Review and Analysis of Variable Swept Wing Technology

Total Page:16

File Type:pdf, Size:1020Kb

Load more

International Journal of Modern Research in Engineering and Technology (IJMRET) www.ijmret.org Volume 4 Issue 6 ǁ June 2019. Review and Analysis of Variable Swept Wing Technology YongyueYUAN Binzhou University , China ABSTRACT : The wing sweep angle of a variable sweep wing aircraft is variable, and it can adapt to the better aerodynamic efficiency of the aircraft at different flight speeds. This is the greatest advantage of the variable sweep wing aircraft, which is different from the fixed wing aircraft. However, the variable swept wing aircraft also has the disadvantage of poor stability and large and complex actuator system. By reviewing the development history and research status of variable sweep wing aircraft, the advantages and disadvantages of variable sweep technology are analyzed, and several key executing agencies are listed. Finally, the development of variable sweep technology is prospected. KEYWORDS -wing, aerodynamic characteristics, variable sweep law, variable sweep mechanism I. INTRODUCTION aircraft has great research value.On the basis of The flight speed of aircraft has always summarizing scholars’ research on variable sweep been an important index to measure the flight wing, this paper summarizes in detail the structural performance of aircraft, especially for military forms of different variable sweep wing, and fighters with high maneuverability requirements, so analyses the flight principle of variable sweep wing. it is extremely important to improve their flight At the same time, the research status of variable speed. In November 2018, the J-20 and J-10B sweep wing aircraft at home and abroad is military aircraft showed excellent flight summarized. Finally, the structural forms and flight performance at the Zhuhai Air Show in China. of integrated wing are summarized.Based on the However, it is difficult for aircraft to maintain good principle, the development of variable sweep wing aerodynamic characteristics in the process of is prospected. increasing flight speed from low speed to high speed. Therefore, it has become the focus of II. DEVELOPMENT HISTORY OF THE academic research to improve this problem through WING the special design of aircraft shape, especially 2.1 Variable Swept Wing Technology wing. In 1944, German designer Messersmitt put Flat-wing aircraft has better performance forward the concept of variable sweep wing, and at low speed, but when the flight speed is in the designed the world's first variable sweep wing transonic stage, the shock resistance will increase concept aircraft, Me P. 1101, which put forward a geometrically with the increase of speed. Swept- new direction for aircraft design and manufacture. wing aircraft has the advantages of fast speed and After the end of World War II, Bell Laboratory in smooth flight at high speed, but its flight efficiency the United States designed the Bell X-5 which is low at subsonic speed. In conclusion, this changed the sweep angle in flight on the basis of contradiction can be improved if the sweep angle studying Me P.1101, and completed its test flight in of the wing can be changed during flight. Variable 1951. But the change of pressure center of gravity swept-wing aircraft emerged as the times require. will cause the nose to be pushed down and the The swept-back angle can be changed with the stability is poor. In the mid and late 1960s, General change of Mach number, angle of attack and other Dynamics and Grumman co-developed the F-111 flight parameters, so as to achieve high adaptability. dolphin (Aardvark), which is known as a variable This type has the advantages of high integrated swept-back aircraft in the true sense of production flight performance and low fuel consumption, and and service, but was abandoned due to its far can play a higher operational efficiency in different overweight.The F-14 developed by Grumman combat missions. Therefore, variable swept wing Company in 1968 is the most advanced. Its wing is www.ijmret.org ISSN: 2456 - 5 6 2 8 Page 9 International Journal of Modern Research in Engineering and Technology (IJMRET) www.ijmret.org Volume 4 Issue 6 ǁ June 2019. controlled by an airborne computer and can realize III. TECHNICAL ANALYSIS OF VARIABLE automatic step less change of sweep angle from 20 SWEPT WING ~68. However, the shortcomings of high cost and maintenance limit its practicability. 3.1. Technical characteristics Because of the variable sweep angle of the After a long period of bottleneck and low tide of development, the idea of combining variable wing, the variable sweep aircraft has better swept wing technology with UAV was put forward, aerodynamic efficiency at different flight speeds, this ushered in a new life for the development of which is also the biggest advantage different from variable swept wing. And new intelligent materials the fixed-wing aircraft. When a variable sweep are constantly found, which provides a material wing aircraft is flying at low speed, it can use a basis for them.In 1980, China launched a large- smaller sweep angle, which increases the lift of the scale ministerial variable swept wing technology leading edge of the wing and increases the research project, which took more than eight years efficiency of the wing. When the aircraft is flying to achieve significant results. However, due to the at supersonic speed, it can use a larger sweep angle, limitation of the level of science and technology, which can improve the acceleration performance the attempt of Qiang-6 was forced to declare failure. and high-speed flight ability of the aircraft. Since then, there has been no substantial progress Therefore, variable swept wing aircraft in the research of variable swept wing technology also has the characteristics of short skiing distance in China. and good landing performance. It has good gust response characteristics in low altitude flight. It is 2.2.Application Status of Variable Swept Wing often used in fighter, fighter, heavy bomber and The design of variable swept wing other aircraft, such as Tu-160 of the former Soviet combines the aerodynamic advantages of the Union, B-1 bomber of the United States and so aircraft at low and high speeds.It can make the on.At the same time, there are two main aircraft have excellent flight performance in both shortcomings: first, the change of wing sweep low and high speeds. At present, domestic research angle will result in the change of aerodynamic institutes and institutions of higher learning is center position, which will affect the flight stability continually carrying out in-depth research on this of the aircraft; second, the existence of variable issue, mainly focusing on the research of optimal sweep wing is driven by complex mechanisms and variable sweep law, new variable sweep control systems, which increases the weight of the mechanism, modeling method of variable sweep fuselage, reduces the flexibility, and also reduces wing and computer solution calculation. the hanging point of the wing and reduces the LU Jizhaoused genetic algorithm and maintainability. For example, F-14 fighters are still CAITA and Fluent software to study the optimal overweight at the expense of conventional design variable sweep rule of variable sweep wing at mid- and manufacturing procedures, and the cost of low altitude. LIU Lu and others used CFD manufacturing and maintenance is high. Therefore, numerical simulation method and MATLAB the variable swept wing technology needs to software to solve the optimal sweep law at continue to improve the driving mechanism and specified height. WANG Zhao designed a spring structure to ensure that the aerodynamic center adaptive variable rear wing mechanism, and changes within a reasonable range and reduces the simulated its variable sweep law with weight for easy maintenance. aerodynamics and kinematics, which verified the feasibility of the new mechanism. HUANGMinghe 3.2. Mechanisms of variable swept wing used Radau Pseudospectral Method (RPM) to Since the concept of variable swept wing conceptually design and optimize the trajectory of a was put forward by Germany in 1944, the variable swept wing tactical missile at hypersonic development of variable swept wing aircraft has speed, and calculated the optimal value.In addition, been restricted by its complex structure, large other scholars have carried out detailed studies on weight, complex operation and high maintenance gliding trajectory optimization design, drag cost. Up to the last 20 years, new materials and characteristics analysis, dynamics control and technologies have been proposed, which are simulation, UAV design and aerodynamics of expected to make breakthroughs in adaptive variable swept wing missiles. aircraft and open up a new path for the www.ijmret.org Page 10 International Journal of Modern Research in Engineering and Technology (IJMRET) www.ijmret.org Volume 4 Issue 6 ǁ June 2019. development of variable swept wings. Therefore, enough to fully play the advantages of variable the design of variable swept wing structure is swept wing. At present, the application of variable swept wing technology in large aircraft has been particularly important. Simplifying the structure relatively mature, but due to the continuous form, reducing the volume and weight of the structure and reducing the maintenance cost have advancement of new technologies and materials, this technology still has great potential. If the become an important task for the application and technology of variable swept wing is popularized in development of the wing. Hydraulic mechanism, small adaptive aircraft, it will certainly bring a new crank rocker mechanism and slider mechanism are revolution in this field. typical mechanisms used in variable sweep wing. It can bring new development to the Hydraulic mechanism is mostly used in traditional large-scale man-made control aircraft. traditional large-scale and high-speed aircraft, and From the point of view of current development, the its sweep angle depends on the stroke of push rods research of variable swept wing UAV is still in its on both sides.
Recommended publications
  • Aircraft Collection

    Aircraft Collection

    A, AIR & SPA ID SE CE MU REP SEU INT M AIRCRAFT COLLECTION From the Avenger torpedo bomber, a stalwart from Intrepid’s World War II service, to the A-12, the spy plane from the Cold War, this collection reflects some of the GREATEST ACHIEVEMENTS IN MILITARY AVIATION. Photo: Liam Marshall TABLE OF CONTENTS Bombers / Attack Fighters Multirole Helicopters Reconnaissance / Surveillance Trainers OV-101 Enterprise Concorde Aircraft Restoration Hangar Photo: Liam Marshall BOMBERS/ATTACK The basic mission of the aircraft carrier is to project the U.S. Navy’s military strength far beyond our shores. These warships are primarily deployed to deter aggression and protect American strategic interests. Should deterrence fail, the carrier’s bombers and attack aircraft engage in vital operations to support other forces. The collection includes the 1940-designed Grumman TBM Avenger of World War II. Also on display is the Douglas A-1 Skyraider, a true workhorse of the 1950s and ‘60s, as well as the Douglas A-4 Skyhawk and Grumman A-6 Intruder, stalwarts of the Vietnam War. Photo: Collection of the Intrepid Sea, Air & Space Museum GRUMMAN / EASTERNGRUMMAN AIRCRAFT AVENGER TBM-3E GRUMMAN/EASTERN AIRCRAFT TBM-3E AVENGER TORPEDO BOMBER First flown in 1941 and introduced operationally in June 1942, the Avenger became the U.S. Navy’s standard torpedo bomber throughout World War II, with more than 9,836 constructed. Originally built as the TBF by Grumman Aircraft Engineering Corporation, they were affectionately nicknamed “Turkeys” for their somewhat ungainly appearance. Bomber Torpedo In 1943 Grumman was tasked to build the F6F Hellcat fighter for the Navy.
  • 10. Supersonic Aerodynamics

    10. Supersonic Aerodynamics

    Grumman Tribody Concept featured on the 1978 company calendar. The basis for this idea will be explained below. 10. Supersonic Aerodynamics 10.1 Introduction There have actually only been a few truly supersonic airplanes. This means airplanes that can cruise supersonically. Before the F-22, classic “supersonic” fighters used brute force (afterburners) and had extremely limited duration. As an example, consider the two defined supersonic missions for the F-14A: F-14A Supersonic Missions CAP (Combat Air Patrol) • 150 miles subsonic cruise to station • Loiter • Accel, M = 0.7 to 1.35, then dash 25 nm - 4 1/2 minutes and 50 nm total • Then, must head home, or to a tanker! DLI (Deck Launch Intercept) • Energy climb to 35K ft, M = 1.5 (4 minutes) • 6 minutes at M = 1.5 (out 125-130 nm) • 2 minutes Combat (slows down fast) After 12 minutes, must head home or to a tanker. In this chapter we will explain the key supersonic aerodynamics issues facing the configuration aerodynamicist. We will start by reviewing the most significant airplanes that had substantial sustained supersonic capability. We will then examine the key physical underpinnings of supersonic gas dynamics and their implications for configuration design. Examples are presented showing applications of modern CFD and the application of MDO. We will see that developing a practical supersonic airplane is extremely demanding and requires careful integration of the various contributing technologies. Finally we discuss contemporary efforts to develop new supersonic airplanes. 10.2 Supersonic “Cruise” Airplanes The supersonic capability described above is typical of most of the so-called supersonic fighters, and obviously the supersonic performance is limited.
  • The Wind Tunnel That Busemann's 1935 Supersonic Swept Wing Theory (Ref* I.) A1 So Appl Ied to Subsonic Compressi Bi1 Ity Effects (Ref

    The Wind Tunnel That Busemann's 1935 Supersonic Swept Wing Theory (Ref* I.) A1 So Appl Ied to Subsonic Compressi Bi1 Ity Effects (Ref

    VORTEX LIFT RESEARCH: EARLY CQNTRIBUTTO~SAND SOME CURRENT CHALLENGES Edward C. Pol hamus NASA Langley Research Center Hampton, Vi i-gi nia SUMMARY This paper briefly reviews the trend towards slender-wing aircraft for supersonic cruise and the early chronology of research directed towards their vortex- 1 ift characteristics. An overview of the devel opment of vortex-1 ift theoretical methods is presented, and some current computational and experimental challenges related to the viscous flow aspects of this vortex flow are discussed. INTRODUCTION Beginning with the first successful control 1ed fl ights of powered aircraft, there has been a continuing quest for ever-increasing speed, with supersonic flight emerging as one of the early goal s. The advantage of jet propulsion was recognized early, and by the late 1930's jet engines were in operation in several countries. High-speed wing design lagged somewhat behind, but by the mid 1940's it was generally accepted that supersonic flight could best be accomplished by the now well-known highly swept wing, often referred to as a "slender" wing. It was a1 so found that these wings tended to exhibit a new type of flow in which a highly stable vortex was formed along the leading edge, producing large increases in lift referred to as vortex lift. As this vortex flow phenomenon became better understood, it was added to the designers' options and is the subject of this conference. The purpose of this overview paper is to briefly summarize the early chronology of the development of slender-wi ng aerodynamic techno1 ogy, with emphasis on vortex lift research at Langley, and to discuss some current computational and experimental challenges.
  • Section 7, Lecture 3: Effects of Wing Sweep

    Section 7, Lecture 3: Effects of Wing Sweep

    Section 7, Lecture 3: Effects of Wing Sweep • All modern high-speed aircraft have swept wings: WHY? 1 MAE 5420 - Compressible Fluid Flow • Not in Anderson Supersonic Airfoils (revisited) • Normal Shock wave formed off the front of a blunt leading g=1.1 causes significant drag Detached shock waveg=1.3 Localized normal shock wave Credit: Selkirk College Professional Aviation Program 2 MAE 5420 - Compressible Fluid Flow Supersonic Airfoils (revisited, 2) • To eliminate this leading edge drag caused by detached bow wave Supersonic wings are typically quite sharp atg=1.1 the leading edge • Design feature allows oblique wave to attachg=1.3 to the leading edge eliminating the area of high pressure ahead of the wing. • Double wedge or “diamond” Airfoil section Credit: Selkirk College Professional Aviation Program 3 MAE 5420 - Compressible Fluid Flow Wing Design 101 • Subsonic Wing in Subsonic Flow • Subsonic Wing in Supersonic Flow • Supersonic Wing in Subsonic Flow A conundrum! • Supersonic Wing in Supersonic Flow • Wings that work well sub-sonically generally don’t work well supersonically, and vice-versa à Leading edge Wing-sweep can overcome problem with poor performance of sharp leading edge wing in subsonic flight. 4 MAE 5420 - Compressible Fluid Flow Wing Design 101 (2) • Compromise High-Sweep Delta design generates lift at low speeds • Highly-Swept Delta-Wing design … by increasing the angle-of-attack, works “pretty well” in both flow regimes but also has sufficient sweepback and slenderness to perform very Supersonic Subsonic efficiently at high speeds. • On a traditional aircraft wing a trailing vortex is formed only at the wing tips.
  • Fiftyyearsofthe B-52

    Fiftyyearsofthe B-52

    In the skies over Afghanistan, the BUFF sees action in yet another war. Fifty Years of the B-52 By Walter J. Boyne The two B-52 prototypes—XB-52 (foreground) and YB-52—set the stage for multiple versions, one of which is still much in demand today. PRIL 15, 2002, will mark the The B-52 began projecting glob- its career is assured for at least golden anniversary of the al airpower with an epic, nonstop 20 years more. Early in its event- B-52 Stratofortress. Fifty round-the-world flight of three air- ful life, the B-52 was given the yearsA earlier, at Boeing Field, Se- craft in January 1957, and it con- affectionate nickname “BUFF,” attle, the YB-52, serial No. 49-0231, tinues to do so today. The origi- which some say stands for Big took off for the first time. No one— nal B-52 design was a triumph of Ugly Fat Fellow. not even pilots A.M. “Tex” Johnston engineering. However, its success The B-52’s stunning longevity and Guy M. Townsend—could have has depended mostly on the tal- is matched or exceeded by its imagined that the gigantic eight- ented individuals who built, flew, versatility. In the early years it engine bomber would serve so well, maintained, and modified it over functioned exclusively as a high- so long, and in so many roles. the decades. altitude strategic bomber, built to Certainly no one dreamed that Called to combat once again in overpower Soviet defenses with the B-52 would be in action over the War on Terror, the B-52 con- speed and advanced electronic Afghanistan in the fall of 2001.
  • Boeing B-47 Stratojet™

    Boeing B-47 Stratojet™

    Boeing B-47 Stratojet™ USER MANUAL Virtavia B-47E Stratojet™ – DTG Steam Edition Manual Version 2 0 Introduction The Boeing B-47™ was the first swept-wing multi-engine bomber in service with the USAF. It was truly a quantum leap in aviation history, and is the forerunner of every jet aircraft in service today. As early as 1943, Boeing™ engineers had envisaged a jet bomber, but were unable to overcome issues with the straight wings of the day. However, Boeing aero-engineer George Schairer was in Germany and came across some secret wind-tunnel data on swept-wing jet airplanes. He sent the information back to the United States, where engineers then used the Boeing High-Speed Wind Tunnel to develop the XB-47™, which featured swept-back wings. The B-47™ broke a number of records and proved to be a great strategic deterrent during the Cold War era. The B- 47E™ is an advanced version of the original XB-47, with much more powerful J-47 engines. A grand total of 2,032 of these aircraft were built, with the last one rolling out in 1956. Virtavia B-47E Stratojet™ – DTG Steam Edition Manual Version 2 1 Support Should you experience difficulties or require extra information about the Virtavia B-47E Stratojet™, please e-mail our technical support on [email protected] Copyright Information Please help us provide you with more top quality flight simulator models like this one by NOT using pirate copies. These files may not be copied (other than for backup purposes), transmitted or passed to third parties or altered in any way without the prior permission of the publisher.
  • Swept Wings the Main Function of a Swept Wing Is to Reduce Wave Drag at Transonic and Supersonic Speeds

    Swept Wings the Main Function of a Swept Wing Is to Reduce Wave Drag at Transonic and Supersonic Speeds

    Swept Wings The main function of a swept wing is to reduce wave drag at transonic and supersonic speeds. Consider a straight wing and a swept wing in a flow with a free-stream velocity V. Assume that the aspect ratio is high for both wings, so that we can ignore tip effects. Let u and w be the components of V, perpendicular and parallel to the leading edge, respectively. The pressure distribution over the airfoil section oriented perpendicular to the leading edge is mainly governed by the chordwise component of velocity u; the spanwise component of velocity w has little effect on the pressure distribution. For the straight wing the chordwise velocity component u is the full V, for the swept wing the chordwise component of the velocity u is smaller than V: u = V cosΛ Since u for the swept wing is smaller than u for the straight wing, the difference in pressure between the top and bottom surfaces of the swept wing will be less than the difference in pressure between the top and bottom surfaces of the straight wing. Since lift is generated by these differences in pressure, the lift on the swept wing will be less than that on the straight wing. The wingspan b is the straight-line distance between the wing tips, the wing platform area is S, and the aspect ratio and the taper ratio are defined AR = b^2/S and taper ratio ct/cr. an approximate calculation of the lift slope for a swept finite wing, Kuchemann suggests the following approach.
  • NASA Facts National Aeronautics and Space Administration

    NASA Facts National Aeronautics and Space Administration

    NASA Facts National Aeronautics and Space Administration Dryden Flight Research Center P.O. Box 273 Edwards, California 93523 Voice 661-276-3449 FAX 661-276-3566 [email protected] FS-2003-06-081 DFRC X-5 NASA Photo E-648. X-5 on ramp. The Bell X-5 was built to test the feasibility of changing the sweep angle of an aircraft's wings in flight. This had advantages from both an operational and research point of view. An operational aircraft could take off with its wings fully extended, reducing both its take off speed and the length of the runway needed. Once in the air, the wings could be swept back, reducing drag and increasing the aircraft's speed. For an experimental aircraft, the ability to vary the wing's sweep angle would greatly expand the research possibilities. Existing swept wing experimental aircraft, such as the D-558-II, XF-92A, X-2 and X-4, could each provide aeronautical data at only a single wing angle. A variable swept wing aircraft would be equivalent to a series of such experimental air- craft, as it could change the wing angle to the desired research objectives. Although the NACA conducted independent wind tunnel research on variable sweep wings in 1945, the X-5 originated with the Messerschmitt P.1101 experimental aircraft. This was a small jet with wings that could be adjusted on the ground to three fixed angles between 35 and 45 degrees. The P.1101 had not flown before it was captured by U.S. troops in April 1945.
  • A Comparative Study of the Low Speed Performance of Two Fixed Planforms Versus a Variable Geometry Planform for a Supersonic Business Jet

    A Comparative Study of the Low Speed Performance of Two Fixed Planforms Versus a Variable Geometry Planform for a Supersonic Business Jet

    Dissertations and Theses 6-2014 A Comparative Study of the Low Speed Performance of Two Fixed Planforms versus a Variable Geometry Planform for a Supersonic Business Jet Aaron C. Smelsky Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons Scholarly Commons Citation Smelsky, Aaron C., "A Comparative Study of the Low Speed Performance of Two Fixed Planforms versus a Variable Geometry Planform for a Supersonic Business Jet" (2014). Dissertations and Theses. 184. https://commons.erau.edu/edt/184 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. A COMPARATIVE STUDY OF THE LOW SPEED PERFORMANCE OF TWO FIXED PLANFORMS VERSUS A VARIABLE GEOMETRY PLANFORM FOR A SUPERSONIC BUSINESS JET by Aaron C. Smelsky A Thesis Submitted to the College of Engineering, Department of Aerospace Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering at Embry-Riddle Aeronautical University 2014 Embry-Riddle Aeronautical University Daytona Beach, Florida June 2014 Acknowledgements Without the tremendous amount of time and effort put forth by Dr. Gonzalez with this project it would not have been possible. A great deal of gratitude is owed to him for the help editing this document. I am thankful for the quick office visits to the hours spent in his office. I not only appreciate his advice and energy during the analysis phase but also his time in the editing stage.
  • Method for the Prediction of the Installation Aerodynamics of a Propfan at Subsonic Speeds

    Method for the Prediction of the Installation Aerodynamics of a Propfan at Subsonic Speeds

    https://ntrs.nasa.gov/search.jsp?R=19850014058 2020-03-20T18:30:47+00:00Z s NASA Contractor Report 3887 Method for the Prediction of the Installation Aerodynamics of a Propfan at Subsonic Speeds B. Chandrasekaran CONTRACT NAS1-16742 APRIL 1985 NASA NASA Contractor Report 3887 Method for the Prediction of the Installation Aerodynamics of a Propfan at Subsonic Speeds B. Chandrasekaran Vigyan Research Associates, Inc. Hampton, Virginia Prepared for Langley Research Center under Contract NAS1-16742 NASA National Aeronautics and Space Administration Scientific and Technical Information Branch 1985 1.0 TABLE OF CONTENTS 1.0 TABLE OF CONTENTS 1 2.0 INDEX OF FIGURES 2 3.0 NOMENCLATURE 5 4.0 SUMMARY 8 5.0 INTRODUCTION 9 6.0 OUTLINE OF THE THEORY 12 7.0 DETERMINATION OF THE EFFECT OF THE PROPELLER 13 7.1 Calculation of the Axial Induced Velocity in the Slipstream 16 7.1.1 Vortex Ring Modelling 16 7.1.2 Blade Performance Theory 20 7.2 Calculation of the Swirl Velocity 24 7.3 Treatment of the Pressure Increase in the Slipstream 26 8.0 IMPLEMENTING THE PROPELLER EFFECTS INTO THE PANEL CODE AND THE CALCULATION PROCEDURE 27 9.0 EXPERIMENTAL SETUP 30 10.0 RESULTS AND DISCUSSION 31 10.1 Wing Alone Comparison 31 10.2 Wing/Nacelle Comparisons 33 10.3 Wing/Nacelle/With Powered Propfan 34 10.3.1 Overwing Nacelle 34 10.3.2 Underwing Nacelle . 3& 11.0 CONCLUSIONS AND RECOMMENDATIONS .39. 12.0 REFERENCES 41 2.0 INDEX OF FIGURES 1. Bound and Trailing Vortex System for a Propeller.
  • Swept Wing Configuration

    Swept Wing Configuration

    * Presented by: S.H.Hoseini When aircraft enters the transonic speeds just below the speed of sound, an effect known as wave drag starts. * Near the speed of sound oblique shock wave is generated. *Shock waves require energy to form. *The energy reduces airplanes power. * *Anglo-Irish engineer John William Dunne was experimenting along similar lines, obsessed with achieving innate stability in flight. He was able to successfully employ severely swept wings in his tailless aircraft as a means of creating positive longitudinal static stability.[2] For a low- speed aircraft, swept wings are useful to avoid problems with the *1-center of gravity, to move the wing spar into a more convenient location, *2- to improve the sideways view from the pilot's position * * *One of the simplest and best explanations of how the swept wing works was offered by Robert T. Jones: "Suppose a cylindrical wing (constant chord, incidence, etc.) is placed in an airstream at an angle of yaw - ie., it is swept back. Now, even if the local speed of the air on the upper surface of the wing becomes supersonic, a shock wave cannot form there because it would have to be a sweptback shock - swept at the same angle as the wing - ie., it would be an oblique shock. Such an oblique shock cannot form until the velocity component normal to it becomes supersonic." * Mcrit : ‘Mcrit’ in aerodynamics, is in fact the ‘critical Mach Number’ of an aircraft. It is the lowest Mach number at which the airflow over some point on the aircraft reaches the speed of sound.
  • ~Lassical Flight Dynamics of a . Variable Forward Sweep

    ~Lassical Flight Dynamics of a . Variable Forward Sweep

    ~LASSICAL FLIGHT DYNAMICS OF A . VARIABLE FORWARD SWEEP WING AIRCRAFT By BRETT ALAN NEWMAN I[ Bache lor of Science Oklahoma State University Stillwater, Oklahoma 1983 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1985 lh.es·lS lq~~ \'\ 56'lc. C.D\'•~ CLASSICAL FLIGHT DYNAMICS OF A VARIABLE FORWARD SWEEP WING AIRCRAFT Thesis Approved: r£1?Yr~. r=~~ Dean of the Graduate College ii 1216348 ACKNOWLEDGMENTS I want to thank the following people and organizations for their assistance in completing this research effort: Dr. R. L. Swaim for his experience and guidance throughout the research; Dr. F. 0. Thomas for his helpful suggestions and thoughts; Dr. J. K. Good for serving as a committee member; Mr. s. Mohan for his numerical and graphics computer program library and assistance in using the Hewlett-Packard 9000 minicomputer and the Theoretical Mechanics Branch, Langley Research Center, National Aeronautics and Space Administration, for their vast resources. Thanks also go to Mr. and Mrs. G. E. Newman and Mr. M. Maxwell for their encouragement and support during this research effort and the four years of college leading up to this effort. Finally, much appreciation goes to Mrs. G. E. Newman for typing this thesis. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION Variable Forward Sweep 1 Research Scope •• 3 II. LITERATURE SURVEY. 5 Variable Sweep. 5 Forward Sweep • • 7 III. CONFIGURATION DEVELOPMENT. 9 General Description ••••••• 9 Design Method • • 11 Wing Description. • • • • • • • • • 15 IV. ANALYSIS METHOD ••• 18 Equations of Motion Solution.