Us Fish and Wildlife Service Species

Total Page:16

File Type:pdf, Size:1020Kb

Us Fish and Wildlife Service Species 0 U.S. FISH AND WILDLIFE SERVICE SPECIES ASSESSMENT AND LISTING PRIORITY ASSIGNMENT FORM SCIENTIFIC NAME: Marstonia castor COMMON NAME: Beaverpond marstonia LEAD REGION: Region 4 (Southeast Region) DATE INFORMATION CURRENT AS OF: 09/26/2017 STATUS/ACTION _L Species assessment - determined either we do not have sufficient information on threats or the information on the threats does not support a proposal to list the species and, 0 therefore, it was not elevated to Candidate status or proposed for listing _ Listed species petitioned for uplisting for which we have made a warranted-but-precluded finding for uplisting (this is part of the annual resubmitted petition finding) Candidate that received funding for a proposed listing determination; assessment not updated New candidate Continuing candidate _ Listing priority number change Former LPN: New LPN: _L Candidate removal: Former LPN: _n!a_ _ A - Taxon is more abundant or widespread than previously believed or not subject to the degree of threats sufficient to warrant issuance of a proposed listing or continuance of candidate status. 0 __U - Taxon not subject to the degree ofthreats sufficient to warrant issuance of a 0 proposed listing or continuance of candidate status due, in part or totally, to conservation efforts that remove or reduce the threats to the species. F - Range is no longer a U.S. territory. _ I - Insufficient information exists on biological vulnerability and threats to support listing. _ M - Taxon mistakenly included in past notice of review. _ N - Taxon does not meet the Act's definition of "species." _A_ X - Taxon believed to be extinct. Date when the species first became a Candidate (as currently defined): n/a Petition Information: _ Non-petitioned _A__ Petitioned; Date petition received: April 20. 2010 90-day substantial finding FR publication date: September 27. 2011 12-month warranted but precluded finding FR publication date: ~ FOR PETITIONED CANDIDATE SPECIES a. Is listing warranted (if yes, see summary of threats below)? No b. To date, has publication of a proposal to list been precluded by other higher priority 0 listing actions? n/a c. Why is listing precluded? n/a ANIMAL/PLANT GROUP AND FAMILY: Snail, family Hydrobiidae HISTORICAL STATESffERRITORIES/COUNTRIES OF OCCURRENCE: • States/US Territories: Georgia • US Counties: Crisp, Worth, and Daughtery, Counties, Georgia • Countries; United States CURRENT STATES/COUNTIESffERRITORIES/COUNTRIES OF OCCURRENCE: Georgia 2 0 0 LAND OWNERSHIP Private property and adjacent local roadways (public). LEAD REGION CONTACT Timothy Merritt, Chief, Division of Conservation and Classification, [email protected], 404-679-7082 LEAD FIELD OFFICE CONTACT Donald Imm, State Supervisor, Georgia Ecological Services Field Office, [email protected], 706-613-9493 BIOLOGICAL INFORMATION Species Description 0 To date, little is known about the beaverpond marstonia. Beaverpond marstonia was first described by Fred Thompson (1977, p. 130). The tan-colored shell ofbeaverpond marstonia is ovate-conic, and it typically has less than 3-5 whorls and is less than 4 mm in length. The operculum (gill cover) is oval-shaped, very thin, well-formed, a light amber color, with a light indentation along the outer edge (Thompson 1977, p. 130) Taxonomy Due to the lack of biological and ecological information for the beaverpond marstonia, we gathered and used information from similar species of spring snails closely related via genetic 3 0 analysis, especially those related within the family Hydrobiidae. 0 The family Hydrobiidae is found within the subclass Caenogastropoda of class Gastropoda (superfamily Rissoidea). Characteristics ofhydrobiids include gills located near the front of their body, a spiraJly coiled shell, and a mantle cavity near the head that contains sensory and excretory organs(Kabat and Hershler 1993, p. 5). Members of Hydrobiidae are understood to be found in freshwater habitats. Although the family constitutes a large group of approximately 170 known species of aquatic snails with worldwide distribution, especially in North America and Australia (USFWS 2015, p. 1), many species within the family appear to have restricted distributions, often associated with springs, and even more are known only from their respective type locality (Watson C.N. 2000, p. 233). Information on hydrobiids is lacking in comparison to other mollusks, due to their small size and the need to differentiate between 0 species morphologically, primarily by the male genitalia. Beaverpond marstonia belongs to the Nymphophilinae subfamily of Hydrobiidae, one of the largest groups of aquatic mollusks in North America. These species align with hydrobiid characteristics, including limited dispersal abilities and adherence to narrow distribution in local drainage systems. Members of this subfamily often live in small springs and other fragile habitats (Hershler et at. 2003, p. 357). Recent studies found the most likely single feature of the clade is the presence of surficial glandular fields on the penis of males (with a few species in the Pyrgulopsis genus being the exception) (Hershler et at. 2003, p. 362). The genus Marstonia is 4 0 0 composed of 15 small (shell height <5.0 mm) ovate to elongate-shelled species that are distributed in springs, streams, and lakes in eastern North America (Hershler 2011, p. 2). Marstonia was first described by F.C. Baker in 1926 as a subgenus to Amnicola, and Berry elaborated on that finding, basing the distinction on the differing penis structures of the two genii (Baker 1926, Berry 1943). Hershler and Thompson expanded and redefined the genus, eventually merging it with Pyrgulopsis based on the morphological similarity of the male genitalia. (Hershler and Thompson 1987, p. 29). However, subsequent studies found significant morphological contrast between the eastern Pyrgulopsis species and the western counterparts. Marstonia is distinguished in that the oviduct and bursal duct join well in front of the posterior pallial wall. O Marstonia is further distinguished from Pyrgulopsis by the more coarsely pitted protoconch sculpture, incomplete inner shell lip across the parietal wall, banded pattern of mantle pigmentation, narrowly vertical oviduct coil, and bursal duct largely or entirely imbedded in (as opposed to superficial to) the albumen gland (Hershler 1994, p. 11 ). Hershler and Thompson withdrew the merger and again recognized Marstonia as a distinct genus (2002, p. 269), with evidence that it is a well-supported sub-clade within its subfamily based on mtDNA sequences (Hershler et al. 2003, p. 360). Beaverpond marstoni a shares morphological characteristics with members of its family, Hydrobiidae. Hydrobiids are strictly aquatic, relying on an internal gill for respiration (Martinez 5 0 et al. 2006, p. 8) and typically have a strong, mobile foot that is able to retract into its shell. 0 Mucous glands that discharge from a narrow groove across the anterior edge of the foot allow movement by ciliary gliding. The eyes ofhydrobiids are found at the base of its cephalic tentacles, typically in discrete swellings on outer sides. These tentacles are usually symmetrical, often with patches or tracts of ciliary tufts (motile and non-motile) on dorsal and/or ventral surfaces. Both the mantle edges and mantle cavities of hydrobiids are smooth, lacking protuberances. Hydrobiids also usually have a trapezoidal central tooth, surrounded by cusped lateral and marginal teeth (Hershler 1994, p. 5). Commonly identified by their internal organs, hydrobiids have stomachs with well·differentiated anterior and posterior chambers, with a single opening to the digestive gland. The hypobranchial gland, a mucus-producing structure common in mollusks, is typically either absent or modestly 0 developed (Hershler 1994, p. 5). The rectum of the hydrobiid is usually straight, and it often overlaps with the gonoducts (gamete passageway), and the anus opens near the edge of the mantle (Hershler 1994, p. 5). Habitat/Life History Beaverpond marstonia was primarily found by on clumps of vegetation of the Najas and Chara genii, in shallow, clear water that only had a slight current (Thompson 1977, p. 130). The family Hydrobiidae is known for diversity in the habitats its species occupies, including springs, large rivers, and a variety of diverse aquatic systems, but particularly spring ecosystems that 6 0 0 produce running water (USFWS 2015, p. 5). These spring systems are areas where groundwater is exposed, with a close source from the water table to the Earth's surface. These springs are perennial, and are typically rich in dissolved nutrients and gases from the continual supply of inorganic and organic materials in dissolved and particulate forms {Knight et al. 2008, p. 24). The enriched water quality undergirds the biodiversity of aquatic flora and fauna found in these areas (Knight et al. 2008, p. 3). Stability from a relatively constant groundwater source, physical limitations from topography and terrestrial features (Knight et al. 2008, p. 22), and geological events that influence evolution of local species, are all factors that influence a high level of endemism among freshwater species, especially snails, which have the most restricted dispersal ability of o all major freshwater groups (Strayer 2010, p. 346, P. Johnson, pers. comm. 2017). The average life span of beaverpond marstonia is unknown, though the average lifespan ofhydrobiids is 9 to 15 months (USFWS 2015, p. 5). Beaverpond marstonia achieves maturity between November and March,
Recommended publications
  • Habitat Usage by the Page Springsnail, Pyrgulopsis Morrisoni (Gastropoda: Hydrobiidae), from Central Arizona
    THE VELIGER ᭧ CMS, Inc., 2006 The Veliger 48(1):8–16 (June 30, 2006) Habitat Usage by the Page Springsnail, Pyrgulopsis morrisoni (Gastropoda: Hydrobiidae), from Central Arizona MICHAEL A. MARTINEZ* U.S. Fish and Wildlife Service, 2321 W. Royal Palm Rd., Suite 103, Phoenix, Arizona 85021, USA (*Correspondent: mike࿞[email protected]) AND DARRIN M. THOME U.S. Fish and Wildlife Service, 2800 Cottage Way, Rm. W-2605, Sacramento, California 95825, USA Abstract. We measured habitat variables and the occurrence and density of the Page springsnail, Pyrgulopsis mor- risoni (Hershler & Landye, 1988), in the Oak Creek Springs Complex of central Arizona during the spring and summer of 2001. Occurrence and high density of P. morrisoni were associated with gravel and pebble substrates, and absence and low density with silt and sand. Occurrence and high density were also associated with lower levels of dissolved oxygen and low conductivity. Occurrence was further associated with shallower water depths. Water velocity may play an important role in maintaining springsnail habitat by influencing substrate composition and other physico-chemical variables. Our study constitutes the first empirical effort to define P. morrisoni habitat and should be useful in assessing the relative suitability of spring environments for the species. The best approach to manage springsnail habitat is to maintain springs in their natural state. INTRODUCTION & Landye, 1988), is medium-sized relative to other con- geners, 1.8 to 2.9 mm in shell height, endemic to the The role that physico-chemical habitat variables play in Upper Verde River drainage of central Arizona (Williams determining the occurrence and density of aquatic micro- et al., 1985; Hershler & Landye, 1988; Hershler, 1994), invertebrates in spring ecosystems has been poorly stud- with all known populations existing within a complex of ied.
    [Show full text]
  • (Pyrgulopsis Spp.) in and Adjacent to the Spring Mountains, Nevada
    Western North American Naturalist 80(2), © 2020, pp. 183–193 An inventory of springsnails (Pyrgulopsis spp.) in and adjacent to the Spring Mountains, Nevada KEVIN S. MCKELVEY1,*, COREY KALLSTROM2, JERI LEDBETTER3, DONALD W. SADA4, KRISTINE L. PILGRIM1, AND MICHAEL K. SCHWARTZ1 1USDA Forest Service, National Genomics Center, Rocky Mountain Research Station, Missoula, MT 59801 2U.S. Fish and Wildlife Service, Southern Nevada Fish and Wildlife Office, Las Vegas, NV 89130 3Spring Stewardship Institute, Flagstaff, AZ 86001 4Desert Research Institute, Reno, NV 89512 ABSTRACT.—Springsnails (genus Pyrgulopsis, hereafter pyrgs) are small freshwater aquatic gastropods that occur in isolated springs in western North America. Pyrgs are species of conservation concern, but patterns of occupancy and speciation are complex. We investigated patterns of occurrence for pyrgs in the Spring Mountains, Clark County, Nevada. We were primarily concerned with identifying springs containing the species P. deaconi, the Spring Mountains pyrg, and P. turbatrix, the southeast Nevada pyrg. We identified species through genetic analysis of the COI-1 mito- chondrial region and examined patterns of genetic structure. We located aquatic gastropods in 26 springs and analyzed 420 aquatic gastropods, of which 392 were pyrgs, the remainder representing an unknown species of Physa. Of the 26 springs, 25 contained pyrgs and 5 contained Physa sp. For pyrgs, at COI-1 we identified a total of 29 haplotypes that formed 6 distinct monophyletic groups. Five of the 6 groups were consistent with pyrgs previously identified: P. bac- chus, P. deaconi, P. fausta, P. turbatrix, and an unknown species which had been identified previously in the Grapevine Springs.
    [Show full text]
  • Report to Office of Water Science, Department of Science, Information Technology and Innovation, Brisbane
    Lake Eyre Basin Springs Assessment Project Hydrogeology, cultural history and biological values of springs in the Barcaldine, Springvale and Flinders River supergroups, Galilee Basin and Tertiary springs of western Queensland 2016 Department of Science, Information Technology and Innovation Prepared by R.J. Fensham, J.L. Silcock, B. Laffineur, H.J. MacDermott Queensland Herbarium Science Delivery Division Department of Science, Information Technology and Innovation PO Box 5078 Brisbane QLD 4001 © The Commonwealth of Australia 2016 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence Under this licence you are free, without having to seek permission from DSITI or the Commonwealth, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the source of the publication. For more information on this licence visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5725 Citation Fensham, R.J., Silcock, J.L., Laffineur, B., MacDermott, H.J.
    [Show full text]
  • North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886
    THE NAUTILUS 101(1):25-32, 1987 Page 25 . North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886 Robert Hershler Fred G. Thompson Department of Invertebrate Zoology Florida State Museum National Museum of Natural History University of Florida Smithsonian Institution Gainesville, FL 32611, USA Washington, DC 20560, USA ABSTRACT scribed) in the Southwest. Taylor (1966) placed Tryonia in the Littoridininae Taylor, 1966 on the basis of its Anatomical details are provided for the type species of Tryonia turreted shell and glandular penial lobes. It is clear from Stimpson, 1865, Pyrgulopsis Call and Pilsbry, 1886, Fonteli- cella Gregg and Taylor, 1965, and Microamnicola Gregg and the initial descriptions and subsequent studies illustrat- Taylor, 1965, in an effort to resolve the systematic relationships ing the penis (Russell, 1971: fig. 4; Taylor, 1983:16-25) of these taxa, which represent most of the generic-level groups that Fontelicella and its subgenera, Natricola Gregg and of Hydrobiidae in southwestern North America. Based on these Taylor, 1965 and Microamnicola Gregg and Taylor, 1965 and other data presented either herein or in the literature, belong to the Nymphophilinae Taylor, 1966 (see Hyalopyrgus Thompson, 1968 is assigned to Tryonia; and Thompson, 1979). While the type species of Pyrgulop- Fontelicella, Microamnicola, Nat ricola Gregg and Taylor, 1965, sis, P. nevadensis (Stearns, 1883), has not received an- Marstonia F. C. Baker, 1926, and Mexistiobia Hershler, 1985 atomical study, the penes of several eastern species have are allocated to Pyrgulopsis. been examined by Thompson (1977), who suggested that The ranges of both Tryonia and Pyrgulopsis include parts the genus may be a nymphophiline.
    [Show full text]
  • Developing Husbandry Methods to Produce a Reproductively Viable
    Chronicles of Ex Situ Springsnail Management at Phoenix Zoo's Conservation Center Stuart A. Wells, Phoenix Zoo Conservation and Science Department [email protected] Summary The Phoenix Zoo’s Arthur L. and Elaine V. Johnson Foundation Conservation Center (Johnson Center) is the hub of our local species conservation involvement. We work closely Arizona Game and Fish Department (AGFD) and U.S. Fish and Wildlife Service (USFWS) to assist with species conservation. Our conservation mission is to support field conservation by developing husbandry techniques and propagation for release protocols for species to be released back into their natural habitat. We are by AGFD and USFWS to work with them on the conservation of threatened and endangered species such as the desert pupfish, Gila topminnow, Chiricahua leopard frog, Mt. Graham red squirrel, black-footed ferret and the recently listed narrow-headed gartersnake. In 2004, a sudden dramatic reduction in the range of the Three Forks springsnail started discussions about creating a refugium as a hedge against extinction. In 2008, representatives from AGFD and USFWS asked the Zoo to collaborate on this project due to our historical involvement with native species conservation. Very little was known about the conditions necessary for sustained ex situ management and reproduction of hydrobiids. It was not clear if they could be maintained long-term nor whether they would be able to reproduce, and there was no record of this species ever reproducing outside of its natural habitat. In this paper, we chronicle the milestones, lessons learned and successes achieved while developing a consistent and reliable method of maintaining springsnail species ex situ.
    [Show full text]
  • BASTERIA, 101-113, 1998 Hydrobia (Draparnaud, 1805) (Gastropoda
    BASTERIA, Vol 61: 101-113, 1998 Note on the occurrence of Hydrobia acuta (Draparnaud, 1805) (Gastropoda, Prosobranchia: Hydrobiidae) in western Europe, with special reference to a record from S. Brittany, France D.F. Hoeksema Watertoren 28, 4336 KC Middelburg, The Netherlands In August 1992 samples of living Hydrobia acuta (Draparnaud, 1805) have been collected in the Baie de Quiberon (Morbihan, France). The identification is elucidated. Giusti & Pezzoli (1984) and Giusti, Manganelli& Schembri (1995) suggested that Hydrobia minoricensis (Paladilhe, of H. The features ofthe 1875) and Hydrobia neglecta Muus, 1963, are junior synomyms acuta. material from Quiberon support these suggestions: it will be demonstrated that H. minoricensis and H. neglecta fit completely in the conception of H. acuta. H. acuta, well known from the be also distributed in and northwestern Mediterranean, appears to widely western Europe. Key words: Gastropoda,Prosobranchia, Hydrobiidae,Hydrobia acuta, distribution, France. Europe. INTRODUCTION In favoured localities often hydrobiid species are very abundant, occurring in dense populations. Some species prefer fresh water, others brackish or sea-water habitats. in the distributionof Although salinity preferences play a part determining each species, most species show a broad tolerance as regards the degree of salinity. Frequently one live in the habitat with Some hydrobiid species may same another. hydrobiid species often dealt with are in publications on marine species as well in those on non-marine Cachia Giusti species (e.g. et al., 1996, and et al., 1995). Many hydrobiid species are widely distributed, but often in genetically isolated populations; probably due to dif- ferent circumstances ecological the species may show a considerablevariability, especially as to the dimensions and the shape of the shell and to the pigmentation of the body.
    [Show full text]
  • New Freshwater Snails of the Genus Pyrgulopsis (Rissooidea: Hydrobiidae) from California
    THE VELIGER CMS, Inc., 1995 The Veliger 38(4):343-373 (October 2, 1995) New Freshwater Snails of the Genus Pyrgulopsis (Rissooidea: Hydrobiidae) from California by ROBERT HERSHLER Department of Invertebrate Zoology (Mollusks), National Museum of Natural History, Smithsonian Institution, Washington, DC. 20560, USA Abstract. Seven new species of Recent springsnails belonging to the large genus Pyrgulopsis are described from California. Pyrgulopsis diablensis sp. nov., known from a single site in the San Joaquin Valley, P. longae sp. nov., known from a single site in the Great Basin (Lahontan system), and P. taylori sp. nov., narrowly endemic in one south-central coastal drainage, are related to a group of previously known western species also having terminal and penial glands on the penis. Pyrgulopsis eremica sp. nov., from the Great Basin and other interior drainages in northeast California, and P. greggi sp. nov., narrowly endemic in the Upper Kern River basin, differ from all other described congeners in lacking penial glands, and are considered to be derived from a group of western species having a small distal lobe and weakly developed terminal gland. Pyrgulopsis gibba sp. nov., known from a few sites in extreme northeastern California (Great Basin), has a unique complement of penial ornament consisting of terminal gland, Dg3, and ventral gland. Pyrgulopsis ventricosa sp. nov., narrowly endemic in the Clear Lake basin, is related to two previously described California species also having a full complement of glands on the penis (Pg, Tg, Dgl-3) and an enlarged bursa copulatrix. INTRODUCTION in the literature (Hershler & Sada, 1987; Hershler, 1989; Hershler & Pratt, 1990).
    [Show full text]
  • Vol. 81 Wednesday, No. 129 July 6, 2016 Pages 43927–44206
    Vol. 81 Wednesday, No. 129 July 6, 2016 Pages 43927–44206 OFFICE OF THE FEDERAL REGISTER VerDate Sep 11 2014 17:28 Jul 05, 2016 Jkt 238001 PO 00000 Frm 00001 Fmt 4710 Sfmt 4710 E:\FR\FM\06JYWS.LOC 06JYWS asabaliauskas on DSK3SPTVN1PROD with FRONTMATTER II Federal Register / Vol. 81, No. 129 / Wednesday, July 6, 2016 The FEDERAL REGISTER (ISSN 0097–6326) is published daily, SUBSCRIPTIONS AND COPIES Monday through Friday, except official holidays, by the Office PUBLIC of the Federal Register, National Archives and Records Administration, Washington, DC 20408, under the Federal Register Subscriptions: Act (44 U.S.C. Ch. 15) and the regulations of the Administrative Paper or fiche 202–512–1800 Committee of the Federal Register (1 CFR Ch. I). The Assistance with public subscriptions 202–512–1806 Superintendent of Documents, U.S. Government Publishing Office, Washington, DC 20402 is the exclusive distributor of the official General online information 202–512–1530; 1–888–293–6498 edition. Periodicals postage is paid at Washington, DC. Single copies/back copies: The FEDERAL REGISTER provides a uniform system for making Paper or fiche 202–512–1800 available to the public regulations and legal notices issued by Assistance with public single copies 1–866–512–1800 Federal agencies. These include Presidential proclamations and (Toll-Free) Executive Orders, Federal agency documents having general FEDERAL AGENCIES applicability and legal effect, documents required to be published Subscriptions: by act of Congress, and other Federal agency documents of public interest. Assistance with Federal agency subscriptions: Documents are on file for public inspection in the Office of the Email [email protected] Federal Register the day before they are published, unless the Phone 202–741–6000 issuing agency requests earlier filing.
    [Show full text]
  • Empirically Derived Indices of Biotic Integrity for Forested Wetlands, Coastal Salt Marshes and Wadable Freshwater Streams in Massachusetts
    Empirically Derived Indices of Biotic Integrity for Forested Wetlands, Coastal Salt Marshes and Wadable Freshwater Streams in Massachusetts September 15, 2013 This report is the result of several years of field data collection, analyses and IBI development, and consideration of the opportunities for wetland program and policy development in relation to IBIs and CAPS Index of Ecological Integrity (IEI). Contributors include: University of Massachusetts Amherst Kevin McGarigal, Ethan Plunkett, Joanna Grand, Brad Compton, Theresa Portante, Kasey Rolih, and Scott Jackson Massachusetts Office of Coastal Zone Management Jan Smith, Marc Carullo, and Adrienne Pappal Massachusetts Department of Environmental Protection Lisa Rhodes, Lealdon Langley, and Michael Stroman Empirically Derived Indices of Biotic Integrity for Forested Wetlands, Coastal Salt Marshes and Wadable Freshwater Streams in Massachusetts Abstract The purpose of this study was to develop a fully empirically-based method for developing Indices of Biotic Integrity (IBIs) that does not rely on expert opinion or the arbitrary designation of reference sites and pilot its application in forested wetlands, coastal salt marshes and wadable freshwater streams in Massachusetts. The method we developed involves: 1) using a suite of regression models to estimate the abundance of each taxon across a gradient of stressor levels, 2) using statistical calibration based on the fitted regression models and maximum likelihood methods to predict the value of the stressor metric based on the abundance of the taxon at each site, 3) selecting taxa in a forward stepwise procedure that conditionally improves the concordance between the observed stressor value and the predicted value the most and a stopping rule for selecting taxa based on a conditional alpha derived from comparison to pseudotaxa data, and 4) comparing the coefficient of concordance for the final IBI to the expected distribution derived from randomly permuted data.
    [Show full text]
  • Species Status Assessment Report for Beaverpond Marstonia
    Species Status Assessment Report For Beaverpond Marstonia (Marstonia castor) Marstonia castor. Photo by Fred Thompson Version 1.0 September 2017 U.S. Fish and Wildlife Service Region 4 Atlanta, Georgia 1 2 This document was prepared by Tamara Johnson (U.S. Fish and Wildlife Service – Georgia Ecological Services Field Office) with assistance from Andreas Moshogianis, Marshall Williams and Erin Rivenbark with the U.S. Fish and Wildlife Service – Southeast Regional Office, and Don Imm (U.S. Fish and Wildlife Service – Georgia Ecological Services Field Office). Maps and GIS expertise were provided by Jose Barrios with U.S. Fish and Wildlife Service – Southeast Regional Office. We appreciate Gerald Dinkins (Dinkins Biological Consulting), Paul Johnson (Alabama Department of Conservation and Natural Resources), and Jason Wisniewski (Georgia Department of Natural Resources) for providing peer review of a prior draft of this report. 3 Suggested reference: U.S. Fish and Wildlife Service. 2017. Species status assessment report for beaverpond marstonia. Version 1.0. September, 2017. Atlanta, GA. 24 pp. 4 Species Status Assessment Report for Beaverpond Marstonia (Marstonia castor) Prepared by the Georgia Ecological Services Field Office U.S. Fish and Wildlife Service EXECUTIVE SUMMARY This species status assessment is a comprehensive biological status review by the U.S. Fish and Wildlife Service (Service) for beaverpond marstonia (Marstonia castor), and provides a thorough account of the species’ overall viability and extinction risk. Beaverpond marstonia is a small spring snail found in tributaries located east of Lake Blackshear in Crisp, Worth, and Dougherty Counties, Georgia. It was last documented in 2000. Based on the results of repeated surveys by qualified species experts, there appears to be no extant populations of beaverpond marstonia.
    [Show full text]
  • Aquatic Snails of the Snake and Green River Basins of Wyoming
    Aquatic snails of the Snake and Green River Basins of Wyoming Lusha Tronstad Invertebrate Zoologist Wyoming Natural Diversity Database University of Wyoming 307-766-3115 [email protected] Mark Andersen Information Systems and Services Coordinator Wyoming Natural Diversity Database University of Wyoming 307-766-3036 [email protected] Suggested citation: Tronstad, L.M. and M. D. Andersen. 2018. Aquatic snails of the Snake and Green River Basins of Wyoming. Report prepared by the Wyoming Natural Diversity Database for the Wyoming Fish and Wildlife Department. 1 Abstract Freshwater snails are a diverse group of mollusks that live in a variety of aquatic ecosystems. Many snail species are of conservation concern around the globe. About 37-39 species of aquatic snails likely live in Wyoming. The current study surveyed the Snake and Green River basins in Wyoming and identified 22 species and possibly discovered a new operculate snail. We surveyed streams, wetlands, lakes and springs throughout the basins at randomly selected locations. We measured habitat characteristics and basic water quality at each site. Snails were usually most abundant in ecosystems with higher standing stocks of algae, on solid substrate (e.g., wood or aquatic vegetation) and in habitats with slower water velocity (e.g., backwater and margins of streams). We created an aquatic snail key for identifying species in Wyoming. The key is a work in progress that will be continually updated to reflect changes in taxonomy and new knowledge. We hope the snail key will be used throughout the state to unify snail identification and create better data on Wyoming snails.
    [Show full text]
  • Redescription of Marstonia Comalensis (Pilsbry & Ferriss, 1906), a Poorly Known and Possibly Threatened Freshwater Gastropod from the Edwards Plateau Region (Texas)
    A peer-reviewed open-access journal ZooKeys Redescription77: 1–16 (2011) of Marstonia comalensis (Pilsbry & Ferriss, 1906), a poorly known and... 1 doi: 10.3897/zookeys.77.935 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Redescription of Marstonia comalensis (Pilsbry & Ferriss, 1906), a poorly known and possibly threatened freshwater gastropod from the Edwards Plateau region (Texas) Robert Hershler1, Hsiu-Ping Liu2 1 Department of Invertebrate Zoology, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013- 7012, USA 2 Department of Biology, Metropolitan State College of Denver, Denver, CO 80217, USA Corresponding author : Robert Hershler ( [email protected] ) Academic editor: Anatoly Schileyko | Received 2 June 2010 | Accepted 13 January 2011 | Published 26 January 2011 Citation: Hershler R, Liu H-P (2011) Redescription of Marstonia comalensis (Pilsbry & Ferriss, 1906), a poorly known and possibly threatened freshwater gastropod from the Edwards Plateau region (Texas). ZooKeys 77 : 1 – 16 . doi: 10.3897/ zookeys.77.935 Abstract Marstonia comalensis, a poorly known nymphophiline gastropod (originally described from Comal Creek, Texas) that has often been confused with Cincinnatia integra, is re-described and the generic placement of this species, which was recently allocated to Marstonia based on unpublished evidence, is confi rmed by anatomical study. Marstonia comalensis is a large congener having an ovate-conic, openly umbilicate shell and penis having a short fi lament and oblique, squarish lobe bearing a narrow gland along its distal edge. It is well diff erentiated morphologically from congeners having similar shells and penes and is also geneti- cally divergent relative to those congeners that have been sequenced (mtCOI divergence 3.0–8.5%).
    [Show full text]