Hematological Indicators of Stress in Longline-Captured Sharks☆

Total Page:16

File Type:pdf, Size:1020Kb

Hematological Indicators of Stress in Longline-Captured Sharks☆ Comparative Biochemistry and Physiology, Part A 162 (2012) 121–129 Contents lists available at SciVerse ScienceDirect Comparative Biochemistry and Physiology, Part A journal homepage: www.elsevier.com/locate/cbpa Hematological indicators of stress in longline-captured sharks☆ Heather Marshall a,⁎, Lyndsay Field a,1, Achankeng Afiadata a, Chugey Sepulveda b, Gregory Skomal c, Diego Bernal a,⁎ a University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA b Pfleger Institute of Environmental Research, 315 North Clementine, Oceanside, CA 92054, USA c Massachusetts Division of Marine Fisheries, 838 South Rodney French Boulevard, New Bedford, MA 02744, USA article info abstract Article history: For many shark species, little information exists about the stress response to capture and release in commer- Received 13 August 2011 cial longline fisheries. Recent studies have used hematological profiling to assess the secondary stress re- Received in revised form 2 February 2012 sponse, but little is known about how, and to what degree, these indicators vary interspecifically. Accepted 7 February 2012 Moreover, there is little understanding of the extent to which the level of relative swimming activity (e.g., Available online 14 February 2012 sluggish vs. active) or the general ecological classification (e.g., coastal vs. pelagic) correlates to the magni- Keywords: tude of the exercise-induced (capture-related) stress response. This study compared plasma electrolytes + − 2+ 2+ + Biochemistry (Na ,Cl ,Mg ,Ca , and K ), metabolites (glucose and lactate), blood hematocrit, and heat shock protein Bycatch (Hsp70) levels between 11 species of longline-captured sharks (n=164). Statistical comparison of hemato- Elasmobranch logical parameters revealed species-specific differences in response to longline capture, as well as differences Fisheries by ecological classification. Taken together, the blood properties of longline-captured sharks appear to be Longline useful indicators of interspecific variation in the secondary stress response to capture, and may prove useful in the future for predicting survivorship of longline-captured sharks where new technologies (i.e., pop-up satellite tags) can verify post-release mortality. © 2012 Elsevier Inc. All rights reserved. 1. Introduction Fish react to capture and handling with more exaggerated physio- logical responses than most other higher vertebrates (reviewed by In recent decades, the interaction between sharks and fishing gear Skomal and Bernal, 2010; Skomal and Mandelman, 2012) and the has increased, and these fish now account for a large percentage stress response has been classified into three levels: primary, second- of incidental bycatch in pelagic commercial fisheries worldwide ary, and tertiary (Mazeaud et al., 1977). Like teleosts, sharks exhibit (Beerkircher et al., 2002; Gilman et al., 2008; Skomal and Bernal, primary and secondary responses to stress that are manifested in 2010). It is estimated that elasmobranchs, although rarely targeted, their blood biochemistry (reviewed by Skomal and Bernal, 2010; constitute 25% of the overall catch in U.S. commercial longline fisher- Skomal and Mandelman, 2012). Recently, stress responses in fish ies (Mandelman et al., 2008) and comprise as much as 94% of total by- have been shown to vary interspecifically and may be linked to: 1) catch in commercial longline operations worldwide (McKinnell and a fish's metabolic scope and its cruise/burst swimming capacity, 2) Seki, 1998). The commercial value of sharks is often low and certain the ability to physiologically respond to stress, and 3) the capacity species (e.g., dusky shark, Carcharhinus obscurus) are mandated to to recover from the stressor (Mandelman and Skomal, 2009; Skomal be released in an effort to reduce fishing mortality (NMFS, 2008). and Bernal, 2010). Indeed, at-vessel mortality data from commercial Therefore, the release of longline-captured sharks has become a com- fisheries and research surveys show that shark species respond differ- mon practice (Skomal, 2007; Mandelman et al., 2008; Skomal and ently to capture by the same fishing gear (e.g., Beerkircher et al., Bernal, 2010). 2002; Morgan and Burgess, 2007; Mandelman and Skomal, 2009; Morgan and Carlson, 2010). ☆ “ Given the increasing number of sharks released from commercial This paper stems from a presentation in the symposium The Physiological Stress fi Response in Elasmobranch Fishes,” at the 26th annual meeting of the American Elas- longline gear and the potential interspeci c variation in response to mobranch Society, held on July 11, 2010, in Providence, Rhode Island (USA). longline capture, the objective of the current study was to determine ⁎ Corresponding authors at: University of Massachusetts Dartmouth, Biology Depart- if blood samples can be used to characterize and compare the second- ment, 285 Old Westport Road, North Dartmouth, MA, 02747, USA. Tel.:+508 999 8307; ary stress response in several species of sharks exposed to longline fax: +508 999 8196. capture. Due to the challenges associated with keeping many of E-mail addresses: [email protected] (H. Marshall), [email protected] (D. Bernal). these large sharks in captivity, such stress parameters have not 1 The author is deceased. been published before and we hope these preliminary data will be a 1095-6433/$ – see front matter © 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.cbpa.2012.02.008 122 H. Marshall et al. / Comparative Biochemistry and Physiology, Part A 162 (2012) 121–129 starting point for future stress physiology research on sharks having Rad protein ladder to determine the proper separation of the different levels of swimming activity (e.g., sluggish vs. active swim- ~70 kDa band and to verify the position of an Hsp standard (Sigma mers), and inhabiting ecologically distinct areas (e.g., coastal waters Aldrich, St. Louis MO, USA). Proteins were transferred onto a PVDF- that are relatively shallow [b80 m] and well-mixed vs. the deep fluorescent membrane (Millipore, Billerica, MA USA) and stained [>200 m] and well-stratified pelagic environment). In addition to with a primary antibody against Hsp70 (Agrisera AS05-083) followed commonly used blood parameters, we investigated the use of heat by a fluorescent secondary antibody (Li-Cor IRDye680) and detected shock proteins (Hsps) as potential indicators of the stress response by a Li-Core Odyssey Infrared Imaging System (version 3.0.16). The in sharks. We also examined the extent to which the published at- Hsp70 levels in each species were compared by normalizing the signal vessel mortality rates for these species (Beerkircher et al., 2002; of the blue shark (Prionace glauca), therefore providing relative levels Yokota et al., 2006; Morgan and Burgess, 2007; Morgan and Carlson, of Hsp70 between species. Work on blue sharks has shown this spe- 2010) may be related to the magnitude of the stress response. cies to have low at-vessel mortality rates (Yokota et al., 2006) and a relatively high post-release survival (Moyes et al., 2006). For this rea- 2. Materials and methods son, we selected the blue sharks as the benchmark of a low-stress condition (verified by the values of other blood stress parameters in 2.1. Sampling the present study). Fresh blood samples were collected from 2006 to 2009 during 2.5. Statistical analysis NOAA/NMFS longline research cruises assessing fish abundance fi [western Paci c ocean (WPO): R/V Oscar Elton Sette, 2008; eastern Although our goal was to sample a large number of species, the fi North Paci c ocean (ENP): R/V David Starr Jordan, 2007; western sample sizes for each species were limited by our catch. For this rea- North Atlantic (WNA): R/V Delaware II, 2007, 2009 and F/V Eagle son, even species with a low sample size were included in the inter- Eye II, 2006]. Two types of longline gear were used (demersal and pe- specific comparisons. “ ” lagic) with different overall soak times (i.e. time period that the line A general linear model univariate analysis of variance (ANOVA) fi is shing) and hook types (circle vs. J hooks). For demersal sets, circle was used to determine how blood parameters varied by species and – hooks were suspended at or near the bottom (30 60 m) and soaked family, and two-sample T-tests were used to detect differences by – for 2 6 h, and for pelagic sets, circle and J hooks were suspended ecological classification (i.e., pelagic versus coastal association) and – within the upper 150 m of the water column and soaked for 4 12 h. between moribund and non-moribund shortfin mako sharks (the fi Unfortunately, the inherent logistical dif culties of working on nu- only species with moribund specimens) (Sokal and Rohlf, 1995). As- fi merous vessels with varying scienti c agendas did not allow for the sumptions were satisfied using Levene's test of homogeneity of vari- deployment of hook timers to measure time on the line. Longlines, re- ances and a visual examination of the data for normality, and Tukey gardless of type, were set at sea surface temperatures ranging from 17 post-hoc tests were performed to compare values between groups. to 24 °C. Immediately after capture, sharks were brought on the boat Regression analyses (Sokal and Rohlf, 1995) were used to deter- – and blood samples (2 10 mL) were collected via caudal puncture mine if at-vessel mortality rates were related to blood stress parame- using an 18-gauge needle and heparinized syringe. Blood samples ters. Because each species in this study was caught in only one body were kept at 4 °C until processing, which occurred mostly 2 to of water (e.g., the sandbar sharks were only caught in the WNA and 4 min after capture, but in some cases were up to an hour after cap- mako sharks were only captured in the ENP), intraspecific differences ture. Blood was also sampled from moribund sharks, but no blood due to geography were ruled out. Species-, gear- (i.e., pelagic vs. de- was taken from dead specimens.
Recommended publications
  • The Design of Rijndael: AES - the Advanced Encryption Standard/Joan Daemen, Vincent Rijmen
    Joan Daernen · Vincent Rijrnen Theof Design Rijndael AES - The Advanced Encryption Standard With 48 Figures and 17 Tables Springer Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Springer TnL-1Jn Joan Daemen Foreword Proton World International (PWI) Zweefvliegtuigstraat 10 1130 Brussels, Belgium Vincent Rijmen Cryptomathic NV Lei Sa 3000 Leuven, Belgium Rijndael was the surprise winner of the contest for the new Advanced En­ cryption Standard (AES) for the United States. This contest was organized and run by the National Institute for Standards and Technology (NIST) be­ ginning in January 1997; Rij ndael was announced as the winner in October 2000. It was the "surprise winner" because many observers (and even some participants) expressed scepticism that the U.S. government would adopt as Library of Congress Cataloging-in-Publication Data an encryption standard any algorithm that was not designed by U.S. citizens. Daemen, Joan, 1965- Yet NIST ran an open, international, selection process that should serve The design of Rijndael: AES - The Advanced Encryption Standard/Joan Daemen, Vincent Rijmen. as model for other standards organizations. For example, NIST held their p.cm. Includes bibliographical references and index. 1999 AES meeting in Rome, Italy. The five finalist algorithms were designed ISBN 3540425802 (alk. paper) . .. by teams from all over the world. 1. Computer security - Passwords. 2. Data encryption (Computer sCIence) I. RIJmen, In the end, the elegance, efficiency, security, and principled design of Vincent, 1970- II. Title Rijndael won the day for its two Belgian designers, Joan Daemen and Vincent QA76.9.A25 D32 2001 Rijmen, over the competing finalist designs from RSA, IBl\!I, Counterpane 2001049851 005.8-dc21 Systems, and an English/Israeli/Danish team.
    [Show full text]
  • Chondrichthyan Fishes (Sharks, Skates, Rays) Announcements
    Chondrichthyan Fishes (sharks, skates, rays) Announcements 1. Please review the syllabus for reading and lab information! 2. Please do the readings: for this week posted now. 3. Lab sections: 4. i) Dylan Wainwright, Thursday 2 - 4/5 pm ii) Kelsey Lucas, Friday 2 - 4/5 pm iii) Labs are in the Northwest Building basement (room B141) 4. Lab sections done: first lab this week on Thursday! 5. First lab reading: Agassiz fish story; lab will be a bit shorter 6. Office hours: we’ll set these later this week Please use the course web site: note the various modules Outline Lecture outline: -- Intro. to chondrichthyan phylogeny -- 6 key chondrichthyan defining traits (synapomorphies) -- 3 chondrichthyan behaviors -- Focus on several major groups and selected especially interesting ones 1) Holocephalans (chimaeras or ratfishes) 2) Elasmobranchii (sharks, skates, rays) 3) Batoids (skates, rays, and sawfish) 4) Sharks – several interesting groups Not remotely possible to discuss today all the interesting groups! Vertebrate tree – key ―fish‖ groups Today Chondrichthyan Fishes sharks Overview: 1. Mostly marine 2. ~ 1,200 species 518 species of sharks 650 species of rays 38 species of chimaeras Skates and rays 3. ~ 3 % of all ―fishes‖ 4. Internal skeleton made of cartilage 5. Three major groups 6. Tremendous diversity of behavior and structure and function Chimaeras Chondrichthyan Fishes: 6 key traits Synapomorphy 1: dentition; tooth replacement pattern • Teeth are not fused to jaws • New rows move up to replace old/lost teeth • Chondrichthyan teeth are
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • A Lightweight Encryption Algorithm for Secure Internet of Things
    Pre-Print Version, Original article is available at (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 1, 2017 SIT: A Lightweight Encryption Algorithm for Secure Internet of Things Muhammad Usman∗, Irfan Ahmedy, M. Imran Aslamy, Shujaat Khan∗ and Usman Ali Shahy ∗Faculty of Engineering Science and Technology (FEST), Iqra University, Defence View, Karachi-75500, Pakistan. Email: fmusman, [email protected] yDepartment of Electronic Engineering, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan. Email: firfans, [email protected], [email protected] Abstract—The Internet of Things (IoT) being a promising and apply analytics to share the most valuable data with the technology of the future is expected to connect billions of devices. applications. The IoT is taking the conventional internet, sensor The increased number of communication is expected to generate network and mobile network to another level as every thing mountains of data and the security of data can be a threat. The will be connected to the internet. A matter of concern that must devices in the architecture are essentially smaller in size and be kept under consideration is to ensure the issues related to low powered. Conventional encryption algorithms are generally confidentiality, data integrity and authenticity that will emerge computationally expensive due to their complexity and requires many rounds to encrypt, essentially wasting the constrained on account of security and privacy [4]. energy of the gadgets. Less complex algorithm, however, may compromise the desired integrity. In this paper we propose a A. Applications of IoT: lightweight encryption algorithm named as Secure IoT (SIT).
    [Show full text]
  • A Novel Construction of Efficient Substitution-Boxes Using Cubic
    entropy Article A Novel Construction of Efficient Substitution-Boxes Using Cubic Fractional Transformation Amjad Hussain Zahid 1,2, Muhammad Junaid Arshad 2 and Musheer Ahmad 3,* 1 Department of Computer Science, University of Management and Technology, Lahore 54000, Pakistan; [email protected] 2 Department of Computer Science, University of Engineering and Technology, Lahore 54000, Pakistan; [email protected] 3 Department of Computer Engineering, Jamia Millia Islamia, New Delhi 110025, India * Correspondence: [email protected]; Tel.: +91-112-698-0281 Received: 27 January 2019; Accepted: 28 February 2019; Published: 5 March 2019 Abstract: A symmetric block cipher employing a substitution–permutation duo is an effective technique for the provision of information security. For substitution, modern block ciphers use one or more substitution boxes (S-Boxes). Certain criteria and design principles are fulfilled and followed for the construction of a good S-Box. In this paper, an innovative technique to construct substitution-boxes using our cubic fractional transformation (CFT) is presented. The cryptographic strength of the proposed S-box is critically evaluated against the state of the art performance criteria of strong S-boxes, including bijection, nonlinearity, bit independence criterion, strict avalanche effect, and linear and differential approximation probabilities. The performance results of the proposed S-Box are compared with recently investigated S-Boxes to prove its cryptographic strength. The simulation and comparison analyses validate that the proposed S-Box construction method has adequate efficacy to generate efficient candidate S-Boxes for usage in block ciphers. Keywords: substitution box; cubic fractional transformation; block ciphers; security 1. Introduction Cryptography helps individuals and organizations to protect their data.
    [Show full text]
  • Rays and Skates (Batoidea) Conservation Profile Synopsis
    Rays and Skates (Batoidea) Conservation Profile Synopsis Status of Ray and Skate Populations IUCN Red List Total Species CR EN VU NT LC DD State of the Batoidea Superorder 539 14 28 65 62 114 256 Rays and skates belong to the Batoidea Superorder and consist of stingrays CR, Critically Endangered; EN, Endangered; VU, and related species (Order Myliobatiforme, 223 species), electric rays (Order Vulnerable; NT, Near Threatened; LC, Least Torpediniforme, 69 species), skates and related species (Order Rajiforme, Concern; DD, Data Deficient. 270 species), and sawfish (Order Pristiforme, 5-7 species). Most batoid species live on the sea floor and are found in a variety of ecosystems across CITES the planet: coastal, deep water (3,000 m), tropical, subtropical, temperate, Appendix 1:7 species cold-water, estuarine, marine, freshwater, and open seas. As opportunistic foragers in complex trophic webs, batoids can impact and alter ecosystems if Appendix II: 1 species 1,2 other top-predators are removed . AZA Subpopulation Several batoids are listed as endangered in US-waters for which smalltooth Marine Fishes Taxon Advisory Group sawfish have a designated critical habitat and recovery plan as of 2009. There Chair Beth Firchau is a high degree of uncertainty with respect to the status of ray and skate populations at the global level even though they are some of the world’s most vulnerable marine fishes3. Many populations are extinct, and many more are critically endangered particularly in coastal ecosystems. Primary Threats to the Species Batoids face extinction risks due to a variety of threats that include capture in nets from targeted and accidental catch.
    [Show full text]
  • Leigh SC, Papastamatiou Y, and DP German. 2017. the Nutritional
    Rev Fish Biol Fisheries (2017) 27:561–585 DOI 10.1007/s11160-017-9481-2 REVIEWS The nutritional physiology of sharks Samantha C. Leigh . Yannis Papastamatiou . Donovan P. German Received: 28 December 2016 / Accepted: 9 May 2017 / Published online: 25 May 2017 Ó Springer International Publishing Switzerland 2017 Abstract Sharks compose one of the most diverse Keywords Digestive efficiency Á Digestive and abundant groups of consumers in the ocean. biochemistry Á Gastrointestinal tract Á Microbiome Á Consumption and digestion are essential processes for Spiral intestine Á Stable isotopes obtaining nutrients and energy necessary to meet a broad and variable range of metabolic demands. Despite years of studying prey capture behavior and Introduction feeding habits of sharks, there has been little explo- ration into the nutritional physiology of these animals. Sharks make up one of the most abundant and diverse To fully understand the physiology of the digestive groups of consumers in the ocean (Fig. 1, Compagno tract, it is critical to consider multiple facets, including 2008). They may play an important ecological role in the evolution of the system, feeding mechanisms, energy fluxes in marine environments and in impact- digestive morphology, digestive strategies, digestive ing the biodiversity of lower trophic levels that we biochemistry, and gastrointestinal microbiomes. In depend on as a food and economic resource (e.g., each of these categories, we make comparisons to Wetherbee et al. 1990; Corte´s et al. 2008). However, what is currently known about teleost nutritional beyond prey capture methods and dietary analyses, the physiology, as well as what methodology is used, and nutritional physiology of sharks is woefully under- describe how similar techniques can be used in shark studied.
    [Show full text]
  • The Dawn of American Cryptology, 1900–1917
    United States Cryptologic History The Dawn of American Cryptology, 1900–1917 Special Series | Volume 7 Center for Cryptologic History David Hatch is technical director of the Center for Cryptologic History (CCH) and is also the NSA Historian. He has worked in the CCH since 1990. From October 1988 to February 1990, he was a legislative staff officer in the NSA Legislative Affairs Office. Previously, he served as a Congressional Fellow. He earned a B.A. degree in East Asian languages and literature and an M.A. in East Asian studies, both from Indiana University at Bloomington. Dr. Hatch holds a Ph.D. in international relations from American University. This publication presents a historical perspective for informational and educational purposes, is the result of independent research, and does not necessarily reflect a position of NSA/CSS or any other US government entity. This publication is distributed free by the National Security Agency. If you would like additional copies, please email [email protected] or write to: Center for Cryptologic History National Security Agency 9800 Savage Road, Suite 6886 Fort George G. Meade, MD 20755 Cover: Before and during World War I, the United States Army maintained intercept sites along the Mexican border to monitor the Mexican Revolution. Many of the intercept sites consisted of radio-mounted trucks, known as Radio Tractor Units (RTUs). Here, the staff of RTU 33, commanded by Lieutenant Main, on left, pose for a photograph on the US-Mexican border (n.d.). United States Cryptologic History Special Series | Volume 7 The Dawn of American Cryptology, 1900–1917 David A.
    [Show full text]
  • Physiology of Elasmobranch Fishes: Structure and Interaction with Environment: Volume 34A Copyright R 2016 Elsevier Inc
    6 SWIMMING MECHANICS AND ENERGETICS OF ELASMOBRANCH FISHES GEORGE V. LAUDER VALENTINA DI SANTO 1. Introduction 2. Elasmobranch Locomotor Diversity 3. Elasmobranch Kinematics and Body Mechanics 4. Hydrodynamics of Elasmobranch Locomotion 5. The Remarkable Skin of Elasmobranchs and Its Locomotor Function 6. Energetics of Elasmobranch Locomotion 7. Climate Change: Effects on Elasmobranch Locomotor Function 8. Conclusions The remarkable locomotor capabilities of elasmobranch fishes are evident in the long migrations undertaken by many species, in their maneuverability, and in specialized structures such as the skin and shape of the pectoral and caudal fins that confer unique locomotor abilities. Elasmobranch locomotor diversity ranges from species that are primarily benthic to fast open-ocean swimmers, and kinematics and hydrodynamics are equally diverse. Many elongate-bodied shark species exhibit classical undulatory patterns of deformation, while skates and rays use their expanded wing-like locomotor structures in oscillatory and undulatory modes. Experimental hydrodynamic analysis of pectoral and caudal fin function in leopard sharks shows that pectoral fins, when held in the typical cruising position, do not generate lift forces, but are active in generating torques during unsteady swimming. The heterocercal (asymmetrical) tail shape generates torques that would rotate the body around the center of mass except for counteracting torques generated by the ventral body surface and head. The skin of sharks, with its hard surface denticles embedded in a flexible skin, alters flow dynamics over the surface and recent experimental data suggest that shark skin both reduces drag and enhances thrust on oscillating propulsive surfaces such as the tail. Analyses of elasmobranch 219 Physiology of Elasmobranch Fishes: Structure and Interaction with Environment: Volume 34A Copyright r 2016 Elsevier Inc.
    [Show full text]
  • The Physiological and Physical Response to Capture Stress in Sharks
    University of Plymouth PEARL https://pearl.plymouth.ac.uk The Plymouth Student Scientist - Volume 04 - 2011 The Plymouth Student Scientist - Volume 4, No. 1 - 2011 2011 The physiological and physical response to capture stress in sharks Hassanein, L. Hassanein, L. (2011) 'The physiological and physical response to capture stress in sharks', The Plymouth Student Scientist, 4(1), p. 413-422. http://hdl.handle.net/10026.1/13942 The Plymouth Student Scientist University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. The Plymouth Student Scientist, 2010, 4, (1), 413-422 The physiological and physical response to capture stress in sharks Laila Hassan Hassanein Project Advisor: Kath Sloman, School of Science, University of the West of Scotland, Paisley, Scotland PA1 Abstract Exhaustive exercise leads to severe metabolic, acid-base, ionic and hematological changes in sharks. It has been shown that these changes are species-specific and are affected by the magnitude of the cumulative effects of physiological and physical trauma associated with capture. Blood lactate, glucose and pH levels are reliable indicators of the shark stress response and have been extensively studied. Several shark species have been reported to be able to survive physiological stress unless severe physical trauma occurs. As comprehensive information about post release mortality is missing, future investigations should focus on the relationship between physiological disruption and survival rates of tagged and released sharks.
    [Show full text]
  • Review of Magnetic Shark Deterrents: Hypothetical
    Aquatic Science and Technology ISSN 2168-9148 2015, Vol. 3, No. 1 Review of Magnetic Shark Deterrents: Hypothetical Mechanisms and Evidence for Selectivity Joshua Courtney, Ya’el Courtney, Michael Courtney BTG Research Baton Rouge, Louisiana, USA Abstract Several papers published since 2006 describe effects of magnetic fields on elasmobranchs and assess their utility in reducing negative interactions between sharks and humans, including bycatch reduction. Most of these repeat a single untested hypothesis regarding physical mechanisms by which elasmobranchs detect magnetic fields and also neglect careful consideration of magnetoreception in teleosts. Several species of teleosts are known to have magnetoreception based in biogenic magnetite, and direct magnetic field detection also has support in several species of elasmobranchs. The overly narrow focus of earlier papers on the unsupported hypothesis that magnetoreception in elasmobranchs is based in the ampullae of Lorenzini creates the impression that all teleosts will be insensitive to magnetic deterrents. However, magnetite based magnetoreception has been demonstrated in several teleosts, and is supported in others. Furthermore, electroreception is present in many teleost species; therefore, the possibility of induction based indirect magnetoreception should be considered. Finally, experiments reported as demonstrating insensitivity in teleost species to magnetic deterrents suffer from inadequate design and sample sizes to reject the hypothesis of magnetic detection in any given species. Since adoption of deterrent hook technologies depends on both deterrent effects in sharks and the absence of effects in target teleosts, the hypothesis of detection in teleost species must be independently tested with adequate sample sizes. Keywords: Magnetic shark deterrents, Shark deterrents, Magnetoreception, Teleost, Elasmobranch 1.
    [Show full text]
  • Evolutionary Pathways Toward Gigantism in Sharks and Rays
    ORIGINAL ARTICLE doi:10.1111/evo.13680 Evolutionary pathways toward gigantism in sharks and rays Catalina Pimiento,1,2,3,4 Juan L. Cantalapiedra,2,5 Kenshu Shimada,6 Daniel J. Field,7 and Jeroen B. Smaers8 1Department of Biosciences, Swansea University, Swansea SA28PP, United Kingdom 2Museum fur¨ Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin 10115, Germany 3Smithsonian Tropical Research Institute, Balboa, Panama 4E-mail: [email protected] 5Departamento Ciencias de la Vida, Universidad de Alcala,´ Madrid, Spain 6Department of Environmental Science and Studies and Department of Biological Sciences, DePaul University, Chicago IL 60614 7Department of Earth Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EQ, UK 8Department of Anthropology, Stony Brook University, New York NY 11794 Received September 25, 2018 Accepted January 4, 2019 Through elasmobranch (sharks and rays) evolutionary history, gigantism evolved multiple times in phylogenetically distant species, some of which are now extinct. Interestingly, the world’s largest elasmobranchs display two specializations found never to overlap: filter feeding and mesothermy. The contrasting lifestyles of elasmobranch giants provide an ideal case study to elucidate the evolutionary pathways leading to gigantism in the oceans. Here, we applied a phylogenetic approach to a global dataset of 459 taxa to study the evolution of elasmobranch gigantism. We found that filter feeders and mesotherms deviate from general relationships between trophic level and body size, and exhibit significantly larger sizes than ectothermic-macropredators. We confirm that filter feeding arose multiple times during the Paleogene, and suggest the possibility of a single origin of mesothermy in the Cretaceous. Together, our results elucidate two main evolutionary pathways that enable gigantism: mesothermic and filter feeding.
    [Show full text]