And Adenosine 3'56Monophosphate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Of Severe Jaundice of the Newborn by L
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.18.1.17 on 1 February 1955. Downloaded from J. Neurol. Neurosurg. Psychiat., 1955, 18, 17. MORPHOLOGICAL NERVOUS CHANGES IN SURVIVORS OF SEVERE JAUNDICE OF THE NEWBORN BY L. CROME From the Neuropathology Department, the Fountain Hospital, London The clinical sequelae of Rh sensitization have the neonatal period with hydrops foetalis or, more been fully described by Pentschew (1948), Pickles commonly, icterus gravis, and, on the other hand, (1949), and Evans and Polani (1950). The clinical on a small total of 17 morphological descriptions variability of the condition is well known, but it of cases of established residual kemicterus, some tends to follow, nevertheless, a certain pattern. A of which were of doubtful aetiology. stormy neonatal period with jaundice, drowsiness, The structural changes found in the early fatal feeding difficulties, opisthotonos, and respiratory cases of Rh sensitization are characterized by disturbances is usually followed between the ages of generalized jaundice with staining by bilirubin of 1 and 2 years by a "silent" period. After that, certain focal areas of the grey matter of the central guest. Protected by copyright. rigidity, intermittent opisthotonos, and involuntary nervous system, a blood picture marked by erythro- movements make their appearance. Hypertonia blastosis and haemolysis, and some less constant may be present and this may be replaced by the findings in other organs such as persistence of intermittent spasms of athetosis. Involuntary haemopoietic foci in the liver and spleen, increase choreiform movements may set in later, and deafness in size and weight of the liver and spleen, and the is also common. -
Amygdaloid Projections to the Ventral Striatum in Mice: Direct and Indirect Chemosensory Inputs to the Brain Reward System
ORIGINAL RESEARCH ARTICLE published: 22 August 2011 NEUROANATOMY doi: 10.3389/fnana.2011.00054 Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system Amparo Novejarque1†, Nicolás Gutiérrez-Castellanos2†, Enrique Lanuza2* and Fernando Martínez-García1* 1 Departament de Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, València, Spain 2 Departament de Biologia Cel•lular, Facultat de Ciències Biològiques, Universitat de València, València, Spain Edited by: Rodents constitute good models for studying the neural basis of sociosexual behavior. Agustín González, Universidad Recent findings in mice have revealed the molecular identity of the some pheromonal Complutense de Madrid, Spain molecules triggering intersexual attraction. However, the neural pathways mediating this Reviewed by: Daniel W. Wesson, Case Western basic sociosexual behavior remain elusive. Since previous work indicates that the dopamin- Reserve University, USA ergic tegmento-striatal pathway is not involved in pheromone reward, the present report James L. Goodson, Indiana explores alternative pathways linking the vomeronasal system with the tegmento-striatal University, USA system (the limbic basal ganglia) by means of tract-tracing experiments studying direct *Correspondence: and indirect projections from the chemosensory amygdala to the ventral striato-pallidum. Enrique Lanuza, Departament de Biologia Cel•lular, Facultat de Amygdaloid projections to the nucleus accumbens, olfactory tubercle, and adjoining struc- Ciències Biològiques, Universitat de tures are studied by analyzing the retrograde transport in the amygdala from dextran València, C/Dr. Moliner, 50 ES-46100 amine and fluorogold injections in the ventral striatum, as well as the anterograde labeling Burjassot, València, Spain. found in the ventral striato-pallidum after dextran amine injections in the amygdala. -
Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: a Comparative in Situ Hybridization Analysis
The Journal of Neuroscience, March 1993. 73(3): 1258-1279 Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: A Comparative in situ Hybridization Analysis Martin K.-H. Schafer,i-a Robert Day,* William E. Cullinan,’ Michel Chri?tien,3 Nabil G. Seidah,* and Stanley J. Watson’ ‘Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0720 and J. A. DeSeve Laboratory of *Biochemical and 3Molecular Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada H2W lR7 Posttranslational processing of proproteins and prohor- The participation of neuropeptides in the modulation of a va- mones is an essential step in the formation of bioactive riety of CNS functions is well established. Many neuropeptides peptides, which is of particular importance in the nervous are synthesized as inactive precursor proteins, which undergo system. Following a long search for the enzymes responsible an enzymatic cascade of posttranslational processing and mod- for protein precursor cleavage, a family of Kexin/subtilisin- ification events during their intracellular transport before the like convertases known as PCl, PC2, and furin have recently final bioactive products are secreted and act at either pre- or been characterized in mammalian species. Their presence postsynaptic receptors. Initial endoproteolytic cleavage occurs in endocrine and neuroendocrine tissues has been dem- C-terminal to pairs of basic amino acids such as lysine-arginine onstrated. This study examines the mRNA distribution of (Docherty and Steiner, 1982) and is followed by the removal these convertases in the rat CNS and compares their ex- of the basic residues by exopeptidases. Further modifications pression with the previously characterized processing en- can occur in the form of N-terminal acetylation or C-terminal zymes carboxypeptidase E (CPE) and peptidylglycine a-am- amidation, which is essential for the bioactivity of many neu- idating monooxygenase (PAM) using in situ hybridization ropeptides. -
Neonatal Nonhandling and in Utero Prenatal Stress Reduce the Density of NADPH-Diaphorase-Reactive Neurons in the Fascia Dentata and Ammon’S Horn of Rats
The Journal of Neuroscience, July 15, 1997, 17(14):5599–5609 Neonatal Nonhandling and In Utero Prenatal Stress Reduce the Density of NADPH-Diaphorase-Reactive Neurons in the Fascia Dentata and Ammon’s Horn of Rats R. R. Vaid,1 B. K. Yee,2 U. Shalev,3 J. N. P. Rawlins,2 I. Weiner,3 J. Feldon,3 and S. Totterdell1 1Department of Pharmacology, University of Oxford, Oxford OX1 3QT, England, 2Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, England, and 3Department of Psychology, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel 69978 The density of nitric oxide (NO)-producing neurons in the fascia fascia dentata, and within Ammon’s horn the dorsal region was dentata and Ammon’s horn was assessed in 6-month-old male selectively more affected. Experiment 2 showed that prenatal rats using NADPH-diaphorase (NADPH-d) histochemistry. Two stress, which involved the administration of daily restraint separate experiments investigated whether (1) the complete stress to pregnant dams throughout the gestation period, also absence of neonatal handling or (2) the administration of peri- led to a reduction in NADPH-d reactivity in the hippocampus of odic prenatal stress could affect the expression and distribution the offspring of these dam when they reached adulthood. of NADPH-d reactivity in the hippocampus, when compared The present results suggest that behavioral manipulations in with rats raised in normal standard laboratory conditions. Ex- the early neonatal or prenatal period can significantly alter the periment 1 demonstrated that adult rats that received no han- neurodevelopment of the hippocampal NO system and these dling during neonatal development (from birth to postnatal day changes might be related to some of the behavioral abnormal- 22) showed a very substantial reduction in NADPH-d-positive ities that emerge later in adulthood. -
Olfactory Maps, Circuits and Computations
Available online at www.sciencedirect.com ScienceDirect Olfactory maps, circuits and computations Andrew J Giessel and Sandeep Robert Datta Sensory information in the visual, auditory and somatosensory between local positional features to extract information systems is organized topographically, with key sensory features like object identity, depth and motion [4–6]. Unlike the ordered in space across neural sheets. Despite the existence of a small number of continuous sensory parameters that spatially stereotyped map of odor identity within the olfactory characterize vision, audition and touch (such as position, bulb, it is unclear whether the higher olfactory cortex uses frequency and amplitude), olfactory parameter space is topography to organize information about smells. Here, we poorly defined and highly multidimensional [7]. For review recent work on the anatomy, microcircuitry and example, any given monomolecular odorant can be neuromodulation of two higher-order olfactory areas: the described in terms of its functional groups, molecular piriform cortex and the olfactory tubercle. The piriform is an weight, chain length, bond substitution, resonance fre- archicortical region with an extensive local associational network quency or any number of additional chemical descrip- that constructs representations of odor identity. The olfactory tors. Furthermore, olfactory space is inherently tubercle is an extension of the ventral striatum that may use discrete — not only are individual odorants structurally reward-based learning rules to encode odor valence. We argue unique but many of the molecular descriptors typically that in contrast to brain circuits for other sensory modalities, both used for individual odorants (such as functional group or the piriform and the olfactory tubercle largely discard any bond substitution) cannot be mapped continuously in topography present in the bulb and instead use distributive any scheme for chemical space. -
The Repulsive Guidance Molecule Rgma Is Involved in the Formation of Afferent Connections in the Dentate Gyrus
3862 • The Journal of Neuroscience, April 14, 2004 • 24(15):3862–3869 Development/Plasticity/Repair The Repulsive Guidance Molecule RGMa Is Involved in the Formation of Afferent Connections in the Dentate Gyrus Henriette Brinks,1,2* Sabine Conrad,4* Johannes Vogt,2* Judit Oldekamp,3* Ana Sierra,5* Lutz Deitinghoff,7 Ingo Bechmann,2 Gonzalo Alvarez-Bolado,3† Bernd Heimrich,2,8† Philippe P. Monnier,6† Bernhard K. Mueller,7† and Thomas Skutella1,4 1Neuroscience Research Center and 2Center for Anatomy, Institute of Cell Biology and Neurobiology, Charite´ Central Campus, 10098 Berlin, Germany, 3Max-Planck-Institute of Experimental Endocrinology, 30625 Hannover, Germany, 4Institute of Anatomy, Department of Experimental Embryology, Tissue Engineering Division, and 5Department of Ophthalmology, University of Tu¨bingen, 72074 Tu¨bingen, Germany, 6Toronto Western Research Institute, Toronto, Ontario, N5T 258 Canada, 7CNS Research, Abbott GmbH and Company KG, 67061 Ludwigshafen, Germany, and 8Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany In the developing dentate gyrus, afferent fiber projections terminate in distinct laminas. This relies on an accurately regulated spatio- temporal network of guidance molecules. Here, we have analyzed the functional role of the glycosylphosphatidylinositol (GPI)-anchored repulsive guidance molecule RGMa. In situ hybridization in embryonic and postnatal brain showed expression of RGMa in the cornu ammonis and hilus of the hippocampus. In the dentate gyrus, RGM immunostaining was confined to the inner molecular layer, whereas the outer molecular layers targeted by entorhinal fibers remained free. To test the repulsive capacity of RGMa, different setups were used: the stripe and explant outgrowth assays with recombinant RGMa, and entorhino–hippocampal cocultures incubated either with a neutralizing RGMa antibody (Ab) or with the GPI anchor-digesting drug phosphatidylinositol-specific phospholipase C. -
Cyclic Nucleotide-Mediated Regulation of Hippocampal Mossy Fiber Development: a Target-Specific Guidance
The Journal of Neuroscience, August 15, 2001, 21(16):6181–6194 Cyclic Nucleotide-Mediated Regulation of Hippocampal Mossy Fiber Development: A Target-Specific Guidance Satomi Mizuhashi, Nobuyoshi Nishiyama, Norio Matsuki, and Yuji Ikegaya Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan The mossy fibers (MFs) arising from dentate granule cells innervation was disrupted by pharmacological blockade of project primarily onto a narrow segment of the proximal den- cGMP pathway. Similar apposition of the dentate grafts near drites of hippocampal CA3 pyramidal cells. The mechanisms the CA1 region of host slices rarely resulted in MF ingrowth into underlying this specific MF target selection are not fully under- the Ammon’s horn. Under blockade of cAMP pathway, how- stood. To investigate the cellular basis for development of the ever, the MFs were capable of making allopatric synapses with stereotyped MF trajectories, we have arranged the fascia den- CA1 neurons. These data were further supported by the phar- tata and hippocampal Ammon’s horn tissues in diverse topo- macological data obtained from granule cells dispersed over graphical patterns in organotypic explant coculture systems. hippocampal slice cultures. Thus, our findings suggest that the Here we show that cyclic nucleotide signaling pathways regu- stereotyped MF extension is mediated by at least two distinct late the MF pathfinding. When the dentate gyrus explants were factors, i.e., an attractant derived from the CA3 region and a ectopically placed facing the CA3 stratum oriens of hippocam- repellent from the CA1 region. These factors may be regulated pal slices, MFs crossed the border between cocultures and differently by cAMP and cGMP signaling pathways. -
Memory Loss from a Subcortical White Matter Infarct
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.51.6.866 on 1 June 1988. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1988;51:866-869 Short report Memory loss from a subcortical white matter infarct CAROL A KOOISTRA, KENNETH M HEILMAN From the Department ofNeurology, College ofMedicine, University ofFlorida, and the Research Service, Veterans Administration Medical Center, Gainesville, FL, USA SUMMARY Clinical disorders of memory are believed to occur from the dysfunction of either the mesial temporal lobe, the mesial thalamus, or the basal forebrain. Fibre tract damage at the level of the fornix has only inconsistently produced amnesia. A patient is reported who suffered a cerebro- vascular accident involving the posterior limb of the left internal capsule that resulted in a persistent and severe disorder of verbal memory. The inferior extent of the lesion effectively disconnected the mesial thalamus from the amygdala and the frontal cortex by disrupting the ventral amygdalofugal and thalamic-frontal pathways as they course through the diencephalon. This case demonstrates that an isolated lesion may cause memory loss without involvement of traditional structures associated with memory and may explain memory disturbances in other white matter disease such as multiple sclerosis and lacunar state. Protected by copyright. Memory loss is currently believed to reflect grey day of his illness the patient was transferred to Shands matter damage of either the mesial temporal lobe,' -4 Teaching Hospital at the University of Florida for further the mesial or the basal forebrain.'0 l evaluation. thalamus,5-9 Examination at that time showed the patient to be awake, Cerebrovascular accidents resulting in memory dys- alert, attentive and fully oriented. -
Two Fiber Pathways Connecting Amygdala and Prefrontal Cortex in Humans and Monkeys
bioRxiv preprint doi: https://doi.org/10.1101/561811; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Two fiber pathways connecting amygdala and prefrontal cortex in humans and monkeys Davide Folloni1,2*, Jérôme Sallet1,2, Alexandre A. Khrapitchev3, Nicola R. Sibson3, Lennart Verhagen1,2†, Rogier B. Mars2,4† 1Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom 2Wellcome Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom 3Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom 4Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands †Authors contributed equally to the work *To whom correspondence should be addressed: Address: Davide Folloni, Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/561811; this version posted March 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The interactions between amygdala and prefrontal cortex are pivotal to many neural processes involved in learning, decision-making, emotion, and social regulation. -
Adiponectin Modulation by Genotype and Maternal Choline Supplementation in a Mouse Model of Down Syndrome and Alzheimer’S Disease
Journal of Clinical Medicine Article Adiponectin Modulation by Genotype and Maternal Choline Supplementation in a Mouse Model of Down Syndrome and Alzheimer’s Disease Melissa J. Alldred 1,2,*, Sang Han Lee 3,4 and Stephen D. Ginsberg 1,2,5,6,* 1 Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA 2 Departments of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA 3 Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY 10962, USA; [email protected] 4 Child & Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA 5 Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA 6 NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA * Correspondence: [email protected] (M.J.A.); [email protected] (S.D.G.); Tel.: +1-(845)-398-2176 (M.J.A.); +1-(845)-398-2170 (S.D.G.) Abstract: Down syndrome (DS) is a genetic disorder caused by the triplication of human chromosome 21, which results in neurological and physiological pathologies. These deficits increase during aging and are exacerbated by cognitive decline and increase of Alzheimer’s disease (AD) neuropathology. A nontoxic, noninvasive treatment, maternal choline supplementation (MCS) attenuates cognitive decline in mouse models of DS and AD. To evaluate potential underlying mechanisms, laser capture microdissection of individual neuronal populations of MCS offspring was performed, followed Citation: Alldred, M.J.; Lee, S.H.; by RNA sequencing and bioinformatic inquiry. Results at ~6 months of age (MO) revealed DS Ginsberg, S.D. -
Distribution of Dopamine D3 Receptor Expressing Neurons in the Human Forebrain: Comparison with D2 Receptor Expressing Neurons Eugenia V
Distribution of Dopamine D3 Receptor Expressing Neurons in the Human Forebrain: Comparison with D2 Receptor Expressing Neurons Eugenia V. Gurevich, Ph.D., and Jeffrey N. Joyce, Ph.D. The dopamine D2 and D3 receptors are members of the D2 important difference from the rat is that D3 receptors were subfamily that includes the D2, D3 and D4 receptor. In the virtually absent in the ventral tegmental area. D3 receptor rat, the D3 receptor exhibits a distribution restricted to and D3 mRNA positive neurons were observed in sensory, mesolimbic regions with little overlap with the D2 receptor. hormonal, and association regions such as the nucleus Receptor binding and nonisotopic in situ hybridization basalis, anteroventral, mediodorsal, and geniculate nuclei of were used to study the distribution of the D3 receptors and the thalamus, mammillary nuclei, the basolateral, neurons positive for D3 mRNA in comparison to the D2 basomedial, and cortical nuclei of the amygdala. As revealed receptor/mRNA in subcortical regions of the human brain. by simultaneous labeling for D3 and D2 mRNA, D3 mRNA D2 binding sites were detected in all brain areas studied, was often expressed in D2 mRNA positive neurons. with the highest concentration found in the striatum Neurons that solely expressed D2 mRNA were numerous followed by the nucleus accumbens, external segment of the and regionally widespread, whereas only occasional D3- globus pallidus, substantia nigra and ventral tegmental positive-D2-negative cells were observed. The regions of area, medial preoptic area and tuberomammillary nucleus relatively higher expression of the D3 receptor and its of the hypothalamus. In most areas the presence of D2 mRNA appeared linked through functional circuits, but receptor sites coincided with the presence of neurons co-expression of D2 and D3 mRNA suggests a functional positive for its mRNA. -
Cellular Localizations of AMPA Glutamate Receptors Within the Basal Forebrain Magnocellular Complex of Rat and Monkey
The Journal of Neuroscience, May 1993, 13(5): 2249-2263 Cellular Localizations of AMPA Glutamate Receptors within the Basal Forebrain Magnocellular Complex of Rat and Monkey Lee J. Martin,1.4 Craig D. Blackstone, Allan I. Levey,*e4na Richard L. Huganir,3v5 and Donald L. Price1n2,3e4 Departments of ‘Pathology, *Neurology, and 3Neuroscience, 4the Neuropathology Laboratory, and Yhe Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 212052196 The cellular distributions of cY-amino-3-hydroxy-5-methyl-4- L-Glutamate and L-Aspartate are the major known excitatory isoxazole propionic acid (AMPA) receptors within the rodent neurotransmitters in the mammalian brain (Fagg and Foster, and nonhuman primate basal forebrain magnocellular com- 1983; Fonnum, 1984), and several lines of evidence suggestthat plex (BFMC) were demonstrated immunocytochemically us- neurons within the basal forebrain magnocellular complex ing anti-peptide antibodies that recognize glutamate recep- (BFMC) receive excitatory glutamatergic or aspartergic inner- tor (GIuR) subunit proteins (i.e., GIuRl, GIuR4, and a vation from a variety of regions. Cultured cells from the BFMC conserved region of GIuR2, GIuR3, and GluR4c). In both spe- are depolarized rapidly by glutamate (Nakajima et al., 1985). cies, many large GluRl-positive neuronal perikarya and Biochemical (Walaasand Fonnum, 1980; Fibiger and Lehmann, aspiny dendrites are present within the medial septal nucle- 1981; Davies et al., 1984) autoradiographic (Monaghan and us, the nucleus of the diagonal band of Broca, and the nu- Cotman, 1982; Halpain et al., 1984; Monaghan et al., 1984), cleus basalis of Meynert. In this population of neurons in rat and connectional (Mesulam and Mufson, 1984; Lemann and and monkey, GluR2/3/4c and GIuR4 immunoreactivities are Saper, 1985; Fuller et al., 1987; Carnes et al., 1990; Gaykema less abundant than GluRl immunoreactivity.