Fiftyyearsofthe B-52
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LESSON 3 Significant Aircraft of World War II
LESSON 3 Significant Aircraft of World War II ORREST LEE “WOODY” VOSLER of Lyndonville, Quick Write New York, was a radio operator and gunner during F World War ll. He was the second enlisted member of the Army Air Forces to receive the Medal of Honor. Staff Sergeant Vosler was assigned to a bomb group Time and time again we read about heroic acts based in England. On 20 December 1943, fl ying on his accomplished by military fourth combat mission over Bremen, Germany, Vosler’s servicemen and women B-17 was hit by anti-aircraft fi re, severely damaging it during wartime. After reading the story about and forcing it out of formation. Staff Sergeant Vosler, name Vosler was severely wounded in his legs and thighs three things he did to help his crew survive, which by a mortar shell exploding in the radio compartment. earned him the Medal With the tail end of the aircraft destroyed and the tail of Honor. gunner wounded in critical condition, Vosler stepped up and manned the guns. Without a man on the rear guns, the aircraft would have been defenseless against German fi ghters attacking from that direction. Learn About While providing cover fi re from the tail gun, Vosler was • the development of struck in the chest and face. Metal shrapnel was lodged bombers during the war into both of his eyes, impairing his vision. Able only to • the development of see indistinct shapes and blurs, Vosler never left his post fi ghters during the war and continued to fi re. -
Air Force Next-Generation Bomber: Background and Issues for Congress
Air Force Next-Generation Bomber: Background and Issues for Congress Jeremiah Gertler Specialist in Military Aviation December 22, 2009 Congressional Research Service 7-5700 www.crs.gov RL34406 CRS Report for Congress Prepared for Members and Committees of Congress Air Force Next-Generation Bomber: Background and Issues for Congress Summary As part of its proposed FY2010 defense budget, the Administration proposed deferring the start of a program to develop a next-generation bomber (NGB) for the Air Force, pending the completion of the 2010 Quadrennial Defense Review (QDR) and associated Nuclear Posture Review (NPR), and in light of strategic arms control negotiations with Russia. The Administration’s proposed FY2010 budget requested no funding specifically identified in public budget documents as being for an NGB program. Prior to the submission of the FY2010 budget, the Air Force was conducting research and development work aimed at fielding a next-generation bomber by 2018. Although the proposed FY2010 defense budget proposed deferring the start of an NGB program, the Secretary of Defense and Air Force officials in 2009 have expressed support for the need to eventually start such a program. The Air Force’s FY2010 unfunded requirements list (URL)—a list of programs desired by the Air Force but not funded in the Air Force’s proposed FY2010 budget—includes a classified $140-million item that some press accounts have identified as being for continued work on a next-generation bomber. FY2010 defense authorization bill: The conference report (H.Rept. 111-288 of October 7, 2009) on the FY2010 defense authorization act (H.R. -
B-29 Superfortress
KIT5711 85571100200 B-29 Superfortress The B-29 "Superfortress" that first took flight on September 21, 1942, was dropped the world’s first nuclear weapon on the city of Hiroshima. Followed the culmination of a war department request issued to aircraft manufactur- by the dropping of another such weapon on the city of Nagasaki, three days ers in January 1940. Production of the B-29 would become the single larg- later. Following the Japanese surrender, B-29s were retained as the United est aircraft program of the war, and when production ceased nearly 4000 States premier strategic bomber. aircraft had been delivered to the USAAF. In the summer of 1950, the "Superfortress" returned to combat in the With its’ wingspan over 141 feet, its’ length of 99 feet and its’ four 2,200 skies over Korea. The first unit to see combat was brought up from Guam horsepower engines, this "Superbomber" designed by the Boeing aircraft to be stationed at Kadena AB on the Island of Okinawa. Other B-29 units company would be in service with 61 (VH) Very Heavy Bombardment were deployed to Yokota AB in Japan. From these bases, the bombers squadrons when the war ended. could easily range to any Korean target. The B-29 was in combat shortly The island hopping campaign developed by the war department was after the Korean War started through to the last day of the conflict. designated to liberate strategically located islands from the Japanese. The "Superfortress" was fitted with two pressurized crew compart- These islands would become home to the airfields of the vast airborne ments that were designed to improve aircrew comfort on the fatiguing armada of B-29 "Superfortresses". -
Aircraft Collection
A, AIR & SPA ID SE CE MU REP SEU INT M AIRCRAFT COLLECTION From the Avenger torpedo bomber, a stalwart from Intrepid’s World War II service, to the A-12, the spy plane from the Cold War, this collection reflects some of the GREATEST ACHIEVEMENTS IN MILITARY AVIATION. Photo: Liam Marshall TABLE OF CONTENTS Bombers / Attack Fighters Multirole Helicopters Reconnaissance / Surveillance Trainers OV-101 Enterprise Concorde Aircraft Restoration Hangar Photo: Liam Marshall BOMBERS/ATTACK The basic mission of the aircraft carrier is to project the U.S. Navy’s military strength far beyond our shores. These warships are primarily deployed to deter aggression and protect American strategic interests. Should deterrence fail, the carrier’s bombers and attack aircraft engage in vital operations to support other forces. The collection includes the 1940-designed Grumman TBM Avenger of World War II. Also on display is the Douglas A-1 Skyraider, a true workhorse of the 1950s and ‘60s, as well as the Douglas A-4 Skyhawk and Grumman A-6 Intruder, stalwarts of the Vietnam War. Photo: Collection of the Intrepid Sea, Air & Space Museum GRUMMAN / EASTERNGRUMMAN AIRCRAFT AVENGER TBM-3E GRUMMAN/EASTERN AIRCRAFT TBM-3E AVENGER TORPEDO BOMBER First flown in 1941 and introduced operationally in June 1942, the Avenger became the U.S. Navy’s standard torpedo bomber throughout World War II, with more than 9,836 constructed. Originally built as the TBF by Grumman Aircraft Engineering Corporation, they were affectionately nicknamed “Turkeys” for their somewhat ungainly appearance. Bomber Torpedo In 1943 Grumman was tasked to build the F6F Hellcat fighter for the Navy. -
10. Supersonic Aerodynamics
Grumman Tribody Concept featured on the 1978 company calendar. The basis for this idea will be explained below. 10. Supersonic Aerodynamics 10.1 Introduction There have actually only been a few truly supersonic airplanes. This means airplanes that can cruise supersonically. Before the F-22, classic “supersonic” fighters used brute force (afterburners) and had extremely limited duration. As an example, consider the two defined supersonic missions for the F-14A: F-14A Supersonic Missions CAP (Combat Air Patrol) • 150 miles subsonic cruise to station • Loiter • Accel, M = 0.7 to 1.35, then dash 25 nm - 4 1/2 minutes and 50 nm total • Then, must head home, or to a tanker! DLI (Deck Launch Intercept) • Energy climb to 35K ft, M = 1.5 (4 minutes) • 6 minutes at M = 1.5 (out 125-130 nm) • 2 minutes Combat (slows down fast) After 12 minutes, must head home or to a tanker. In this chapter we will explain the key supersonic aerodynamics issues facing the configuration aerodynamicist. We will start by reviewing the most significant airplanes that had substantial sustained supersonic capability. We will then examine the key physical underpinnings of supersonic gas dynamics and their implications for configuration design. Examples are presented showing applications of modern CFD and the application of MDO. We will see that developing a practical supersonic airplane is extremely demanding and requires careful integration of the various contributing technologies. Finally we discuss contemporary efforts to develop new supersonic airplanes. 10.2 Supersonic “Cruise” Airplanes The supersonic capability described above is typical of most of the so-called supersonic fighters, and obviously the supersonic performance is limited. -
The Wind Tunnel That Busemann's 1935 Supersonic Swept Wing Theory (Ref* I.) A1 So Appl Ied to Subsonic Compressi Bi1 Ity Effects (Ref
VORTEX LIFT RESEARCH: EARLY CQNTRIBUTTO~SAND SOME CURRENT CHALLENGES Edward C. Pol hamus NASA Langley Research Center Hampton, Vi i-gi nia SUMMARY This paper briefly reviews the trend towards slender-wing aircraft for supersonic cruise and the early chronology of research directed towards their vortex- 1 ift characteristics. An overview of the devel opment of vortex-1 ift theoretical methods is presented, and some current computational and experimental challenges related to the viscous flow aspects of this vortex flow are discussed. INTRODUCTION Beginning with the first successful control 1ed fl ights of powered aircraft, there has been a continuing quest for ever-increasing speed, with supersonic flight emerging as one of the early goal s. The advantage of jet propulsion was recognized early, and by the late 1930's jet engines were in operation in several countries. High-speed wing design lagged somewhat behind, but by the mid 1940's it was generally accepted that supersonic flight could best be accomplished by the now well-known highly swept wing, often referred to as a "slender" wing. It was a1 so found that these wings tended to exhibit a new type of flow in which a highly stable vortex was formed along the leading edge, producing large increases in lift referred to as vortex lift. As this vortex flow phenomenon became better understood, it was added to the designers' options and is the subject of this conference. The purpose of this overview paper is to briefly summarize the early chronology of the development of slender-wi ng aerodynamic techno1 ogy, with emphasis on vortex lift research at Langley, and to discuss some current computational and experimental challenges. -
NSIAD-93-15 Weapons Acquisition: a Rare Opportunity for Lasting Change
1% WI&NW, 9 GAO Comptroller General of the United States s WEAPONS ACQUISITION A Rare Opportunity for Lasting Change 148208I GAO/NSIAD-93-lS/December 199‘2 Preface The United States today is in a position of unprecedented military strength and national security. Its strategic nuclear forces, together with its conventional forces numbering over 400 battle force ships, 5,000 combat aircraft, 10,000 tanks, and numerous other combatant platforms equipped with missiles, bombs, projectiles, and other munitions, are a visible sign of the enormous military power it possesses. While these weapons provide a military capability that no other country is in a position to successfully challenge, their acquisition was, in many cases, fraught with significant problems. Although improvements have been made in the acquisition process over the years, the same kinds of problems can be seen in today’s acquisitions. Why, with an increased emphasis on sound development and testing of weapons, do we still witness major commitments to programs, such as the B-2 bomber and the Airborne Self-Protection Jammer, without first demonstrating the system will meet critical performance requirements? Why, with improved cost-estimating policies and procedures, do we still see the unit costs of weapon systems, such as the DDG-51 destroyer and the C-17 transport, doubling? Why, with the increased emphasis on developing systems that can be efficiently produced and supported, do we have weapons, such as the Advanced Cruise Missile and Apache helicopter, that encounter costly production and support problems? Clearly, problems are to be expected in major weapon acquisitions, given the technical risks and complexities involved. -
Information to Users
INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI fihns the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter 6ce, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 A PEOPLE^S AIR FORCE: AIR POWER AND AMERICAN POPULAR CULTURE, 1945 -1965 DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Steven Charles Call, M.A, M S. -
Section 7, Lecture 3: Effects of Wing Sweep
Section 7, Lecture 3: Effects of Wing Sweep • All modern high-speed aircraft have swept wings: WHY? 1 MAE 5420 - Compressible Fluid Flow • Not in Anderson Supersonic Airfoils (revisited) • Normal Shock wave formed off the front of a blunt leading g=1.1 causes significant drag Detached shock waveg=1.3 Localized normal shock wave Credit: Selkirk College Professional Aviation Program 2 MAE 5420 - Compressible Fluid Flow Supersonic Airfoils (revisited, 2) • To eliminate this leading edge drag caused by detached bow wave Supersonic wings are typically quite sharp atg=1.1 the leading edge • Design feature allows oblique wave to attachg=1.3 to the leading edge eliminating the area of high pressure ahead of the wing. • Double wedge or “diamond” Airfoil section Credit: Selkirk College Professional Aviation Program 3 MAE 5420 - Compressible Fluid Flow Wing Design 101 • Subsonic Wing in Subsonic Flow • Subsonic Wing in Supersonic Flow • Supersonic Wing in Subsonic Flow A conundrum! • Supersonic Wing in Supersonic Flow • Wings that work well sub-sonically generally don’t work well supersonically, and vice-versa à Leading edge Wing-sweep can overcome problem with poor performance of sharp leading edge wing in subsonic flight. 4 MAE 5420 - Compressible Fluid Flow Wing Design 101 (2) • Compromise High-Sweep Delta design generates lift at low speeds • Highly-Swept Delta-Wing design … by increasing the angle-of-attack, works “pretty well” in both flow regimes but also has sufficient sweepback and slenderness to perform very Supersonic Subsonic efficiently at high speeds. • On a traditional aircraft wing a trailing vortex is formed only at the wing tips. -
The Strategic Bomber and Air Superiority
Views Lightning Strikes and Thunder Claps The Strategic Bomber and Air Superiority Maj Wade S. Karren, USAF The lesson from the last war that stands out clearly above all others is that if you want to go anywhere in modern war, in the air, on the sea, on the land, you must have command of the air. —Adm William F. “Bull” Halsey he bomber has occupied the center of Air Force doctrine since the advent of airpower redefined power projection. In 1926 the US Army’s Training Regulation no. 440-15, Fundamental Princi- Tples for the Employment of the Air Service, stated that airpower “should be used offensively, primarily to secure the control of the air, and, sec- ondarily, to disrupt and delay enemy communications and ground es- tablishments.”1 The primary function became known as air superior- ity. Even during the early days of aviation, the importance of aerial bombardment in establishing air superiority became readily apparent. As the bomber’s attributes of range, payload, and precision matured over a number of major conflicts, the establishment of air superiority over enemy territory—together with the efficiencies associated with this process—developed as well. Today, high-technology capabilities make an adversary’s air defenses difficult to defeat. Although the bomber’s attributes have decreased the amount of time needed to at- tain air superiority, they are no longer sufficient to overcome modern defenses. The heavy bomber’s ability to strike critical command and control (C2) nodes, severely damage enemy airfields, and degrade air defenses with great precision early in a conflict can still give the United States a distinct and overwhelming advantage. -
Boeing B-47 Stratojet™
Boeing B-47 Stratojet™ USER MANUAL Virtavia B-47E Stratojet™ – DTG Steam Edition Manual Version 2 0 Introduction The Boeing B-47™ was the first swept-wing multi-engine bomber in service with the USAF. It was truly a quantum leap in aviation history, and is the forerunner of every jet aircraft in service today. As early as 1943, Boeing™ engineers had envisaged a jet bomber, but were unable to overcome issues with the straight wings of the day. However, Boeing aero-engineer George Schairer was in Germany and came across some secret wind-tunnel data on swept-wing jet airplanes. He sent the information back to the United States, where engineers then used the Boeing High-Speed Wind Tunnel to develop the XB-47™, which featured swept-back wings. The B-47™ broke a number of records and proved to be a great strategic deterrent during the Cold War era. The B- 47E™ is an advanced version of the original XB-47, with much more powerful J-47 engines. A grand total of 2,032 of these aircraft were built, with the last one rolling out in 1956. Virtavia B-47E Stratojet™ – DTG Steam Edition Manual Version 2 1 Support Should you experience difficulties or require extra information about the Virtavia B-47E Stratojet™, please e-mail our technical support on [email protected] Copyright Information Please help us provide you with more top quality flight simulator models like this one by NOT using pirate copies. These files may not be copied (other than for backup purposes), transmitted or passed to third parties or altered in any way without the prior permission of the publisher. -
Swept Wings the Main Function of a Swept Wing Is to Reduce Wave Drag at Transonic and Supersonic Speeds
Swept Wings The main function of a swept wing is to reduce wave drag at transonic and supersonic speeds. Consider a straight wing and a swept wing in a flow with a free-stream velocity V. Assume that the aspect ratio is high for both wings, so that we can ignore tip effects. Let u and w be the components of V, perpendicular and parallel to the leading edge, respectively. The pressure distribution over the airfoil section oriented perpendicular to the leading edge is mainly governed by the chordwise component of velocity u; the spanwise component of velocity w has little effect on the pressure distribution. For the straight wing the chordwise velocity component u is the full V, for the swept wing the chordwise component of the velocity u is smaller than V: u = V cosΛ Since u for the swept wing is smaller than u for the straight wing, the difference in pressure between the top and bottom surfaces of the swept wing will be less than the difference in pressure between the top and bottom surfaces of the straight wing. Since lift is generated by these differences in pressure, the lift on the swept wing will be less than that on the straight wing. The wingspan b is the straight-line distance between the wing tips, the wing platform area is S, and the aspect ratio and the taper ratio are defined AR = b^2/S and taper ratio ct/cr. an approximate calculation of the lift slope for a swept finite wing, Kuchemann suggests the following approach.