Chapter 1: Introduction 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quaternion Zernike Spherical Polynomials
MATHEMATICS OF COMPUTATION Volume 84, Number 293, May 2015, Pages 1317–1337 S 0025-5718(2014)02888-3 Article electronically published on August 29, 2014 QUATERNION ZERNIKE SPHERICAL POLYNOMIALS J. MORAIS AND I. CAC¸ AO˜ Abstract. Over the past few years considerable attention has been given to the role played by the Zernike polynomials (ZPs) in many different fields of geometrical optics, optical engineering, and astronomy. The ZPs and their applications to corneal surface modeling played a key role in this develop- ment. These polynomials are a complete set of orthogonal functions over the unit circle and are commonly used to describe balanced aberrations. In the present paper we introduce the Zernike spherical polynomials within quater- nionic analysis ((R)QZSPs), which refine and extend the Zernike moments (defined through their polynomial counterparts). In particular, the underlying functions are of three real variables and take on either values in the reduced and full quaternions (identified, respectively, with R3 and R4). (R)QZSPs are orthonormal in the unit ball. The representation of these functions in terms of spherical monogenics over the unit sphere are explicitly given, from which several recurrence formulae for fast computer implementations can be derived. A summary of their fundamental properties and a further second or- der homogeneous differential equation are also discussed. As an application, we provide the reader with plot simulations that demonstrate the effectiveness of our approach. (R)QZSPs are new in literature and have some consequences that are now under investigation. 1. Introduction 1.1. The Zernike spherical polynomials. The complex Zernike polynomials (ZPs) have long been successfully used in many different fields of optics. -
Strehl Ratio for Primary Aberrations: Some Analytical Results for Circular and Annular Pupils
1258 J. Opt. Soc. Am./Vol. 72, No. 9/September 1982 Virendra N. Mahajan Strehl ratio for primary aberrations: some analytical results for circular and annular pupils Virendra N. Mahajan The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts 02139 Received February 9,1982 Imaging systems with circular and annular pupils aberrated by primary aberrations are considered. Both classical and balanced (Zernike) aberrations are discussed. Closed-form solutions are derived for the Strehl ratio, except in the case of coma, for which the integral form is used. Numerical results are obtained and compared with Mar6- chal's formula for small aberrations. It is shown that, as long as the Strehl ratio is greater than 0.6, the Markchal formula gives its value with an error of less than 10%. A discussion of the Rayleigh quarter-wave rule is given, and it is shown that it provides only a qualitative measure of aberration tolerance. Nonoptimally balanced aberrations are also considered, and it is shown that, unless the Strehl ratio is quite high, an optimally balanced aberration does not necessarily give a maximum Strehl ratio. 1. INTRODUCTION is shown that, unless the Strehl ratio is quite high, an opti- In a recent paper,1 we discussed the problem of balancing a mally balanced aberration(in the sense of minimum variance) does not classical aberration in imaging systems having annular pupils give the maximum possible Strehl ratio. As an ex- ample, spherical with one or more aberrations of lower order to minimize its aberration is discussed in detail. A certain variance. By using the Gram-Schmidt orthogonalization amount of spherical aberration is balanced with an appro- process, polynomials that are orthogonal over an annulus were priate amount of defocus to minimize its variance across the pupil. -
Doctor of Philosophy
RICE UNIVERSITY 3D sensing by optics and algorithm co-design By Yicheng Wu A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE Ashok Veeraraghavan (Apr 28, 2021 11:10 CDT) Richard Baraniuk (Apr 22, 2021 16:14 ADT) Ashok Veeraraghavan Richard Baraniuk Professor of Electrical and Computer Victor E. Cameron Professor of Electrical and Computer Engineering Engineering Jacob Robinson (Apr 22, 2021 13:54 CDT) Jacob Robinson Associate Professor of Electrical and Computer Engineering and Bioengineering Anshumali Shrivastava Assistant Professor of Computer Science HOUSTON, TEXAS April 2021 ABSTRACT 3D sensing by optics and algorithm co-design by Yicheng Wu 3D sensing provides the full spatial context of the world, which is important for applications such as augmented reality, virtual reality, and autonomous driving. Unfortunately, conventional cameras only capture a 2D projection of a 3D scene, while depth information is lost. In my research, I propose 3D sensors by jointly designing optics and algorithms. The key idea is to optically encode depth on the sensor measurement, and digitally decode depth using computational solvers. This allows us to recover depth accurately and robustly. In the first part of my thesis, I explore depth estimation using wavefront sensing, which is useful for scientific systems. Depth is encoded in the phase of a wavefront. I build a novel wavefront imaging sensor with high resolution (a.k.a. WISH), using a programmable spatial light modulator (SLM) and a phase retrieval algorithm. WISH offers fine phase estimation with significantly better spatial resolution as compared to currently available wavefront sensors. -
Aperture-Based Correction of Aberration Obtained from Optical Fourier Coding and Blur Estimation
Research Article Vol. 6, No. 5 / May 2019 / Optica 647 Computational aberration compensation by coded- aperture-based correction of aberration obtained from optical Fourier coding and blur estimation 1, 2 2 3 1 JAEBUM CHUNG, *GLORIA W. MARTINEZ, KAREN C. LENCIONI, SRINIVAS R. SADDA, AND CHANGHUEI YANG 1Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA 2Office of Laboratory Animal Resources, California Institute of Technology, Pasadena, California 91125, USA 3Doheny Eye Institute, University of California-Los Angeles, Los Angeles, California 90033, USA *Corresponding author: [email protected] Received 29 January 2019; revised 8 April 2019; accepted 12 April 2019 (Doc. ID 359017); published 10 May 2019 We report a novel generalized optical measurement system and computational approach to determine and correct aberrations in optical systems. The system consists of a computational imaging method capable of reconstructing an optical system’s pupil function by adapting overlapped Fourier coding to an incoherent imaging modality. It re- covers the high-resolution image latent in an aberrated image via deconvolution. The deconvolution is made robust to noise by using coded apertures to capture images. We term this method coded-aperture-based correction of aberration obtained from overlapped Fourier coding and blur estimation (CACAO-FB). It is well-suited for various imaging scenarios where aberration is present and where providing a spatially coherent illumination is very challenging or impossible. We report the demonstration of CACAO-FB with a variety of samples including an in vivo imaging experi- ment on the eye of a rhesus macaque to correct for its inherent aberration in the rendered retinal images. -
Wavefront Parameters Recovering by Using Point Spread Function
Wavefront Parameters Recovering by Using Point Spread Function Olga Kalinkina[0000-0002-2522-8496], Tatyana Ivanova[0000-0001-8564-243X] and Julia Kushtyseva[0000-0003-1101-6641] ITMO University, 197101 Kronverksky pr. 49, bldg. A, Saint-Petersburg, Russia [email protected], [email protected], [email protected] Abstract. At various stages of the life cycle of optical systems, one of the most important tasks is quality of optical system elements assembly and alignment control. The different wavefront reconstruction algorithms have already proven themselves to be excellent assistants in this. Every year increasing technical ca- pacities opens access to the new algorithms and the possibilities of their appli- cation. The paper considers an iterative algorithm for recovering the wavefront parameters. The parameters of the wavefront are the Zernike polynomials coef- ficients. The method involves using a previously known point spread function to recover Zernike polynomials coefficients. This work is devoted to the re- search of the defocusing influence on the convergence of the algorithm. The method is designed to control the manufacturing quality of optical systems by point image. A substantial part of the optical systems can use this method with- out additional equipment. It can help automate the controlled optical system ad- justment process. Keywords: Point Spread Function, Wavefront, Zernike Polynomials, Optimiza- tion, Aberrations. 1 Introduction At the stage of manufacturing optical systems, one of the most important tasks is quality of optical system elements assembly and alignment control. There are various methods for solving this problem, for example, interference methods. However, in some cases, one of which is the alignment of the telescope during its operation, other control methods are required [1, 2], for example control by point image (point spread function) or the image of another known object. -
Physics of Digital Photography Index
1 Physics of digital photography Author: Andy Rowlands ISBN: 978-0-7503-1242-4 (ebook) ISBN: 978-0-7503-1243-1 (hardback) Index (Compiled on 5th September 2018) Abbe cut-off frequency 3-31, 5-31 Abbe's sine condition 1-58 aberration function see \wavefront error function" aberration transfer function 5-32 aberrations 1-3, 1-8, 3-31, 5-25, 5-32 absolute colourimetry 4-13 ac value 3-13 achromatic (colour) see \greyscale" acutance 5-38 adapted homogeneity-directed see \demosaicing methods" adapted white 4-33 additive colour space 4-22 Adobe® colour matrix 4-42, 4-43 Adobe® digital negative 4-40, 4-42 Adobe® forward matrix 4-41, 4-42, 4-47, 4-49 Adobe® Photoshop® 4-60, 4-61, 5-45 Adobe® RGB colour space 4-27, 4-60, 4-61 adopted white 4-33, 4-34 Airy disk 3-15, 3-27, 5-33, 5-46, 5-49 aliasing 3-43, 3-44, 3-47, 5-42, 5-45 amplitude OTF see \amplitude transfer function" amplitude PSF 3-26 amplitude transfer function 3-26 analog gain 2-24 analog-to-digital converter 2-2, 2-5, 3-61, 5-56 analog-to-digital unit see \digital number" angular field of view 1-21, 1-23, 1-24 anti-aliasing filter 5-45, also see \optical low-pass filter” aperture-diffraction PSF 3-27, 5-33 aperture-diffraction MTF 3-29, 5-31, 5-33, 5-35 aperture function 3-23, 3-26 aperture priority mode 2-32, 5-71 2 aperture stop 1-22 aperture value 1-56 aplanatic lens 1-57 apodisation filter 5-34 arpetal ratio 1-50 astigmatism 5-26 auto-correlation 3-30 auto-ISO mode 2-34 average photometry 2-17, 2-18 backside-illuminated device 3-57, 5-58 band-limited function 3-45, 5-44 banding see \posterisation" -
Wavefront Aberrations
11 Wavefront Aberrations Mirko Resan, Miroslav Vukosavljević and Milorad Milivojević Eye Clinic, Military Medical Academy, Belgrade, Serbia 1. Introduction The eye is an optical system having several optical elements that focus light rays representing images onto the retina. Imperfections in the components and materials in the eye may cause light rays to deviate from the desired path. These deviations, referred to as optical or wavefront aberrations, result in blurred images and decreased visual performance (1). Wavefront aberrations are optical imperfections of the eye that prevent light from focusing perfectly on the retina, resulting in defects in the visual image. There are two kinds of aberrations: 1. Lower order aberrations (0, 1st and 2nd order) 2. Higher order aberrations (3rd, 4th, … order) Lower order aberrations are another way to describe refractive errors: myopia, hyperopia and astigmatism, correctible with glasses, contact lenses or refractive surgery. Lower order aberrations is a term used in wavefront technology to describe second-order Zernike polynomials. Second-order Zernike terms represent the conventional aberrations defocus (myopia, hyperopia and astigmatism). Lower order aberrations make up about 85 per cent of all aberrations in the eye. Higher order aberrations are optical imperfections which cannot be corrected by any reliable means of present technology. All eyes have at least some degree of higher order aberrations. These aberrations are now more recognized because technology has been developed to diagnose them properly. Wavefront aberrometer is actually used to diagnose and measure higher order aberrations. Higher order aberrations is a term used to describe Zernike aberrations above second-order. Third-order Zernike terms are coma and trefoil. -
Tese De Doutorado Nº 200 a Perifocal Intraocular Lens
TESE DE DOUTORADO Nº 200 A PERIFOCAL INTRAOCULAR LENS WITH EXTENDED DEPTH OF FOCUS Felipe Tayer Amaral DATA DA DEFESA: 25/05/2015 Universidade Federal de Minas Gerais Escola de Engenharia Programa de Pós-Graduação em Engenharia Elétrica A PERIFOCAL INTRAOCULAR LENS WITH EXTENDED DEPTH OF FOCUS Felipe Tayer Amaral Tese de Doutorado submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós- Graduação em Engenharia Elétrica da Escola de Engenharia da Universidade Federal de Minas Gerais, como requisito para obtenção do Título de Doutor em Engenharia Elétrica. Orientador: Prof. Davies William de Lima Monteiro Belo Horizonte – MG Maio de 2015 To my parents, for always believing in me, for dedicating themselves to me with so much love and for encouraging me to dream big to make a difference. "Aos meus pais, por sempre acreditarem em mim, por se dedicarem a mim com tanto amor e por me encorajarem a sonhar grande para fazer a diferença." ACKNOWLEDGEMENTS I would like to acknowledge all my friends and family for the fondness and incentive whenever I needed. I thank all those who contributed directly and indirectly to this work. I thank my parents Suzana and Carlos for being by my side in the darkest hours comforting me, advising me and giving me all the support and unconditional love to move on. I thank you for everything you taught me to be a better person: you are winners and my life example! I thank Fernanda for being so lovely and for listening to my ideas and for encouraging me all the time. -
Zernike Polynomials: a Guide
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/241585467 Zernike polynomials: A guide Article in Journal of Modern Optics · April 2011 DOI: 10.1080/09500340.2011.633763 CITATIONS READS 41 12,492 2 authors: Vasudevan Lakshminarayanan Andre Fleck University of Waterloo Grand River Hospital 399 PUBLICATIONS 1,806 CITATIONS 40 PUBLICATIONS 1,210 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Theoretical and bench color and optics work View project Quantum Relational Databases View project All content following this page was uploaded by Vasudevan Lakshminarayanan on 13 May 2014. The user has requested enhancement of the downloaded file. Journal of Modern Optics Vol. 58, No. 7, 10 April 2011, 545–561 TUTORIAL REVIEW Zernike polynomials: a guide Vasudevan Lakshminarayanana,b*y and Andre Flecka,c aSchool of Optometry, University of Waterloo, Waterloo, Ontario, Canada; bMichigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI, USA; cGrand River Hospital, Kitchener, Ontario, Canada (Received 5 October 2010; final version received 9 January 2011) In this paper we review a special set of orthonormal functions, namely Zernike polynomials which are widely used in representing the aberrations of optical systems. We give the recurrence relations, relationship to other special functions, as well as scaling and other properties of these important polynomials. Mathematica code for certain operations are given in the Appendix. Keywords: optical aberrations; Zernike polynomials; special functions; aberrometry 1. Introduction the Zernikes will not be orthogonal over a discrete set The Zernike polynomials are a sequence of polyno- of points within a unit circle [11]. -
New Separated Polynomial Solutions to the Zernike System on the Unit Disk and Interbasis Expansion
1844 Vol. 34, No. 10 / October 2017 / Journal of the Optical Society of America A Research Article New separated polynomial solutions to the Zernike system on the unit disk and interbasis expansion 1,2,3 4, 1 GEORGE S. POGOSYAN, KURT BERNARDO WOLF, * AND ALEXANDER YAKHNO 1Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico 2Yerevan State University, Yerevan, Armenia 3Joint Institute for Nuclear Research, Dubna, Russia 4Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos 62251, Mexico *Corresponding author: [email protected] Received 23 May 2017; revised 7 August 2017; accepted 22 August 2017; posted 23 August 2017 (Doc. ID 296673); published 19 September 2017 The differential equation proposed by Frits Zernike to obtain a basis of polynomial orthogonal solutions on the unit disk to classify wavefront aberrations in circular pupils is shown to have a set of new orthonormal solution bases involving Legendre and Gegenbauer polynomials in nonorthogonal coordinates, close to Cartesian ones. We find the overlaps between the original Zernike basis and a representative of the new set, which turn out to be Clebsch–Gordan coefficients. © 2017 Optical Society of America OCIS codes: (000.3860) Mathematical methods in physics; (050.1220) Apertures; (050.5080) Phase shift; (080.1010) Aberrations (global); (350.7420) Waves. https://doi.org/10.1364/JOSAA.34.001844 1. INTRODUCTION: THE ZERNIKE SYSTEM to explain the symmetry hidden in the equal spacing of n familiar from the oscillator model. In 1934, Frits Zernike published a paper that gave rise to phase- ’ contrast microscopy [1]. -
Effect of Positive and Negative Defocus on Contrast Sensitivity in Myopes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Vision Research 44 (2004) 1869–1878 www.elsevier.com/locate/visres Effect of positive and negative defocus on contrast sensitivity in myopes and non-myopes Hema Radhakrishnan *, Shahina Pardhan, Richard I. Calver, Daniel J. O’Leary Department of Optometry and Ophthalmic Dispensing, Anglia Polytechnic University, East Road, Cambridge CB1 1PT, UK Received 22 October 2003; received in revised form 8 March 2004 Abstract This study investigated the effect of lens induced defocus on the contrast sensitivity function in myopes and non-myopes. Contrast sensitivity for up to 20 spatialfrequencies ranging from 1 to 20 c/deg was measured with verticalsine wave gratings under cycloplegia at different levels of positive and negative defocus in myopes and non-myopes. In non-myopes the reduction in contrast sensitivity increased in a systematic fashion as the amount of defocus increased. This reduction was similar for positive and negative lenses of the same power (p ¼ 0:474). Myopes showed a contrast sensitivity loss that was significantly greater with positive defocus compared to negative defocus (p ¼ 0:001). The magnitude of the contrast sensitivity loss was also dependent on the spatial frequency tested for both positive and negative defocus. There was significantly greater contrast sensitivity loss in non-myopes than in myopes at low-medium spatial frequencies (1–8 c/deg) with negative defocus. Latent accommodation was ruled out as a contributor to this difference in myopes and non-myopes. In another experiment, ocular aberrations were measured under cycloplegia using a Shack– Hartmann aberrometer. -
Zernike Polynomials Background
Zernike Polynomials • Fitting irregular and non-rotationally symmetric surfaces over a circular region. • Atmospheric Turbulence. • Corneal Topography • Interferometer measurements. • Ocular Aberrometry Background • The mathematical functions were originally described by Frits Zernike in 1934. • They were developed to describe the diffracted wavefront in phase contrast imaging. • Zernike won the 1953 Nobel Prize in Physics for developing Phase Contrast Microscopy. 1 Phase Contrast Microscopy Transparent specimens leave the amplitude of the illumination virtually unchanged, but introduces a change in phase. Applications • Typically used to fit a wavefront or surface sag over a circular aperture. • Astronomy - fitting the wavefront entering a telescope that has been distorted by atmospheric turbulence. • Diffraction Theory - fitting the wavefront in the exit pupil of a system and using Fourier transform properties to determine the Point Spread Function. Source: http://salzgeber.at/astro/moon/seeing.html 2 Applications • Ophthalmic Optics - fitting corneal topography and ocular wavefront data. • Optical Testing - fitting reflected and transmitted wavefront data measured interferometically. Surface Fitting • Reoccurring Theme: Fitting a complex, non-rotationally symmetric surfaces (phase fronts) over a circular domain. • Possible goals of fitting a surface: – Exact fit to measured data points? – Minimize “Error” between fit and data points? – Extract Features from the data? 3 1D Curve Fitting 25 20 15 10 5 0 -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 Low-order Polynomial Fit 25 y = 9.9146x + 2.3839 R2 = 0.9383 20 15 10 5 0 -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 In this case, the error is the vertical distance between the line and the data point.