberration does not necessarily give a maximum Strehl ratio. 1. INTRODUCTION is shown that, unless the Strehl ratio is quite high, an opti- In a recent paper,1 we discussed the problem of balancing a mally balanced aberration(in the sense of minimum variance) does not classical aberration in imaging systems having annular pupils give the maximum possible Strehl ratio. As an ex- ample, spherical with one or more aberrations of lower order to minimize its aberration is discussed in detail. A certain variance. By using the Gram-Schmidt orthogonalization amount of spherical aberration is balanced with an appro- process, polynomials that are orthogonal over an annulus were priate amount of defocus to minimize its variance across the pupil.
    [Show full text]
  • Location of Cardinal Points from the ABCD Matrix for the General Optical System
    EE482 Fall 2000 Handout #2 Page 1 Location of Cardinal Points from the ABCD Matrix for the General Optical System I II n1 n2 F1 P1 N1 P2 N2 F2 f1 f2 Figure 1 Cardinal points of a system which is characterized by an ABCD matrix between an input plane I and an output plane II. Cardinal Point Measured Function Special Case From To (n1=n2) First Focal Point P1 F1 -n1/(n2C)-1/C First Principle Point I P1 (n1-n2D)/(n2C)(1-D)/C First Nodal Point I N1 (1-D)/C (1-D)/C Second Focal Point P2 F2 -1/C -1/C Second Principle Point II P2 (1-A)/C (1-A)/C Second Nodal Point II N2 (n1-n2A)/(n2C)(1-A)/C Table 1 When analyzing an optical system, we often are first interested in basic properties of the system such as the focal length (or optical power of the system) and the location of the focal planes, etc. In the limit of paraxial optics, any optical system, from a simple lens to a combination of lenses, mirrors and ducts, can be described in terms of six special surfaces, called the cardinal surfaces of the system. In paraxial optics, these surfaces are planes, normal to the optical axis. The point where the plane intersects the optical axis is the cardinal point corresponding to that cardinal plane. The six special planes are: First Focal Plane Second Focal Plane First Principle Plane Second Principle Plane First Nodal Plane Second Nodal Plane Once we know the location of these special planes, relative to the physical location of the lenses in the system, we can describe all of the paraxial imaging properties of the system.
    [Show full text]
  • Macro References and Glossary Ofterms.Docx
    Glossary of terms for Macro Photography Achromatic lens A lens that brings at least two wavelengths (typically red and blue) into focus in the same plane, thereby limiting the effects of chromatic and spherical aberration Airy disk and Airy pattern Descriptions of the best focused spot of light that a perfect lens with a circular aperture can make, limited by the diffraction of light Angle of view (AOV) The angular extent of a given scene that is imaged by a camera Aperture control filter An adapter that fits on the rear of a reversed lens to m anually control the aperture Astigmatism Light rays that propagate in two perpendicular planes have different foci Asymmetric lens A lens where the aperture appears to have different dimensions when viewed from the front and from the back Bellows A pleated light -tight ex ten sible part in a camera between the film plane and the lens Circle of confusion (CoC) The optical spot caused by a cone of light rays from a lens not coming to a perfect focus when imaging a point source (also known as a disk of confusion) Close focus distance See minimum focus distance Close -up lens A single or multi -element lens that fi ts on the filter t hread of a primary lens to increase magnification Close -up photography Images taken close to the subject typically with magnifications of ~0.1X to ~1X Coma or comatic aberration A lens aberration due to imperfections in a lens , or other components, that results in off-axis point sources appearing to have a tail (coma) similar to a comet Chromatic a berration (or An optical effect when a lens is unable to bring all wavelengths of colo ur to the same colour/purple fringing) focal plane, and/or when wavelengths of different colours are focused at different positions in the focal plane.
    [Show full text]
  • Doctor of Philosophy
    RICE UNIVERSITY 3D sensing by optics and algorithm co-design By Yicheng Wu A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE Ashok Veeraraghavan (Apr 28, 2021 11:10 CDT) Richard Baraniuk (Apr 22, 2021 16:14 ADT) Ashok Veeraraghavan Richard Baraniuk Professor of Electrical and Computer Victor E. Cameron Professor of Electrical and Computer Engineering Engineering Jacob Robinson (Apr 22, 2021 13:54 CDT) Jacob Robinson Associate Professor of Electrical and Computer Engineering and Bioengineering Anshumali Shrivastava Assistant Professor of Computer Science HOUSTON, TEXAS April 2021 ABSTRACT 3D sensing by optics and algorithm co-design by Yicheng Wu 3D sensing provides the full spatial context of the world, which is important for applications such as augmented reality, virtual reality, and autonomous driving. Unfortunately, conventional cameras only capture a 2D projection of a 3D scene, while depth information is lost. In my research, I propose 3D sensors by jointly designing optics and algorithms. The key idea is to optically encode depth on the sensor measurement, and digitally decode depth using computational solvers. This allows us to recover depth accurately and robustly. In the first part of my thesis, I explore depth estimation using wavefront sensing, which is useful for scientific systems. Depth is encoded in the phase of a wavefront. I build a novel wavefront imaging sensor with high resolution (a.k.a. WISH), using a programmable spatial light modulator (SLM) and a phase retrieval algorithm. WISH offers fine phase estimation with significantly better spatial resolution as compared to currently available wavefront sensors.
    [Show full text]
  • Optical Performance:: Characterization of a Pupillometric Camera
    RELATED TITLES Documents Science & Tech Tech Digital & Social Media 58 views 0 0 Abb Uploaded by Mabel Ruiz AP-Physical Low Light Manual Twilight Retrato Science Sample Photography for Render 1.4.5 Aberration document explaining the Seidel coefficients Full description Save Embed Share Print S-118.4250 PPOSTGRADUATE SEMINAR ON ILLUMINATION ENGINEERING ,, SSPRING 2008 LLIGHTING UUNIT,, DDEPARTMENT OF EELECTRONICS,, HHELSINKI UUNIVERSITY OF TTECHNOLOGY (TKK) OPTICAL PERFORMANCE:: CHARACTERIZATION OF A PUPILLOMETRIC CAMERA Petteri Teikari,, [email protected] Emmi Rautkylä,, emmi.rautkylä@tkk.fi RELATED TITLES Documents Science & Tech Tech Digital & Social Media 58 views 0 0 Abb Uploaded by Mabel Ruiz AP-Physical Low Light Manual Twilight Retrato Science Sample Photography for Render 1.4.5 Aberration document explaining the Seidel coefficients Full description Save Embed Share Print RELATED TITLES Documents Science & Tech Tech Digital & Social Media 58 views 0 0 Abb Uploaded by Mabel Ruiz AP-Physical Low Light Manual Twilight Retrato Science Sample Photography for Render 1.4.5 Aberration document explaining the Seidel coefficients Full description Save Embed Share Print TABLE OF CONTENTS A A BSTRACT .................................................................................................................................. TT ABLE OF CONTENTS ................................................................................................................2 11 IINTRODUCTION.................................................................................................................3
    [Show full text]
  • Aperture-Based Correction of Aberration Obtained from Optical Fourier Coding and Blur Estimation
    Research Article Vol. 6, No. 5 / May 2019 / Optica 647 Computational aberration compensation by coded- aperture-based correction of aberration obtained from optical Fourier coding and blur estimation 1, 2 2 3 1 JAEBUM CHUNG, *GLORIA W. MARTINEZ, KAREN C. LENCIONI, SRINIVAS R. SADDA, AND CHANGHUEI YANG 1Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA 2Office of Laboratory Animal Resources, California Institute of Technology, Pasadena, California 91125, USA 3Doheny Eye Institute, University of California-Los Angeles, Los Angeles, California 90033, USA *Corresponding author: [email protected] Received 29 January 2019; revised 8 April 2019; accepted 12 April 2019 (Doc. ID 359017); published 10 May 2019 We report a novel generalized optical measurement system and computational approach to determine and correct aberrations in optical systems. The system consists of a computational imaging method capable of reconstructing an optical system’s pupil function by adapting overlapped Fourier coding to an incoherent imaging modality. It re- covers the high-resolution image latent in an aberrated image via deconvolution. The deconvolution is made robust to noise by using coded apertures to capture images. We term this method coded-aperture-based correction of aberration obtained from overlapped Fourier coding and blur estimation (CACAO-FB). It is well-suited for various imaging scenarios where aberration is present and where providing a spatially coherent illumination is very challenging or impossible. We report the demonstration of CACAO-FB with a variety of samples including an in vivo imaging experi- ment on the eye of a rhesus macaque to correct for its inherent aberration in the rendered retinal images.
    [Show full text]
  • Physics of Digital Photography Index
    1 Physics of digital photography Author: Andy Rowlands ISBN: 978-0-7503-1242-4 (ebook) ISBN: 978-0-7503-1243-1 (hardback) Index (Compiled on 5th September 2018) Abbe cut-off frequency 3-31, 5-31 Abbe's sine condition 1-58 aberration function see \wavefront error function" aberration transfer function 5-32 aberrations 1-3, 1-8, 3-31, 5-25, 5-32 absolute colourimetry 4-13 ac value 3-13 achromatic (colour) see \greyscale" acutance 5-38 adapted homogeneity-directed see \demosaicing methods" adapted white 4-33 additive colour space 4-22 Adobe® colour matrix 4-42, 4-43 Adobe® digital negative 4-40, 4-42 Adobe® forward matrix 4-41, 4-42, 4-47, 4-49 Adobe® Photoshop® 4-60, 4-61, 5-45 Adobe® RGB colour space 4-27, 4-60, 4-61 adopted white 4-33, 4-34 Airy disk 3-15, 3-27, 5-33, 5-46, 5-49 aliasing 3-43, 3-44, 3-47, 5-42, 5-45 amplitude OTF see \amplitude transfer function" amplitude PSF 3-26 amplitude transfer function 3-26 analog gain 2-24 analog-to-digital converter 2-2, 2-5, 3-61, 5-56 analog-to-digital unit see \digital number" angular field of view 1-21, 1-23, 1-24 anti-aliasing filter 5-45, also see \optical low-pass filter” aperture-diffraction PSF 3-27, 5-33 aperture-diffraction MTF 3-29, 5-31, 5-33, 5-35 aperture function 3-23, 3-26 aperture priority mode 2-32, 5-71 2 aperture stop 1-22 aperture value 1-56 aplanatic lens 1-57 apodisation filter 5-34 arpetal ratio 1-50 astigmatism 5-26 auto-correlation 3-30 auto-ISO mode 2-34 average photometry 2-17, 2-18 backside-illuminated device 3-57, 5-58 band-limited function 3-45, 5-44 banding see \posterisation"
    [Show full text]
  • Tese De Doutorado Nº 200 a Perifocal Intraocular Lens
    TESE DE DOUTORADO Nº 200 A PERIFOCAL INTRAOCULAR LENS WITH EXTENDED DEPTH OF FOCUS Felipe Tayer Amaral DATA DA DEFESA: 25/05/2015 Universidade Federal de Minas Gerais Escola de Engenharia Programa de Pós-Graduação em Engenharia Elétrica A PERIFOCAL INTRAOCULAR LENS WITH EXTENDED DEPTH OF FOCUS Felipe Tayer Amaral Tese de Doutorado submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós- Graduação em Engenharia Elétrica da Escola de Engenharia da Universidade Federal de Minas Gerais, como requisito para obtenção do Título de Doutor em Engenharia Elétrica. Orientador: Prof. Davies William de Lima Monteiro Belo Horizonte – MG Maio de 2015 To my parents, for always believing in me, for dedicating themselves to me with so much love and for encouraging me to dream big to make a difference. "Aos meus pais, por sempre acreditarem em mim, por se dedicarem a mim com tanto amor e por me encorajarem a sonhar grande para fazer a diferença." ACKNOWLEDGEMENTS I would like to acknowledge all my friends and family for the fondness and incentive whenever I needed. I thank all those who contributed directly and indirectly to this work. I thank my parents Suzana and Carlos for being by my side in the darkest hours comforting me, advising me and giving me all the support and unconditional love to move on. I thank you for everything you taught me to be a better person: you are winners and my life example! I thank Fernanda for being so lovely and for listening to my ideas and for encouraging me all the time.
    [Show full text]
  • Orbs in Pictures of the Sun
    Orbs in pictures of the sun Continue The backscatter of the camera's flash of motes of dust causes unfocused orb-shaped photographic artifacts. In photography, the backscatter (also called near-camera reflection[1]) is an optical phenomenon that results in typically circular artifacts on an image, due to the camera's flash reflected from unfocused motes of dust, water droplets, or other particles in the air or water. It is especially common with modern compact and ultra-compact digital cameras. [3] [3] A hypothetical underwater instance with two conditions in which circular photographic artifacts are probable (A) and unlikely (B), depending on whether the aspect of particles facing the lens directly reflects the flash, as shown. Elements do not appear to scale. Caused by the backscatter of light of unfocused particles, these artifacts are also sometimes referred to as orbs, citing a common paranormal claim. Some appear with tracks, suggesting movement. [4] Cause circular unfocused visual artifacts caused by raindrops. Additional information: Light scattering of particles and Defocus-aberration Backscatter usually occurs in low light scenes when the camera flash is used. Cases include night time and underwater photography, when a bright light source and reflective unfocused particles are close to the camera. [1] Light appears much brighter much near the source due to the inverse-square law, which says light intensity is inversely proportional to the square of the distance from the source. [5] The artifact may be the result of backscatter or retroreflection of the light from airborne solid particles, such as dust or pollen, or liquid droplets, especially rain or fog.
    [Show full text]
  • Effect of Positive and Negative Defocus on Contrast Sensitivity in Myopes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Vision Research 44 (2004) 1869–1878 www.elsevier.com/locate/visres Effect of positive and negative defocus on contrast sensitivity in myopes and non-myopes Hema Radhakrishnan *, Shahina Pardhan, Richard I. Calver, Daniel J. O’Leary Department of Optometry and Ophthalmic Dispensing, Anglia Polytechnic University, East Road, Cambridge CB1 1PT, UK Received 22 October 2003; received in revised form 8 March 2004 Abstract This study investigated the effect of lens induced defocus on the contrast sensitivity function in myopes and non-myopes. Contrast sensitivity for up to 20 spatialfrequencies ranging from 1 to 20 c/deg was measured with verticalsine wave gratings under cycloplegia at different levels of positive and negative defocus in myopes and non-myopes. In non-myopes the reduction in contrast sensitivity increased in a systematic fashion as the amount of defocus increased. This reduction was similar for positive and negative lenses of the same power (p ¼ 0:474). Myopes showed a contrast sensitivity loss that was significantly greater with positive defocus compared to negative defocus (p ¼ 0:001). The magnitude of the contrast sensitivity loss was also dependent on the spatial frequency tested for both positive and negative defocus. There was significantly greater contrast sensitivity loss in non-myopes than in myopes at low-medium spatial frequencies (1–8 c/deg) with negative defocus. Latent accommodation was ruled out as a contributor to this difference in myopes and non-myopes. In another experiment, ocular aberrations were measured under cycloplegia using a Shack– Hartmann aberrometer.
    [Show full text]
  • The Essential A-Z of Photography Slang Artifact a Loose Term To
    The essential A-Z of photography slang Artifact A loose term to describe an element that degrades picture quality. Anything from the blockiness that can occur when pictures are heavily compressed as JPEGs, to the distortion to pictures that occurs with heavy manipulation – even the effect you see with lens flare. ATGNI All The Gear, No Idea. A photographer who has lots of camera equipment but doesn’t know what half of it does. A bit of an Uncle Bob, in fact. BIF A rare acronym that you’ll only see floating around bird photography forums (download our free bird photography cheat sheet). There’s a clue right there: BIF stands for Bird in Flight, and is usually brought up during lengthy technical discussions about autofocus point selection and focus modes. Bigma The Sigma 50-500mm f/4-6.3 lens earned the nickname ‘Bigma’ thanks to its considerable 10x zoom range and considerable proportions. Blown out Bright areas in a photo that are overexposed are said to be blown out. They won’t hold any detail and will be bleached white. Bokeh Pronounced ‘boh-kay’, this term is derived from the Japanese word for ‘blur’ and is used to describe the aesthetic quality of the blur in out- of-focus areas of a picture. The faster the lens, and the more aperture blades it has, the smoother the blur tends to be. Chimping The act of looking at pictures on the back of the camera as soon as you’ve taken them, usually accompanied by lots of ‘ooh-ooh-oohing’, hence the name.
    [Show full text]
  • Assignment 4: Raw Material
    Computer Science E-7: Exposing Digital Photography Harvard Extension School Fall 2010 Raw Material Assignment #4. Due 5:30PM on Tuesday, November 23, 2010. Part I. Pick Your Brain! (40 points) Type your answers for the following questions in a word processor; we will accept Word Documents (.doc, .docx), PDF documents (.pdf), or plaintext files (.txt, .rtf). Do not submit your answers for this part to Flickr. Instead, before the due date, attach the file to an email and send it to us at this address: ! [email protected] 1. (2 points) What are two advantages of JPEG over RAW? 2. (2 points) Which color space should you employ for general use? 3. (2 points) Why is white balance measured in degrees Kelvin? 4. (2 points) List two reasons why batteries in digital SLRs tend to last longer than those in compact digital cameras. 5. (2 points) Why is calibrating your monitor important? 6. (3 points) What is a tone curve and why is it necessary? 7. (3 points) Many digital cameras are advertised as having a crop factor. What does this mean? What are some of its advantages and disadvantages? 8. (3 points) Assume you have two sources of light: incandescent light at an approximate color temperature of 3000 K, and the sun with an approximate color temperature of 6000 K. Which source produces warmer tones? If you take two properly-exposed photographs of a white sheet of paper, one photo in each scene, with your camera set at a white balance of 4500 K, in which photo would the paper appear warmer? 1 of 6 Computer Science E-7: Exposing Digital Photography Harvard Extension School Fall 2010 9.
    [Show full text]