Supplementary Table 1

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Table 1 Supplementary Table S1: Sequence completeness of 293 taxa shown in percentages of amino acid positions (AA) in the supermatrix. Taxa in bold (148) were selected for phylogenetic analyses. Highlights indicate taxa that have been combined in chimeric sequences resulting a final dataset of 109 operational taxonomic units (OTUs). AA positions in Operational taxonomic unit supermatrix Acanthamoeba castellanii Acastellanii_strNEFF_v1 78% Acanthamoeba castellanii N/A 2% Acanthocystis sp. N/A 90% Alexandrium monilatum CCMP3105 89% Amastigomonas sp. N/A 85% Amoebophrya sp. N/A 83% Amphidinium carterae CCMP1314 92% Ancoracysta twista TD 81% Aplanochytrium kerguelense N/A 84% Aplanochytrium sp. PBS07 75% Aplanochytrium stocchinoi GSBS06 68% Arabidopsis lyrata N/A 38% Arabidopsis thaliana N/A 23% Arabidopsis thaliana TAIR10 94% Aristerostoma sp. ATCC50986 65% Asterionellopsis glacialis CCMP134 88% Asterionellopsis glacialis CCMP1581 84% Asterionellopsis glacialis N/A 12% Astrolonche serrata N/A 46% Aurantiochytrium limacinum N/A 89% Aureococcus anophagefferens N/A 88% Aureoumbra lagunensis CCMP1510 75% Babesia bovis N/A 81% Batrachochytrium dendrobatidis N/A 94% Bigelowiella natans N/A 90% Blastocystis hominis N/A 82% Blastocystis sp. subtype_4 82% Bodo saltans N/A 85% Bolidomonas pacifica CCMP1866 92% Bolidomonas pacifica RCC208 85% Bolidomonas sp. RCC2347 85% Brachypodium distachyon N/A 90% Branchiostoma floridae N/A 95% Breviata anathema N/A 37% Cafeteria roenbergensis E4-10 65% Cafeteria sp. CaronLabIsolate 85% Calcidiscus leptoporus RCC1130 85% Capsaspora owczarzaki C_owczarzaki_V2 91% Capsaspora owczarzaki N/A 6% Chattonella subsalsa CCMP2191 90% Chlamydomonas reinhardtii N/A 92% Chlorarachnion reptans CCCM449 85% Chlorella vulgaris N/A 83% Choanocystis sp. N/A 90% Chondrus crispus N/A 83% Chromera velia CCMP2878 75% Chromera velia N/A 14% Chroomonas mesostigmatica CCMP1168 93% Chrysoculter rhomboideus RCC1486 77% Climacostomum virens StockW-24 64% Coccomyxa sp. N/A 92% Coleochaete scutata N/A 67% Collodictyon sp. N/A 40% Colpodella angusta N/A 35% Colpodella edax N/A 68% Colpodella sp. N/A 62% Compsopogon caeruleus SAG36.94 58% Crypthecodinium cohnii Seligo 91% Cryptococcus neoformans N/A 88% Cryptomonas curvata CCAP979_52 83% Cryptophyceae sp. CCMP2293 94% Cryptophyceae sp. N/A 94% Cryptosporidium muris N/A 82% Cunea sp. BSH-02190019_may 83% Cyanidioschyzon merolae N/A 76% Cyanophora paradoxa N/A 85% Cyanoptyche gloeocystis SAG4.97 71% Danio rerio N/A 92% Daphnia pulex N/A 90% Dictyocha speculum CCMP1381 91% Dictyostelium discoideum N/A 90% Dictyostelium lacteum ASM160615v1 91% Dictyostelium purpureum N/A 87% Ditylum brightwellii GSO103 83% Ditylum brightwellii GSO105 90% Drosophila melanogaster BDGP6 97% Ectocarpus siliculosus N/A 95% Elphidium margaritaceum N/A 85% Emiliania huxleyi 374 63% Emiliania huxleyi 379 73% Emiliania huxleyi CCMP370 76% Emiliania huxleyi PLYM219 79% Emiliania huxleyi N/A 6% Erythranthe guttata N/A 90% Erythrolobus australicus CCMP3124 57% Erythrolobus madagascarensis CCMP3276 56% Euplotes focardii TN1 71% Euplotes harpa FSP1.4 71% Eutreptiella gymnastica CCMP1594 44% Eutreptiella gymnastica NIES-381 44% Fibrocapsa japonica CCMP1661 77% Galdieria sulphuraria N/A 83% Geminigera cryophila CCMP2564 95% Geminigera sp. N/A 93% Gloeochaete wittrockiana SAG46.84 89% Goniomonas pacifica CCMP1869 91% Goniomonas pacifica N/A 8% Goniomonas sp. m 78% Gromia sphaerica N/A 52% Gromia sphaerica SRR2003399 32% Guillardia theta N/A 96% Hammondia hammondi HHA1_v02 91% Haptolina brevifila UTEXLB985 87% Hematodinium sp. N/A 69% Hematodinium sp. SG-2015 2% Hemiselmis andersenii CCMP1180 22% Hemiselmis andersenii CCMP439 22% Hemiselmis andersenii CCMP441 10% Hemiselmis andersenii CCMP644 40% Hemiselmis rufescens PCC563 91% Heterosigma akashiwo CCMP2393 82% Homo sapiens N/A 99% Ichthyophthirius multifiliis N/A 83% Isochrysis galbana CCMP1323 91% Isochrysis galbana N/A 3% Jakoba bahamiensis N/A 27% Jakoba libera N/A 24% Karenia brevis CCMP2229 40% Karenia brevis SP1 17% Karenia brevis SP3 7% Karenia brevis Wilson 31% Karlodinium veneficum CCMP2283 94% Karlodinium veneficum N/A 18% Leptocylindrus danicus B650 90% Leptocylindrus danicus CCMP1856 87% Leptomonas pyrrhocoris ASM129339v1 95% Litonotus pictus P1 56% Lottia gigantea N/A 91% Madagascaria erythrocladoides CCMP3234 60% Malawimonas californiana N/A 34% Malawimonas jakobiformis N/A 44% Mallomonas sp. CCMP3275 81% Mantoniella antarctica SL-175 85% Mantoniella sp. CCMP1436 78% Mesostigma viride n/a 58% Mesostigma viride N/A 29% Micromonas sp. CCMP2099 72% Micromonas sp. N/A 73% Micromonas sp. NEPCC29 54% Micromonas sp. RCC472 54% Moneuplotes crassus CT5 71% Monosiga brevicollis N/A 88% Mus musculus N/A 99% Naegleria gruberi N/A 79% Nannochloropsis gaditana ASM24072v1 19% Nannochloropsis gaditana N/A 26% Nannochloropsis gaditana NagaB31_1 83% Nematostella vectensis N/A 95% Neobodo designis CCAP1951_1 90% Nephroselmis pyriformis CCMP717 83% Neurospora crassa N/A 87% Noctiluca scintillans N/A 86% Nuclearia sp. SRR1617645 89% Nutomonas longa SRR1617398 78% Ochromonas sp. BG-1 81% Ochromonas sp. CCMP1393 92% Ochromonas sp. CCMP1899 82% Odontella aurita isolate1302-5 91% Oryza sativa N/A 92% Ostreococcus lucimarinus clade-A-BCC118000 68% Ostreococcus lucimarinus N/A 46% Ostreococcus mediterraneus clade-D-RCC1107 72% Ostreococcus mediterraneus clade-D-RCC1621 69% Ostreococcus mediterraneus clade-D-RCC2572 73% Ostreococcus mediterraneus clade-D-RCC2573 69% Ostreococcus mediterraneus clade-D-RCC2593 72% Ostreococcus mediterraneus clade-D-RCC2596 77% Oxyrrhis marina CCMP1795 26% Oxyrrhis marina LB1974 90% Oxyrrhis marina n/a 85% Oxyrrhis marina N/A 20% Oxytricha trifallax oxytricha_asm_v1.1 93% Oxytricha trifallax Oxytricha_MIC_v2.0 0% Palpitomonas bilix NIES-2562 78% Paramecium tetraurelia N/A 82% Paraphysomonas bandaiensis N/A 97% Paraphysomonas imperforata PA2 85% Pavlovales sp. N/A 92% Undescribed Pavlovaceae CCMP2436 90% Pelagomonas calceolata CCMP1756 92% Pelagomonas calceolata RCC969 81% Percolomonas cosmopolitus AE-1 68% Percolomonas cosmopolitus WS 81% Perkinsela sp. ASM123584v1 77% Perkinsus marinus N/A 84% Phaeocystis antarctica CaronLabIsolate 60% Phaeocystis antarctica CCMP1374 35% Phaeocystis sp. CCMP2710 77% Phaeodactylum tricornutum N/A 89% Phaeomonas parva CCMP2877 73% Pinguiococcus pyrenoidosus CCMP2078 60% Phycomyces blakesleeanus N/A 90% Physcomitrella patens N/A 93% Phytophthora capsici N/A 77% Phytophthora infestans ASM14294v1 96% Phytophthora ramorum ASM14973v1 96% Phytophthora ramorum N/A 2% Phytophthora sojae N/A 13% Phytophthora sojae P_sojae_V3_0 95% Picobiliphyte sp. MS584-11 23% Picocystis salinarum CCMP1897 64% Plasmodiophora brassicae N/A 9% Plasmodiophora brassicae pbe3.h15 94% Plasmodium chabaudi N/A 28% Plasmodium chabaudi PCHAS01 87% Plasmodium falciparum N/A 15% Plasmodium falciparum Plas_falc_7G8_V1 84% Platyophrya macrostoma WH 85% Pleurochrysis carterae CCMP645 95% Polysphondylium pallidum N/A 90% Populus trichocarpa N/A 92% Porphyra purpurea N/A 64% Porphyra umbilicalis 4086291 81% Porphyra umbilicalis N/A 63% Porphyridium aerugineum SAG1380-2 62% Porphyridium purpureum N/A 83% Prasinoderma singulare RCC927 78% Protocruzia adherens Boccale 71% Prymnesium parvum N/A 2% Prymnesium parvum Texoma1 93% Prymnesium polylepis CCMP1757 84% Prymnesium polylepis UIO037 8% Pseudokeronopsis sp. Brazil 61% Pseudokeronopsis sp. OXSARD2 59% Pseudopedinella elastica CCMP716 93% Pycnococcus sp. CCMP1998 62% Undescribed Chlorophyta RCC1871 66% Undescribed Chlorophyta RCC2335 54% Pygsuia biforma N/A 90% Pyramimonas sp. CCMP2087 90% Raineriophrys erinaceoides N/A 92% Raphidiophrys ambigua N/A 46% Raphidiophrys heterophryoidea N/A 92% Reclinomonas americana N/A 52% Reticulomyxa filosa N/A 93% Rhizochromulina marina CCMP1243 87% Rhizopus delemar RO3 91% Rhodella violacea CCMP736 71% Rhodomonas abbreviata CaronLabIsolate 84% Rhodomonas sp. CCMP768 86% Rhodosorus marinus CCMP769 75% Rhodosorus marinus UTEXLB2760 75% Roombia truncata N/A 69% Salpingoeca rosetta Proterospongia_sp_ATCC50818 93% Salpingoeca sp. N/A 16% Saprolegnia diclina Sap_diclina_VS20_V1 98% Saprolegnia parasitica N/A 91% Sawyeria marylandensis N/A 38% Schizochytrium aggregatum N/A 89% Schizosaccharomyces pombe ASM294v2 90% Schizosaccharomyces pombe N/A 5% Schmidingerella taraikaensis FeNarragansettBay 65% Scyphosphaera apsteinii RCC1455 86% Seculamonas ecuadoriensis N/A 35% Selaginella moellendorffii N/A 92% Sexangularia sp. ATCC50979 64% Spizellomyces punctatus S_punctatus_V1 96% Spumella elongata CCAP955_1 95% Stereomyxa ramosa Chinc5 79% Sterkiella histriomuscorum N/A 82% Strombidinopsis acuminatum SPMC142 65% Strombidinopsis sp. SopsisLIS2011 52% Strombidium inclinatum S3 72% Strombidium rassoulzadegani ras09 73% Symbiodinium sp. C1 93% Symbiodinium sp. C15 88% Synchroma pusillum CCMP3072 79% Telonema sp. P1 58% Telonema sp. P2 98% Telonema subtile N/A 56% Telonema subtile Tel-1 99% Tetrahymena thermophila N/A 89% Tetraselmis astigmatica CCMP880 91% Thalassiosira pseudonana N/A 90% Thalassiosira rotula CCMP3096 92% Thalassiosira rotula GSO102 87% Thecamonas trahens N/A 79% Thraustochytrium sp. LLF1b 88% Toxoplasma gondii N/A 85% Trichoplax adhaerens ASM15027v1 96% Trichosphaerium sp. Am-I-7wt 72% Tsukubamonas globosa N/A 67% Undescribed Rhizaria D1 92% Undescribed Stramenopila-Sagenista MAST4 42% Ustilago maydis N/A 83% Vannella sp. DIVA3517_6_12 82% Vaucheria litorea CCMP2940 70% Vitrella brassicaformis CCMP3155 69% Vitrella brassicaformis Vbrassicaformis 96% Volvox carteri N/A 93% Voromonas pontica GG 60% Voromonas pontica N/A 18% Zea mays AGPv4 92%.
Recommended publications
  • An Aerobic Eukaryotic Parasite with Functional Mitochondria That Likely
    An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome Uwe John, Yameng Lu, Sylke Wohlrab, Marco Groth, Jan Janouškovec, Gurjeet Kohli, Felix Mark, Ulf Bickmeyer, Sarah Farhat, Marius Felder, et al. To cite this version: Uwe John, Yameng Lu, Sylke Wohlrab, Marco Groth, Jan Janouškovec, et al.. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Science Advances , American Association for the Advancement of Science (AAAS), 2019, 5 (4), pp.eaav1110. 10.1126/sci- adv.aav1110. hal-02372304 HAL Id: hal-02372304 https://hal.archives-ouvertes.fr/hal-02372304 Submitted on 25 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SCIENCE ADVANCES | RESEARCH ARTICLE EVOLUTIONARY BIOLOGY Copyright © 2019 The Authors, some rights reserved; An aerobic eukaryotic parasite with functional exclusive licensee American Association mitochondria that likely lacks a mitochondrial genome for the Advancement Uwe John1,2*, Yameng Lu1,3, Sylke Wohlrab1,2, Marco Groth4, Jan Janouškovec5, Gurjeet S. Kohli1,6, of Science. No claim to 1 1 7 4 1,8 original U.S. Government Felix C. Mark , Ulf Bickmeyer , Sarah Farhat , Marius Felder , Stephan Frickenhaus , Works.
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Systema Naturae∗
    Systema Naturae∗ c Alexey B. Shipunov v. 5.802 (June 29, 2008) 7 Regnum Monera [ Bacillus ] /Bacteria Subregnum Bacteria [ 6:8Bacillus ]1 Superphylum Posibacteria [ 6:2Bacillus ] stat.m. Phylum 1. Firmicutes [ 6Bacillus ]2 Classis 1(1). Thermotogae [ 5Thermotoga ] i.s. 2(2). Mollicutes [ 5Mycoplasma ] 3(3). Clostridia [ 5Clostridium ]3 4(4). Bacilli [ 5Bacillus ] 5(5). Symbiobacteres [ 5Symbiobacterium ] Phylum 2. Actinobacteria [ 6Actynomyces ] Classis 1(6). Actinobacteres [ 5Actinomyces ] Phylum 3. Hadobacteria [ 6Deinococcus ] sed.m. Classis 1(7). Hadobacteres [ 5Deinococcus ]4 Superphylum Negibacteria [ 6:2Rhodospirillum ] stat.m. Phylum 4. Chlorobacteria [ 6Chloroflexus ]5 Classis 1(8). Ktedonobacteres [ 5Ktedonobacter ] sed.m. 2(9). Thermomicrobia [ 5Thermomicrobium ] 3(10). Chloroflexi [ 5Chloroflexus ] ∗Only recent taxa. Viruses are not included. Abbreviations and signs: sed.m. (sedis mutabilis); stat.m. (status mutabilis): s., aut i. (superior, aut interior); i.s. (incertae sedis); sed.p. (sedis possibilis); s.str. (sensu stricto); s.l. (sensu lato); incl. (inclusum); excl. (exclusum); \quotes" for environmental groups; * (asterisk) for paraphyletic taxa; / (slash) at margins for major clades (\domains"). 1Incl. \Nanobacteria" i.s. et dubitativa, \OP11 group" i.s. 2Incl. \TM7" i.s., \OP9", \OP10". 3Incl. Dictyoglomi sed.m., Fusobacteria, Thermolithobacteria. 4= Deinococcus{Thermus. 5Incl. Thermobaculum i.s. 1 4(11). Dehalococcoidetes [ 5Dehalococcoides ] 5(12). Anaerolineae [ 5Anaerolinea ]6 Phylum 5. Cyanobacteria [ 6Nostoc ] Classis 1(13). Gloeobacteres [ 5Gloeobacter ] 2(14). Chroobacteres [ 5Chroococcus ]7 3(15). Hormogoneae [ 5Nostoc ] Phylum 6. Bacteroidobacteria [ 6Bacteroides ]8 Classis 1(16). Fibrobacteres [ 5Fibrobacter ] 2(17). Chlorobi [ 5Chlorobium ] 3(18). Salinibacteres [ 5Salinibacter ] 4(19). Bacteroidetes [ 5Bacteroides ]9 Phylum 7. Spirobacteria [ 6Spirochaeta ] Classis 1(20). Spirochaetes [ 5Spirochaeta ] s.l.10 Phylum 8. Planctobacteria [ 6Planctomyces ]11 Classis 1(21).
    [Show full text]
  • Molecular Phylogenetic Analysis in Hammondia-Like Organisms Based on Partial Hsp70 Coding Sequences
    1195 Molecular phylogenetic analysis in Hammondia-like organisms based on partial Hsp70 coding sequences R. M. MONTEIRO1, L. J. RICHTZENHAIN1,H.F.J.PENA1,S.L.P.SOUZA1, M. R. FUNADA1, S. M. GENNARI1, J. P. DUBEY2, C. SREEKUMAR2,L.B.KEID1 and R. M. SOARES1* 1 Departamento de Medicina Veterina´ria Preventiva e Sau´de Animal, Faculdade de Medicina Veterina´ria e Zootecnia, Universidade de Sa˜o Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, CEP 05508-900, Sa˜o Paulo, SP, Brazil 2 Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, United States Department of Agricultural, Building 1001, Beltsville, MD 20705, USA (Resubmitted 7 January 2007; revised 31 January 2007; accepted 5 February 2007; first published online 27 April 2007) SUMMARY The 70 kDa heat-shock protein (Hsp70) sequences are considered one of the most conserved proteins in all domains of life from Archaea to eukaryotes. Hammondia heydorni, H. hammondi, Toxoplasma gondii, Neospora hughesi and N. caninum (Hammondia-like organisms) are closely related tissue cyst-forming coccidians that belong to the subfamily Toxoplasmatinae. The phylogenetic reconstruction using cytoplasmic Hsp70 coding genes of Hammondia-like organisms revealed the genetic sequences of T. gondii, Neospora spp. and H. heydorni to possess similar levels of evolutionary distance. In addition, at least 2 distinct genetic groups could be recognized among the H. heydorni isolates. Such results are in agreement with those obtained with internal transcribed spacer-1 rDNA (ITS-1) sequences. In order to compare the nucleotide diversity among different taxonomic levels within Apicomplexa, Hsp70 coding sequences of the following apicomplexan organisms were included in this study: Cryptosporidium, Theileria, Babesia, Plasmodium and Cyclospora.
    [Show full text]
  • The Transcriptome of the Avian Malaria Parasite Plasmodium
    bioRxiv preprint doi: https://doi.org/10.1101/072454; this version posted August 31, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The Transcriptome of the Avian Malaria Parasite 2 Plasmodium ashfordi Displays Host-Specific Gene 3 Expression 4 5 6 7 8 Running title 9 The Transcriptome of Plasmodium ashfordi 10 11 Authors 12 Elin Videvall1, Charlie K. Cornwallis1, Dag Ahrén1,3, Vaidas Palinauskas2, Gediminas Valkiūnas2, 13 Olof Hellgren1 14 15 Affiliation 16 1Department of Biology, Lund University, Lund, Sweden 17 2Institute of Ecology, Nature Research Centre, Vilnius, Lithuania 18 3National Bioinformatics Infrastructure Sweden (NBIS), Lund University, Lund, Sweden 19 20 Corresponding authors 21 Elin Videvall ([email protected]) 22 Olof Hellgren ([email protected]) 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/072454; this version posted August 31, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 Abstract 26 27 Malaria parasites (Plasmodium spp.) include some of the world’s most widespread and virulent 28 pathogens, infecting a wide array of vertebrates. Our knowledge of the molecular mechanisms these 29 parasites use to invade and exploit hosts other than mice and primates is, however, extremely limited. 30 How do Plasmodium adapt to individual hosts and to the immune response of hosts throughout an 31 infection? To better understand parasite plasticity, and identify genes that are conserved across the 32 phylogeny, it is imperative that we characterize transcriptome-wide gene expression from non-model 33 malaria parasites in multiple host individuals.
    [Show full text]
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • Transcriptomic Analysis Reveals Evidence for a Cryptic Plastid in the Colpodellid Voromonas Pontica, a Close Relative of Chromerids and Apicomplexan Parasites
    Transcriptomic Analysis Reveals Evidence for a Cryptic Plastid in the Colpodellid Voromonas pontica, a Close Relative of Chromerids and Apicomplexan Parasites Gillian H. Gile*, Claudio H. Slamovits Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Abstract Colpodellids are free-living, predatory flagellates, but their close relationship to photosynthetic chromerids and plastid- bearing apicomplexan parasites suggests they were ancestrally photosynthetic. Colpodellids may therefore retain a cryptic plastid, or they may have lost their plastids entirely, like the apicomplexan Cryptosporidium. To find out, we generated transcriptomic data from Voromonas pontica ATCC 50640 and searched for homologs of genes encoding proteins known to function in the apicoplast, the non-photosynthetic plastid of apicomplexans. We found candidate genes from multiple plastid-associated pathways including iron-sulfur cluster assembly, isoprenoid biosynthesis, and tetrapyrrole biosynthesis, along with a plastid-type phosphate transporter gene. Four of these sequences include the 59 end of the coding region and are predicted to encode a signal peptide and a transit peptide-like region. This is highly suggestive of targeting to a cryptic plastid. We also performed a taxon-rich phylogenetic analysis of small subunit ribosomal RNA sequences from colpodellids and their relatives, which suggests that photosynthesis was lost more than once in colpodellids, and independently in V. pontica and apicomplexans. Colpodellids therefore represent a valuable source of comparative data for understanding the process of plastid reduction in humanity’s most deadly parasite. Citation: Gile GH, Slamovits CH (2014) Transcriptomic Analysis Reveals Evidence for a Cryptic Plastid in the Colpodellid Voromonas pontica, a Close Relative of Chromerids and Apicomplexan Parasites.
    [Show full text]
  • The Florida Red Tide Dinoflagellate Karenia Brevis
    G Model HARALG-488; No of Pages 11 Harmful Algae xxx (2009) xxx–xxx Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Review The Florida red tide dinoflagellate Karenia brevis: New insights into cellular and molecular processes underlying bloom dynamics Frances M. Van Dolah a,*, Kristy B. Lidie a, Emily A. Monroe a, Debashish Bhattacharya b, Lisa Campbell c, Gregory J. Doucette a, Daniel Kamykowski d a Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Resarch, Charleston, SC, United States b Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, IA, United States c Department of Oceanography, Texas A&M University, College Station, TX, United States d Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States ARTICLE INFO ABSTRACT Article history: The dinoflagellate Karenia brevis is responsible for nearly annual red tides in the Gulf of Mexico that Available online xxx cause extensive marine mortalities and human illness due to the production of brevetoxins. Although the mechanisms regulating its bloom dynamics and toxicity have received considerable attention, Keywords: investigation into these processes at the cellular and molecular level has only begun in earnest during Bacterial–algal interactions the past decade. This review provides an overview of the recent advances in our understanding of the Cell cycle cellular and molecular biology on K. brevis. Several molecular resources developed for K. brevis, including Dinoflagellate cDNA and genomic DNA libraries, DNA microarrays, metagenomic libraries, and probes for population Florida red tide genetics, have revolutionized our ability to investigate fundamental questions about K.
    [Show full text]
  • Control of Intestinal Protozoa in Dogs and Cats
    Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 1 ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ, United Kingdom First Edition Published by ESCCAP in August 2011 Second Edition Published in February 2018 © ESCCAP 2018 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-53-1 2 TABLE OF CONTENTS INTRODUCTION 4 1: CONSIDERATION OF PET HEALTH AND LIFESTYLE FACTORS 5 2: LIFELONG CONTROL OF MAJOR INTESTINAL PROTOZOA 6 2.1 Giardia duodenalis 6 2.2 Feline Tritrichomonas foetus (syn. T. blagburni) 8 2.3 Cystoisospora (syn. Isospora) spp. 9 2.4 Cryptosporidium spp. 11 2.5 Toxoplasma gondii 12 2.6 Neospora caninum 14 2.7 Hammondia spp. 16 2.8 Sarcocystis spp. 17 3: ENVIRONMENTAL CONTROL OF PARASITE TRANSMISSION 18 4: OWNER CONSIDERATIONS IN PREVENTING ZOONOTIC DISEASES 19 5: STAFF, PET OWNER AND COMMUNITY EDUCATION 19 APPENDIX 1 – BACKGROUND 20 APPENDIX 2 – GLOSSARY 21 FIGURES Figure 1: Toxoplasma gondii life cycle 12 Figure 2: Neospora caninum life cycle 14 TABLES Table 1: Characteristics of apicomplexan oocysts found in the faeces of dogs and cats 10 Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 3 INTRODUCTION A wide range of intestinal protozoa commonly infect dogs and cats throughout Europe; with a few exceptions there seem to be no limitations in geographical distribution.
    [Show full text]
  • Raphidiophrys Contractilis
    Kobe University Repository : Thesis Mechanism of β-1,3-glucan mediated food uptake in the protozoon 学位論文題目 Raphidiophrys contractilis(原生生物Raphidiophrys contractilis におけ Title るβ-1, 3-グルカンが介在する捕食機構) 氏名 MOUSUMI BHADRA Author 専攻分野 博士(理学) Degree 学位授与の日付 2017-09-25 Date of Degree 公開日 2018-09-25 Date of Publication 資源タイプ Thesis or Dissertation / 学位論文 Resource Type 報告番号 甲第7000号 Report Number 権利 Rights JaLCDOI URL http://www.lib.kobe-u.ac.jp/handle_kernel/D1007000 ※当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。 PDF issue: 2021-10-07 Doctoral Dissertation Mechanism of β-1, 3-glucan mediated food uptake in the protozoon Raphidiophrys contractilis 原生生物 Raphidiophrys contractilis における β-1, 3-グルカンが介在する捕食機構 July 2017 Graduate School of Science Kobe University Mousumi Bhadra Contents Acknowledgements ............................................................................................................ 2 Summary ........................................................................................................................... 3 Chapter 1: Introductory review............................................................................................ 7 Chapter 2: Proteins required for food capturing in Raphidiophrys contractilis..................... 11 2.1. Introduction ....................................................................................................... 11 2.2. Materials and methods ........................................................................................ 15 2.3. Results ..............................................................................................................
    [Show full text]
  • The Mitochondrial Genome and Transcriptome of the Basal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE GBEprovided by PubMed Central The Mitochondrial Genome and Transcriptome of the Basal Dinoflagellate Hematodinium sp.: Character Evolution within the Highly Derived Mitochondrial Genomes of Dinoflagellates C. J. Jackson, S. G. Gornik, and R. F. Waller* School of Botany, University of Melbourne, Australia *Corresponding author: E-mail: [email protected]. Accepted: 12 November 2011 Abstract The sister phyla dinoflagellates and apicomplexans inherited a drastically reduced mitochondrial genome (mitochondrial DNA, mtDNA) containing only three protein-coding (cob, cox1, and cox3) genes and two ribosomal RNA (rRNA) genes. In apicomplexans, single copies of these genes are encoded on the smallest known mtDNA chromosome (6 kb). In dinoflagellates, however, the genome has undergone further substantial modifications, including massive genome amplification and recombination resulting in multiple copies of each gene and gene fragments linked in numerous combinations. Furthermore, protein-encoding genes have lost standard stop codons, trans-splicing of messenger RNAs (mRNAs) is required to generate complete cox3 transcripts, and extensive RNA editing recodes most genes. From taxa investigated to date, it is unclear when many of these unusual dinoflagellate mtDNA characters evolved. To address this question, we investigated the mitochondrial genome and transcriptome character states of the deep branching dinoflagellate Hematodinium sp. Genomic data show that like later-branching dinoflagellates Hematodinium sp. also contains an inflated, heavily recombined genome of multicopy genes and gene fragments. Although stop codons are also lacking for cox1 and cob, cox3 still encodes a conventional stop codon. Extensive editing of mRNAs also occurs in Hematodinium sp.
    [Show full text]
  • Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture
    Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture 著者 西村 祐貴 内容記述 この博士論文は内容の要約のみの公開(または一部 非公開)になっています year 2016 その他のタイトル プロティストミトコンドリアの多様性と進化:イン トロン、遺伝子組成、ゲノム構造 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2015 報告番号 12102甲第7737号 URL http://hdl.handle.net/2241/00144261 Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science (Doctral Program in Biologial Sciences) Yuki NISHIMURA Table of Contents Abstract ........................................................................................................................... 1 Genes encoded in mitochondrial genomes of eukaryotes ..................................................... 3 Terminology .......................................................................................................................... 4 Chapter 1. General introduction ................................................................................ 5 The origin and evolution of mitochondria ............................................................................ 5 Mobile introns in mitochondrial genome .............................................................................. 6 The organisms which are lacking in mitochondrial genome data ........................................ 8 Chapter 2. Lateral transfers of mobile introns
    [Show full text]