LUMEN Or CANDELA As SI Base Unit ‐ Summary of CIE D2 Discussions on This Proposal for End‐User
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 3: the Sensor
4.430 Daylighting Human Eye ‘HDR the old fashioned way’ (Niemasz) Massachusetts Institute of Technology ChriChristoph RstophReeiinhartnhart Department of Architecture 4.4.430 The430The SeSensnsoror Building Technology Program Happy Valentine’s Day Sun Shining on a Praline Box on February 14th at 9.30 AM in Boston. 1 Happy Valentine’s Day Falsecolor luminance map Light and Human Vision 2 Human Eye Outside view of a human eye Ophtalmogram of a human retina Retina has three types of photoreceptors: Cones, Rods and Ganglion Cells Day and Night Vision Photopic (DaytimeVision): The cones of the eye are of three different types representing the three primary colors, red, green and blue (>3 cd/m2). Scotopic (Night Vision): The rods are repsonsible for night and peripheral vision (< 0.001 cd/m2). Mesopic (Dim Light Vision): occurs when the light levels are low but one can still see color (between 0.001 and 3 cd/m2). 3 VisibleRange Daylighting Hanbook (Reinhart) The human eye can see across twelve orders of magnitude. We can adapt to about 10 orders of magnitude at a time via the iris. Larger ranges take time and require ‘neural adaptation’. Transition Spaces Outside Atrium Circulation Area Final destination 4 Luminous Response Curve of the Human Eye What is daylight? Daylight is the visible part of the electromagnetic spectrum that lies between 380 and 780 nm. UV blue green yellow orange red IR 380 450 500 550 600 650 700 750 wave length (nm) 5 Photometric Quantities Characterize how a space is perceived. Illuminance Luminous Flux Luminance Luminous Intensity Luminous Intensity [Candela] ~ 1 candela Courtesy of Matthew Bowden at www.digitallyrefreshing.com. -
A Learner's Guide to SI Units and Their Conversion
A Learner's Guide to SI Units and their Conversion October 2004 Workbook for students Learner's Guide to SI Units and their Conversion their and Units SI to Guide Learner's Edexcel A London Qualifications is one of the leading examining and awarding bodies in the UK and throughout the world. It incorporates all the qualifications previously awarded under the Edexcel and BTEC brand. We provide a wide range of qualifications including general (academic), vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, our centres receive the support they need to help them deliver their education and training programmes to learners. For further information please call Customer Services on 0870 240 9800, or visit our website at www.edexcel.org.uk Authorised by Jim Dobson Prepared by Sarah Harrison All the material in this publication is copyright © London Qualifications Limited 2004 CONTENTS Introduction 1 What are units? 2 Operations with units 5 Submultiple and multiple units 9 Conversion of units 11 Conversion examples and exercises 13 Length 13 Area 14 Volume 15 Mass 16 Time 17 Temperature 18 Density 19 Force 20 Stress and pressure 21 Answers to exercises 23 Introduction One of the important areas where Science and Technology students need support is in the conversion of units. This booklet is designed to be useful for students in all Science, Technology and Engineering subjects. This booklet has been produced to: S introduce students to SI base and derived units and S help students with the conversion of multiple and sub-multiple units to SI base and derived units. -
Light and Illumination
ChapterChapter 3333 -- LightLight andand IlluminationIllumination AAA PowerPointPowerPointPowerPoint PresentationPresentationPresentation bybyby PaulPaulPaul E.E.E. Tippens,Tippens,Tippens, ProfessorProfessorProfessor ofofof PhysicsPhysicsPhysics SouthernSouthernSouthern PolytechnicPolytechnicPolytechnic StateStateState UniversityUniversityUniversity © 2007 Objectives:Objectives: AfterAfter completingcompleting thisthis module,module, youyou shouldshould bebe ableable to:to: •• DefineDefine lightlight,, discussdiscuss itsits properties,properties, andand givegive thethe rangerange ofof wavelengthswavelengths forfor visiblevisible spectrum.spectrum. •• ApplyApply thethe relationshiprelationship betweenbetween frequenciesfrequencies andand wavelengthswavelengths forfor opticaloptical waves.waves. •• DefineDefine andand applyapply thethe conceptsconcepts ofof luminousluminous fluxflux,, luminousluminous intensityintensity,, andand illuminationillumination.. •• SolveSolve problemsproblems similarsimilar toto thosethose presentedpresented inin thisthis module.module. AA BeginningBeginning DefinitionDefinition AllAll objectsobjects areare emittingemitting andand absorbingabsorbing EMEM radiaradia-- tiontion.. ConsiderConsider aa pokerpoker placedplaced inin aa fire.fire. AsAs heatingheating occurs,occurs, thethe 1 emittedemitted EMEM waveswaves havehave 2 higherhigher energyenergy andand 3 eventuallyeventually becomebecome visible.visible. 4 FirstFirst redred .. .. .. thenthen white.white. LightLightLight maymaymay bebebe defineddefineddefined -
Illumination and Distance
PHYS 1400: Physical Science Laboratory Manual ILLUMINATION AND DISTANCE INTRODUCTION How bright is that light? You know, from experience, that a 100W light bulb is brighter than a 60W bulb. The wattage measures the energy used by the bulb, which depends on the bulb, not on where the person observing it is located. But you also know that how bright the light looks does depend on how far away it is. That 100W bulb is still emitting the same amount of energy every second, but if you are farther away from it, the energy is spread out over a greater area. You receive less energy, and perceive the light as less bright. But because the light energy is spread out over an area, it’s not a linear relationship. When you double the distance, the energy is spread out over four times as much area. If you triple the distance, the area is nine Twice the distance, ¼ as bright. Triple the distance? 11% as bright. times as great, meaning that you receive only 1/9 (or 11%) as much energy from the light source. To quantify the amount of light, we will use units called lux. The idea is simple: energy emitted per second (Watts), spread out over an area (square meters). However, a lux is not a W/m2! A lux is a lumen per m2. So, what is a lumen? Technically, it’s one candela emitted uniformly across a solid angle of 1 steradian. That’s not helping, is it? Examine the figure above. The source emits light (energy) in all directions simultaneously. -
Tip Sheet – Lumen Meter
TIP SHEET – LUMEN METER What is a lumen meter? A light meter or lumen meter is a device used to measure the amount of light in a certain area. Lumen meters have many uses such as photography and cinematography, however for our purpose we want to help reduce the amount of wasted light which equals wasted electricity. If conducting an outdoor lighting audit the purpose of a lumen meter would be to reduce the amount of light pollution. Light output is typically measured in luxes or lumens. Sometimes you will hear the word footcandles. This is another standard unit of measure that is used interchangeablely with the term lumen. Ehow.com defines a lux as a uniform standard by which the amount of visible light present in a given space can be described where as a lumen is a measure of just how much visible light is produced by an object such as, for example, a light bulb. 1 footcandle/lumens = 10.76 luxes and 1 lux =.093 footcandles or lumens Where can I purchase a lumen meter? Eco-Schools USA recommends the light meter from Mastech found on Amazon.com. http://www.amazon.com/Mastech-Light-LX1010BS-display- Luxmeter/dp/B004KP8RE2/ref=sr_1_5?s=electronics&ie=UTF8&qid=1342571104&sr=1-5 Mastech Light Meter LX1010BS with LCD display, 100,000 Lux Luxmeter - $20.17 Operating directions Mastech Light Meter LX1010BS with LCD display, 100,000 Lux Luxmeter operating instructions are found on the next page. The unit of measure displays in luxes. This will be a great opportunity for your student to work on conversions. -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
Recommended Light Levels
Recommended Light Levels Recommended Light Levels (Illuminance) for Outdoor and Indoor Venues This is an instructor resource with information to be provided to students as the instructor sees fit. Light Level or Illuminance, is the amount of light measured in a plane surface (or the total luminous flux incident on a surface, per unit area). The work plane is where the most important tasks in the room or space are performed. Measuring Units of Light Level - Illuminance Illuminance is measured in foot candles (ftcd, fc, fcd) or lux (in the metric SI system). A foot candle is actually one lumen of light density per square foot; one lux is one lumen per square meter. • 1 lux = 1 lumen / sq meter = 0.0001 phot = 0.0929 foot candle (ftcd, fcd) • 1 phot = 1 lumen / sq centimeter = 10000 lumens / sq meter = 10000 lux • 1 foot candle (ftcd, fcd) = 1 lumen / sq ft = 10.752 lux Common Light Levels Outdoors from Natural Sources Common light levels outdoor at day and night can be found in the table below: Illumination Condition (ftcd) (lux) Sunlight 10,000 107,527 Full Daylight 1,000 10,752 Overcast Day 100 1,075 Very Dark Day 10 107 Twilight 1 10.8 Deep Twilight .1 1.08 Full Moon .01 .108 Quarter Moon .001 .0108 Starlight .0001 .0011 Overcast Night .00001 .0001 Common Light Levels Outdoors from Manufactured Sources The nomenclature for most of the types of areas listed in the table below can be found in the City of Los Angeles, Department of Public Works, Bureau of Street Lighting’s “DESIGN STANDARDS AND GUIDELINES” at the URL address under References at the end of this document. -
2019 Redefinition of SI Base Units
2019 redefinition of SI base units A redefinition of SI base units is scheduled to come into force on 20 May 2019.[1][2] The kilogram, ampere, kelvin, and mole will then be defined by setting exact numerical values for the Planck constant (h), the elementary electric charge (e), the Boltzmann constant (k), and the Avogadro constant (NA), respectively. The metre and candela are already defined by physical constants, subject to correction to their present definitions. The new definitions aim to improve the SI without changing the size of any units, thus ensuring continuity with existing measurements.[3][4] In November 2018, the 26th General Conference on Weights and Measures (CGPM) unanimously approved these changes,[5][6] which the International Committee for Weights and Measures (CIPM) had proposed earlier that year.[7]:23 The previous major change of the metric system was in 1960 when the International System of Units (SI) was formally published. The SI is a coherent system structured around seven base units whose definitions are unconstrained by that of any other unit and another twenty-two named units derived from these base units. The metre was redefined in terms of the wavelength of a spectral line of a The SI system after the 2019 redefinition: krypton-86 radiation,[Note 1] making it derivable from universal natural Dependence of base unit definitions onphysical constants with fixed numerical values and on other phenomena, but the kilogram remained defined in terms of a physical prototype, base units. leaving it the only artefact upon which the SI unit definitions depend. The metric system was originally conceived as a system of measurement that was derivable from unchanging phenomena,[8] but practical limitations necessitated the use of artefacts (the prototype metre and prototype kilogram) when the metric system was first introduced in France in 1799. -
326 BEF = Relative Light Output Input Power BEF = Average Relative Light
Pt. 430, Subpt. B, App. R 10 CFR Ch. II (1–1–09 Edition) accordance with section 3.4.1, expressed in American National Standards Institute watts. (ANSI). 2.3 CIE means the International Commis- 4.2. Determine the Ballast Efficacy Fac- sion on Illumination. tor (BEF) using the following equations: 2.4 CRI means Color Rendering Index as (a) Single lamp ballast defined in § 430.2. relative light output 2.5 IESNA means the Illuminating Engi- BEF = neering Society of North America. input power 2.6 Lamp efficacy means the ratio of meas- ured lamp lumen output in lumens to the (b) Multiple lamp ballast measured lamp electrical power input in watts, rounded to the nearest whole number, average relative light output in units of lumens per watt. BEF = 2.7 Lamp lumen output means the total lu- input power minous flux produced by the lamp, at the ref- Where: erence condition, in units of lumens. input power is determined in accordance 2.8 Lamp electrical power input means the with section 3.3.1, total electrical power input to the lamp, in- relative light output as defined in section cluding both arc and cathode power where 4.1, and appropriate, at the reference condition, in average relative light output is the relative units of watts. light output, as defined in section 4.1, for 2.9 Reference condition means the test con- all lamps, divided by the total number of dition specified in IESNA LM–9 for general lamps. service fluorescent lamps, in IESNA LM–20 for incandescent reflector lamps, in IESNA 4.3 Determine Ballast Power Factor (PF): LM–45 for general service incandescent lamps and in IESNA LM–66 for medium base Input power compact fluorescent lamps (see 10 CFR PF = 430.22). -
Worksheet 2 the Metric System and SI Units
Unit Conversions Worksheet 2 The Metric System and SI Units 1 © MathTutorDVD.com Here is a helpful list of all the prefixes and their exponents and abbreviations: 109 giga G one billion 106 mega M one million 103 kilo k one thousand 102 hecto h one hundred 101 deca da ten 10-1 deci d one tenth 10-2 centi c one hundredth 10-3 milli m one thousandth 10-6 micro µ one millionth 10-9 nano n one billionth 10-12 pico p one trillionth 2 © MathTutorDVD.com 1. Give the abbreviation for each of the SI base units below. a. kilogram b. Kelvin c. meter d. second 2. State what quantities the following SI units are used to measure. a. kg b. m c. s d. K 3. Give the power of 10 that each of the following prefixes represents. a. kilo b. micro c. centi d. deca e. mega 3 © MathTutorDVD.com 4. Write the following numbers in their base units. a. 5 kilometers b. 12 centimeters c. 2 micrograms d. 4.1 megagrams 5. Write the abbreviations for the following measurements. a. 67 micrograms b. 831 kilometers c. 1.2 meters d. 791 megagrams 4 © MathTutorDVD.com 6. Express the following numbers with an appropriate SI prefix (e.g., 5,000 g = 5 kg). a. 7800 m b. 5.0 x 10-6 g c. 7.8 x 106 m d. 1.6 x 10-3 g 7. Convert the following to scientific notation using the base SI unit. a. 4.51 microseconds b. 6700 grams c. -
The International System of Units (SI)
NAT'L INST. OF STAND & TECH NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 330 2001 Edition The International System of Units (SI) 4. Barry N. Taylor, Editor r A o o L57 330 2oOI rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. -
How to Define the Base Units of the Revised SI from Seven Constants with Fixed Numerical Values
Rapport BIPM-2018/02 Bureau International des Poids et Mesures How to define the base units of the revised SI from seven constants with fixed numerical values Richard Davis *See Reference 7 February 2018 Version 3. Revised 6 April 2018 Abstract [added April 2018] As part of a revision to the SI expected to be approved later this year and to take effect in May 2019, the seven base units will be defined by giving fixed numerical values to seven “defining constants”. The report shows how the definitions of all seven base units can be derived efficiently from the defining constants, with the result appearing as a table. The table’s form makes evident a number of connections between the defining constants and the base units. Appendices show how the same methodology could have been used to define the same base units in the present SI, as well as the mathematics which underpins the methodology. How to define the base units of the revised SI from seven constants with fixed numerical values Richard Davis, International Bureau of Weights and Measures (BIPM) 1. Introduction Preparations for the upcoming revision of the International System of Units (SI) began in earnest with Resolution 1 of the 24th meeting of the General Conference on Weights and Measures (CGPM) in 2011 [1]. The 26th CGPM in November 2018 is expected to give final approval to a revision of the present SI [2] based on the guidance laid down in Ref. [1]. The SI will then become a system of units based on exact numerical values of seven defining constants, ΔνCs, c, h, e, k, NA and