Copper River Delta

Total Page:16

File Type:pdf, Size:1020Kb

Copper River Delta United States Department of Agriculture Classification of Community Forest Service Pacific Northwest Types, Successional Research Station General Technical Sequences, and Report PNW-GTR-469 March 2000 Landscapes of the Copper River Delta, Alaska Keith Boggs Author Keith Boggs is the staff vegetation ecologist, Alaska Natural Heritage Program, Environment and Natural Resources Institute, School of Arts and Sciences, University of Alaska Anchorage, 707 A Street, Anchorage, AK 99501. This publication is the result of a cooperative study between the U.S. Department of Agriculture, Forest Service, Chugach National Forest and the Alaska Natural Heritage Program. Abstract Boggs, Keith. 2000 Classification of community types, successional sequences, and landscapes of the Copper River Delta, Alaska. Gen. Tech. Rep. PNW-GTR-469. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 244 p. A classification of community types, successional sequences, and landscapes is pre- sented for the piedmont of the Copper River Delta. The classification was based on a sampling of 471 sites. A total of 75 community types, 42 successional sequences, and 6 landscapes are described. The classification of community types reflects the existing vegetation communities on the landscape. The distribution, vegetation composition and structure, soils, and successional status of each community are discussed. The community types were placed within successional sequences reflecting their succes- sional trends. Geomorphic and soil development were closely aligned with vegetation succession on the study area and, consequently, are described in detail. Each succes- sional sequence was named after the oldest community type identified in the sequence and the landscape on which it occurs. Diagnostic keys, based on indicator species, are provided to aid in field identification of community types and successional sequences. The dominant landscapes, including outwash plain, tidal marsh, and floodplain, are described by using environmental processes, such as geomorphology, hydrology, and soil development, and by integrating communities and successional sequences into these processes. Keywords: Alaska, Copper River Delta, classification, community type, succession, landscape, outwash, floodplain, delta, dune, barrier island. Summary A classification is presented to provide resource managers with an understanding of the vegetation communities, successional processes, and landscapes of the Copper River Delta. A classification integrating communities, succession, and landscapes is important because vegetation succession and communities can best be described and understood by first interpreting the landscapes on which they exist. The study area is a discontinuous series of coastal deltas and alluvial piedmonts in south-central Alaska encompassing about 700,000 acres. Mountain range spurs inter- rupt the piedmont, and the largest glacial system in North America (Bering Glacier) borders the eastern side. Elevation on the study area ranges from 0 to 300 feet above sea level. Human-caused disturbance is limited primarily to timber harvesting on proximal outwash plains. The vegetation on the Copper River Delta is dynamic and unstable because of tectonic uplift and geomorphic processes, such as erosion and deposition of sediments on tide- flats and glacial river channels. Of special concern is the change in vegetation initiated by an earthquake in 1964 that uplifted the area 6 to 12 feet. Before 1964, the seaward portion of the piedmont was covered by tidal marshes dominated by sedges (Carex spp.) and mixed grass/forb communities. The earthquake lifted these marshes above the tidal influence, initiating massive changes in vegetation composition and structure. Some tidal marsh communities described as common in previous studies are now rare or absent. The uplifted tidal mudflats are presently developing tidal marshes. These vegetation changes in turn have strongly affected such management concerns as nesting habitat for the dusky Canada goose, staging ground for shorebirds, and the moose population of the delta. This classification is divided into three sections: (1) landscape descriptions, (2) suc- cessional sequence descriptions, and (3) community type descriptions. Landscapes (analogous to landtype association from ECOMAP 1993) comprise the broadest level of the classification. Six landscapes were identified: (1) outwash plain, (2) floodplain, (3) linear dune, (4) uplifted marsh, (5) tidal marsh, and (6) barrier island-spit-coastal dune. Sediment deposition or erosion from fluvial and aeolian processes are the domi- nant driving successional forces on these landscapes. Landscape descriptions include landform, distribution, effect of the 1964 earthquake, and geomorphic processes. Each landscape adds greatly to the biological, habitat, and landform diversity of the Copper River Delta, often with community types, plant species, and successional sequences showing a high fidelity to specific landscapes. The successional sequence classification level describes the full sequence of vegeta- tion succession and landform-soil development. Community types are placed within successional sequences reflecting their successional trends and pathways. Geomorphic and soil development are closely aligned with vegetation succession on the study area and, consequently, are described in detail. A total of 42 successional sequences are identified, and each is named after the oldest community type identified in the sequence and the landscape on which it occurs. A diagnostic key, based on indicator species and landform, is provided to aid in field identification of the sequences. Each successional sequence exhibits high fidelity to specific landscapes. Community types describe existing vegetation and are analogous to the plant associa- tion level of “The National Vegetation Classification Standard” (Bourgeron and Engelking 1994) and to types described at level V of “The Alaska Vegetation Classification” (Viereck and others 1992). Seventy-five communities (plus 35 under- sampled communities) are described. Community type descriptions include other studies of the region, distribution of the community type, vegetation structure and composition, environmental factors such as soils and hydrology, and how each com- munity type fits into succession. A diagnostic key, based on indicator species, is pro- vided to aid in field identification of community types. Contents 1 Introduction 4 Study Area and Climate 6 Ecological Terms and Concepts 6 Community Types, Successional Sequences, and Landscapes 9 Methods 10 Field Methods 14 Data Analysis 15 Rarity Status of Landscapes and Community Types 15 Landscapes 16 Community Types 17 Statewide Rare Communities 18 Landscape Descriptions 18 Overview of Processes Forming the Copper River Delta 20 Outwash Plain Landscape 24 Floodplain Landscape 26 Uplifted Marsh Landscape 29 Linear Dune Landscape 31 Tidal Marsh Landscape 35 Barrier Island-Spit-Coastal Dune Landscape 40 Key to Successional Sequences 41 Instructions 42 Key to Life Forms and Landscape Groups 43 Key to Tidal Marsh Successional Sequences 43 Key to Tree Successional Sequences 45 Other Successional Sequences 50 Successional Sequence Descriptions 50 Outwash Plain and Floodplain Successional Sequences 57 Uplifted Marsh Successional Sequences 64 Linear Dune Successional Sequences 65 Tidal Marsh Successional Sequences 68 Barrier Island-Spit-Coastal Dune Successional Sequences 72 Key to Community Types 72 Instructions 72 Key to Life Form Groups 73 Key to Tree Communities 75 Key to Shrub Communities 76 Key to Sitka Alder Communities 77 Key to Willow Communities 79 Key to Sweetgale Communities 80 Key to Dwarf Shrub Communities 80 Key to Graminoid Communities 83 Key to Forb Communities 85 Key to Aquatic Communities 86 Tree Community Type Descriptions 86 Picea sitchensis/Alnus crispa Community Type 87 Picea sitchensis/Bryophyte Community Type 89 Picea sitchensis/Echinopanax horridum Community Type 90 Picea sitchensis/Rubus spectabilis Community Type 91 Picea sitchensis/Sphagnum Community Type 91 Picea sitchensis/Vaccinium ovalifolium Community Type 93 Picea sitchensis/Vaccinium ovalifolium-Echinopanax horridum Community Type 95 Picea sitchensis/Vaccinium ovalifolium/Lysichiton americanum Community Type 96 Populus trichocarpa/Aruncus sylvester Community Type 97 Populus trichocarpa/Alnus crispa Community Type 99 Populus trichocarpa-Picea sitchensis Community Type 100 Populus trichocarpa/Young Community Type 102 Tsuga heterophylla/Vaccinium ovalifolium Community Type 103 Tsuga heterophylla/Vaccinium ovalifolium-Echinopanax horridum Community Type 105 Tsuga heterophylla/Vaccinium ovalifolium/Lysichiton americanum Community Type 106 Shrub Community Type Descriptions 106 Alnus crispa/Calamagrostis canadensis Community Type 107 Alnus crispa/Equisetum arvense Community Type 108 Alnus crispa/Rubus spectabilis Community Type 110 Alnus crispa/Salix Community Type 110 Empetrum nigrum-Carex pluriflora Community Type 112 Myrica gale/Carex lyngbyaei Community Type 113 Myrica gale/Carex sitchensis Community Type 115 Myrica gale/Empetrum nigrum Community Type 116 Myrica gale/Epilobium angustifolium Community Type 118 Myrica gale/Equisetum variegatum Community Type 119 Undersampled Myrica gale (Sweetgale) Community Type 119 Rubus spectabilis-Echinopanax horridum Community Type 119 Salix alaxensis Community Type 119 Salix arctica/Carex lyngbyaei Community Type 120 Salix barclayi/Carex pluriflora
Recommended publications
  • Translocation and Transport
    Glime, J. M. 2017. Nutrient Relations: Translocation and Transport. Chapt. 8-5. In: Glime, J. M. Bryophyte Ecology. Volume 1. 8-5-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 8-5 NUTRIENT RELATIONS: TRANSLOCATION AND TRANSPORT TABLE OF CONTENTS Translocation and Transport ................................................................................................................................ 8-5-2 Movement from Older to Younger Tissues .................................................................................................. 8-5-6 Directional Differences ................................................................................................................................ 8-5-8 Species Differences ...................................................................................................................................... 8-5-8 Mechanisms of Transport .................................................................................................................................... 8-5-9 Source to Sink? ............................................................................................................................................ 8-5-9 Enrichment Effects ..................................................................................................................................... 8-5-10 Internal Transport
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • Morphologic Characteristics of the Blow River Delta, Yukon Territory, Canada
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1969 Morphologic Characteristics of the Blow River Delta, Yukon Territory, Canada. James Murl Mccloy Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mccloy, James Murl, "Morphologic Characteristics of the Blow River Delta, Yukon Territory, Canada." (1969). LSU Historical Dissertations and Theses. 1605. https://digitalcommons.lsu.edu/gradschool_disstheses/1605 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 70-252 McCLOY, James Murl, 1934- MORPHOLOGIC CHARACTERISTICS OF THE BLOW RIVER DELTA, YUKON TERRITORY, CANADA. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1969 Geography University Microfilms, Inc., Ann Arbor, Michigan Morphologic Characteristics of the Blow River Belta, Yukon Territory, Canada A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geography and Anthropology by James Murl McCloy B.A., State College at Los Angeles, 1961 May, 1969 ACKNOWLEDGEMENTS Research culminating in this dissertation was conducted under the auspices of the Arctic Institute of North America. The major portion of the financial support was received from the United States Army under contract no. BA-ARO-D-3I-I2I4.-G832, "Arctic Environmental Studies." Additional financial assistance during part of the writing stage was received in the form of a research assistantship from the Coastal Studies Institute, Louisi­ ana State University.
    [Show full text]
  • Population Ecology of Eriophorum Latifolium, a Clonal Species in Rich Fen Vegetation
    Anders Lyngstad Population Ecology of Eriophorum latifolium, a Clonal Species in Rich Fen Vegetation Thesis for the degree of Philosophiae Doctor Trondheim, October 2010 Norwegian University of Science and Technology Faculty of Natural Sciences and Technology Department of Biology NTNU Norwegian University of Science and Technology Thesis for the degree of Philosophiae Doctor Faculty of Natural Sciences and Technology Department of Biology © Anders Lyngstad ISBN 978-82-471-2332-4 (printed ver.) ISBN 978-82-471-2333-1 (electronic ver.) ISSN 1503-8181 Doctoral theses at NTNU, 2010:179 Printed by NTNU-trykk Synopsis PREFACE It was the spring of 2005, and it was the right time to move onwards. A position as a research fellow working with long-term time series at the Museum of Natural History and Archaeology at the Norwegian University of Science and Technology (NTNU) was announced, and a PhD-project was developed with the studies of former haymaking lands at Sølendet and Tågdalen nature reserves as a starting point. Work began in earnest in January 2006, and continued at an ever increasing pace until July 2010, when all the parts of the thesis were finally completed and assembled. The study was financed by NTNU, and was carried out at the Museum of Natural History and Archaeology and the Institute of Biology, both NTNU. I am deeply grateful to my main supervisor Professor Asbjørn Moen at the Museum of Natural History and Archaeology, and my co-supervisor Associate Professor Bård Pedersen at the Institute of Biology. This project rests on the long-term studies of rich hayfens that were initiated by Asbjørn 40 years ago, and that are still ongoing, much due to his continuous effort.
    [Show full text]
  • Baby Girl Names Registered in 2001 a GOVERNMENT SERVICES
    Baby Girl Names Registered in 2001 A GOVERNMENT SERVICES # Girl Names # Girl Names # Girl Names 1 A 1 Adelaide 4 Aisha 2 Aaisha 2 Adelle 1 Aisley 1 Aajah 1 Adelynn 1 Aislin 1 Aaliana 2 Adena 1 Aislinn 2 Aaliya 1 Adeoluwa 2 Aislyn 10 Aaliyah 1 Adia 1 Aislynn 1 Aalyah 1 Adiella 1 Aisyah 1 Aarona 5 Adina 1 Ai-Vy 1 Aaryanna 1 Adreana 1 Aiyana 1 Aashiyana 1 Adreanna 1 Aja 1 Aashna 7 Adria 1 Ajla 1 Aasiya 2 Adrian 1 Akanksha 1 Abaigeal 7 Adriana 1 Akasha 1 Abang 11 Adrianna 1 Akashroop 1 Abbegael 1 Adrianne 1 Akayla 1 Abbegayle 1 Adrien 1 Akaysia 15 Abbey 1 Adriene 1 Akeera 2 Abbi 3 Adrienne 1 Akeima 3 Abbie 1 Adyan 1 Akira 8 Abbigail 1 Aedan 1 Akoul 1 Abbi-Gail 1 Aeryn 1 Akrity 47 Abby 1 Aeshah 2 Alaa 3 Abbygail 1 Afra 1 Ala'a 2 Abbygale 1 Afroz 1 Alabama 1 Abbygayle 1 Afsaneh 1 Alabed 1 Abby-Jean 1 Aganetha 5 Alaina 1 Abella 1 Agar 1 Alaine 1 Abha 6 Agatha 1 Alaiya 1 Abigael 1 Agel 11 Alana 83 Abigail 2 Agnes 1 Alanah 1 Abigale 1 Aheen 4 Alanna 1 Abigayil 1 Ahein 2 Alannah 4 Abigayle 1 Ahlam 1 Alanta 1 Abir 2 Ahna 1 Alasia 1 Abrial 1 Ahtum 1 Alaura 1 Abrianna 1 Aida 1 Alaya 3 Abrielle 4 Aidan 1 Alayja 1 Abuk 2 Aideen 5 Alayna 1 Abygale 6 Aiden 1 Alaysia 3 Acacia 1 Aija 1 Alberta 1 Acadiana 1 Aika 1 Aldricia 1 Acelyn 1 Aiko 2 Alea 1 Achwiel 1 Aileen 7 Aleah 1 Adalien 1 Aiman 1 Aleasheanne 1 Adana 7 Aimee 1 Aleea 2 Adanna 2 Aimée 1 Aleesha 2 Adara 1 Aimie 2 Aleeza 1 Adawn-Rae 1 Áine 1 Aleighna 1 Addesyn 1 Ainsleigh 1 Aleighsha 1 Addisan 12 Ainsley 1 Aleika 10 Addison 1 Aira 1 Alejandra 1 Addison-Grace 1 Airianna 1 Alekxandra 1 Addyson 1 Aisa
    [Show full text]
  • 3.13 Paleontological Resources
    Gateway West Transmission Line Draft EIS 3.13 PALEONTOLOGICAL RESOURCES This section addresses the potential impacts from the Proposed Route and Route Alternatives on the known paleontological resources during construction, operation, and decommissioning. The Proposed Route and Route Alternatives pass through areas where paleontological resources are known to exist. The routes, their potential impacts, and mitigation methods to minimize or eliminate impacts are discussed in this section. 3.13.1 Affected Environment This section describes the mapped geology and known paleontological resources near the Proposed Action. It also describes and compares potential impacts of the Proposed Action and Action Alternatives to paleontological resources. Fossils are important scientific and educational resources because of their use in: 1) documenting the presence and evolutionary history of particular groups of now extinct organisms, 2) reconstructing the environments in which these organisms lived, and 3) determining the relative ages of the strata in which they occur. Fossils are also important in determining the geologic events that resulted in the deposition of the sediments in which they were buried. 3.13.1.1 Analysis Area The Project area in Wyoming and Idaho consists of predominantly north-south trending mountain ranges separated by structural basins. The eastern portion of the Project (Segments 1 and 2) would be located within the Laramie Mountains and the Shirley Mountains, which consist predominantly of Precambrian granite and gneisses. Moving west in Wyoming, the Project would cross major structural basins created during the Laramide Orogeny, including the Hanna Basin in Carbon County (Segment 2), and the Greater Green River Basin in Sweetwater County (Segments 3 and 4).
    [Show full text]
  • Geomorphic and Hydraulic Assessment of the Bear River in and Near Evanston, Wyoming
    GEOMORPHIC AND HYDRAULIC ASSESSMENT OF THE BEAR RIVER IN AND NEAR EVANSTON, WYOMING By M.E. SMITH anc/M.L. MADERAK____________________ U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 93-4032 Prepared in cooperation with the CITY OF EVANSTON and UINTA COUNTY Cheyenne, Wyoming 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY ROBERT M. HIRSCH, Acting Director For additional information Copies of this report may be write to: purchased from: U.S. Geological Survey Earth Science Information Center District Chief Open-File Reports Section U.S. Geological Survey Box 25286, MS 517 2617 E. Lincolnway, Suite B Denver Federal Center Cheyenne, Wyoming 82001 Denver, Colorado 80225 CONTENTS Abstract..................................................................................................................................................................... 1 Introduction................................................................................._^ 2 Purpose and scope....................................................................................................................................... 2 Acknowledgments...................................................................................................................................... 2 Approach................................................................................................................................................................... 4 Methods of analysis...................................................................................................................................
    [Show full text]
  • Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers
    United States Department of Agriculture Synthesis of Knowledge of Forest Service Pacific Northwest Extreme Fire Behavior: Research Station General Technical Volume I for Fire Managers Report PNW-GTR-854 November 2011 Paul A. Werth, Brian E. Potter, Craig B. Clements, Mark A. Finney, Scott L. Goodrick, Martin E. Alexander, Miguel G. Cruz, Jason A. Forthofer, and Sara S. McAllister A SUMMARY OF KNOWLEDGE FROM THE The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the national forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD).
    [Show full text]
  • Experiments on Patterns of Alluvial Cover and Bedrock Erosion in a Meandering Channel Roberto Fernández1, Gary Parker1,2, Colin P
    Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2019-8 Manuscript under review for journal Earth Surf. Dynam. Discussion started: 27 February 2019 c Author(s) 2019. CC BY 4.0 License. Experiments on patterns of alluvial cover and bedrock erosion in a meandering channel Roberto Fernández1, Gary Parker1,2, Colin P. Stark3 1Ven Te Chow Hydrosystems Laboratory, Department of Civil and Environmental Engineering, University of Illinois at 5 Urbana-Champaign, Urbana, IL 61801, USA 2Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 3Lamont Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA Correspondence to: Roberto Fernández ([email protected]) Abstract. 10 In bedrock rivers, erosion by abrasion is driven by sediment particles that strike bare bedrock while traveling downstream with the flow. If the sediment particles settle and form an alluvial cover, this mode of erosion is impeded by the protection offered by the grains themselves. Channel erosion by abrasion is therefore related to the amount and pattern of alluvial cover, which are functions of sediment load and hydraulic conditions, and which in turn are functions of channel geometry, slope and sinuosity. This study presents the results of alluvial cover experiments conducted in a meandering channel flume of high fixed 15 sinuosity. Maps of quasi-instantaneous alluvial cover were generated from time-lapse imaging of flows under a range of below- capacity bedload conditions. These maps were used to infer patterns
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Oregon Geologic Digital Compilation Rules for Lithology Merge Information Entry
    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist OREGON GEOLOGIC DIGITAL COMPILATION RULES FOR LITHOLOGY MERGE INFORMATION ENTRY G E O L O G Y F A N O D T N M I E N M E T R R A A L P I E N D D U N S O T G R E I R E S O 1937 2006 Revisions: Feburary 2, 2005 January 1, 2006 NOTICE The Oregon Department of Geology and Mineral Industries is publishing this paper because the infor- mation furthers the mission of the Department. To facilitate timely distribution of the information, this report is published as received from the authors and has not been edited to our usual standards. Oregon Department of Geology and Mineral Industries Oregon Geologic Digital Compilation Published in conformance with ORS 516.030 For copies of this publication or other information about Oregon’s geology and natural resources, contact: Nature of the Northwest Information Center 800 NE Oregon Street #5 Portland, Oregon 97232 (971) 673-1555 http://www.naturenw.org Oregon Department of Geology and Mineral Industries - Oregon Geologic Digital Compilation i RULES FOR LITHOLOGY MERGE INFORMATION ENTRY The lithology merge unit contains 5 parts, separated by periods: Major characteristic.Lithology.Layering.Crystals/Grains.Engineering Lithology Merge Unit label (Lith_Mrg_U field in GIS polygon file): major_characteristic.LITHOLOGY.Layering.Crystals/Grains.Engineering major characteristic - lower case, places the unit into a general category .LITHOLOGY - in upper case, generally the compositional/common chemical lithologic name(s)
    [Show full text]
  • Phylogenetic Taxonomy of Artemisia L. Species from Kazakhstan Based On
    PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. Section B, Vol. 72 (2018), No. 1 (712), pp. 29–37. DOI: 10.1515/prolas-2017-0068 PHYLOGENETIC TAXONOMY OF ARTEMISIA L. SPECIES FROM KAZAKHSTAN BASED ON MATK ANALYSES Yerlan Turuspekov1,5, Yuliya Genievskaya1, Aida Baibulatova1, Alibek Zatybekov1, Yuri Kotuhov2, Margarita Ishmuratova3, Akzhunis Imanbayeva4, and Saule Abugalieva1,5,# 1 Institute of Plant Biology and Biotechnology, 45 Timiryazev Street, Almaty, KAZAKHSTAN 2 Altai Botanical Garden, Ridder, KAZAKHSTAN 3 Karaganda State University, Karaganda, KAZAKHSTAN 4 Mangyshlak Experimental Botanical Garden, Aktau, KAZAKHSTAN 5 Al-Farabi Kazakh National University, Biodiversity and Bioresources Department, Almaty, KAZAKHSTAN # Corresponding author, [email protected] Communicated by Isaak Rashal The genus Artemisia is one of the largest of the Asteraceae family. It is abundant and diverse, with complex taxonomic relations. In order to expand the knowledge about the classification of Kazakhstan species and compare it with classical studies, matK genes of nine local species in- cluding endemic were sequenced. The infrageneric rank of one of them (A. kotuchovii) had re- mained unknown. In this study, we analysed results of sequences using two methods — NJ and MP and compared them with a median-joining haplotype network. As a result, monophyletic origin of the genus and subgenus Dracunculus was confirmed. Closeness of A. kotuchovii to other spe- cies of Dracunculus suggests its belonging to this subgenus. Generally, matK was shown as a useful barcode marker for the identification and investigation of Artemisia genus. Key words: Artemisia, Artemisia kotuchovii, DNA barcoding, haplotype network. INTRODUCTION (Bremer, 1994; Torrel et al., 1999). Due to the large amount of species in the genus, their classification is still complex Artemisia of the family Asteraceae is a genus with great and not fully completed.
    [Show full text]