Exploration of the Medicinal Flora of the Aljumum Region in Saudi Arabia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Production Potential and Phenology of Alhagi Maurorum
Journal of Natural Resource Conservation and Management Vol. 1, No. 2, pp 125-130, 2020 https://www.anrcm.org/journal/ Forage resources in arid and saline environments of central Iran: production potential and phenology of Alhagi maurorum Hadi Pirasteh-Anosheh*, Gholam Hassan Ranjbar and Amir Parnian National Salinity Research Center, Agricultural Research, Education and Extension Organization, Yazd 8917357676, Iran Corresponding author E-mail: [email protected] Received : October 29, 2020 ABSTRACT Revised : December 2, 2020 Accepted : December 7, 2020 Although significant amount of information is available on camelthorn (Alhagi Published : December 23, 2020 spp.) as a weed, little is known about Alhagi spp. as a forage plant. Considering its forage value, the present study was conducted to document the phenology and biomass production of AlhagimaurorumMedik.in two dry saline rangelands of Ashkezar and Ardakan regions at central Iran during 2019. The results distinguished seven stages for Alhagi, consisted of shoot emergence, main stem growth, branching, budding, flowering, fruiting, and seed ripening occurred after 22, 30, 78, 41, 54, 61 and 118 days in Ashkezar region and 31, 37, 67, 33, 41, 50 and 106 days in Ardakan, respectively. Depending on the region, Alhagi germinates and grows in mid to early February, and the main stems started to grow in late February to early March, and the branches were formed in mid to late March. Flowers appeared in mid-to-late April, while fruits in early May to early June. Finally, the seeds began to ripen from late May to mid-June. Senescence also occurred in late summer and early autumn at the latest. -
Medicinal Practices of Sacred Natural Sites: a Socio-Religious Approach for Successful Implementation of Primary
Medicinal practices of sacred natural sites: a socio-religious approach for successful implementation of primary healthcare services Rajasri Ray and Avik Ray Review Correspondence Abstract Rajasri Ray*, Avik Ray Centre for studies in Ethnobiology, Biodiversity and Background: Sacred groves are model systems that Sustainability (CEiBa), Malda - 732103, West have the potential to contribute to rural healthcare Bengal, India owing to their medicinal floral diversity and strong social acceptance. *Corresponding Author: Rajasri Ray; [email protected] Methods: We examined this idea employing ethnomedicinal plants and their application Ethnobotany Research & Applications documented from sacred groves across India. A total 20:34 (2020) of 65 published documents were shortlisted for the Key words: AYUSH; Ethnomedicine; Medicinal plant; preparation of database and statistical analysis. Sacred grove; Spatial fidelity; Tropical diseases Standard ethnobotanical indices and mapping were used to capture the current trend. Background Results: A total of 1247 species from 152 families Human-nature interaction has been long entwined in has been documented for use against eighteen the history of humanity. Apart from deriving natural categories of diseases common in tropical and sub- resources, humans have a deep rooted tradition of tropical landscapes. Though the reported species venerating nature which is extensively observed are clustered around a few widely distributed across continents (Verschuuren 2010). The tradition families, 71% of them are uniquely represented from has attracted attention of researchers and policy- any single biogeographic region. The use of multiple makers for its impact on local ecological and socio- species in treating an ailment, high use value of the economic dynamics. Ethnomedicine that emanated popular plants, and cross-community similarity in from this tradition, deals health issues with nature- disease treatment reflects rich community wisdom to derived resources. -
Survey of Euphorbiaceae Family in Kopergaon Tehsil Of
International Journal of Humanities and Social Sciences (IJHSS) ISSN (P): 2319–393X; ISSN (E): 2319–3948 Vol. 9, Issue 3, Apr–May 2020; 47–58 © IASET SURVEY OF EUPHORBIACEAE FAMILY IN KOPERGAONTEHSIL OF MAHARASHTRA Rahul Chine 1 & MukulBarwant 2 1Research Scholar, Department of Botany, Shri Sadguru Gangagir Maharaj Science College, Maharashtra, India 2Research Scholar, Department of Botany, Sanjivani Arts Commerce and Science College, Maharashtra, India ABSTRACT The survey of Family Euphorbiaceae from Kopargoantehshil is done. In this we first collection of different member of Family Euphorbiaceae from different region of Kopargoantehasil. An extensive and intensive survey at plants was carried out from village Pathare, Derde, Pohegoan, Kopergaon, Padhegaon, Apegoan during the were collected in flowering and fruiting period throughout the year done. During survey we determine 16 member of Euphorbiceae from Kopargoantehshil Then we decide characterization on the basis of habit, flowering character, leaf and fruit character with help of that character and using different literature we identified each and every member of Euphorbiaceae Species were identified with relevant information and documented in this paper with regard to their Botanical Name, family, Habitat, flowering Fruiting session and their medicinal value of some member of Euphorbiaceae that used in medicine respiratory disorder such as cough, asthama, bronchitis etc and some are toxic in nature due to their toxic latex that is showing itching reaction. KEYWORDS : Family Euphorbiaceae, Respiratory Ailment, Identification, Chracterization and Documentation Article History Received: 09 Apr 2020 | Revised: 10 Apr 2020 | Accepted: 18 Apr 2020 INTRODUCTION The Euphorbiaceae, the spurge family, is one of the complex large family of flowering plants of angiosperm with 334 genera and 8000 species in the worlds (Wurdack 2004). -
EPRA International Journal of Research and Development (IJRD) Volume: 5 | Issue: 12 | December 2020 - Peer Reviewed Journal
SJIF Impact Factor: 7.001| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online) EPRA International Journal of Research and Development (IJRD) Volume: 5 | Issue: 12 | December 2020 - Peer Reviewed Journal CHEMICAL EVIDENCE SUPPORTING THE ICLUSION OF AMARANTHACEAE AND CHENOPODIACEAE INTO ONE FAMILY AMARANTHACEAE JUSS. (s.l.) Fatima Mubark1 1PhD Research Scholar, Medicinal and Aromatic Plants research Institute, National Council for Research, Khartom, Sudan Ikram Madani Ahmed2 2Associate Professor, Department of Botany, Faculty of Science, University of Khartoum, Sudan Corresponding author: Ikram Madani, Article DOI: https://doi.org/10.36713/epra6001 ABSTRACT In this study, separation of chemical compounds using Thin layer chromatography technique revealed close relationship between the studied members of the newly constructed family Amaranthaceae Juss. (s.l.). 68% of the calculated affinities between the studied species are above 50% which is an indication for close relationships. 90% is the chemical affinities reported between Chenopodium murale and three species of the genus Amaranthus despite of their great morphological diversity. Among the selected members of the chenopodiaceae, Chenopodium murale and Suaeda monoica are the most closely related species to all of the studied Amaranthaceae . 60%-88% and 54%-88% chemical affinities were reported for the two species with the Amaranthaceae members respectively. GC-Mass analysis of methanolic extracts of the studied species identified 20 compounds common between different species. 9,12- Octadecadienoic acid (Z,Z)-,2-hydroxy-1 and 7-Hexadecenal,(Z)- are the major components common between Amaranthus graecizans, Digera muricata Aerva javanica Gomphrena celosioides of the historical family Amaranthaceae and Suaeda monoica Salsola vermiculata Chenopodium murale Cornulaca monocantha of the historical family Chenopodiaceae, Most of the identified compounds are of pharmaceutical importance such as antioxidants, anti-inflammatory , and Anti-cancerous. -
Ethnobotanical Observations of Euphorbiaceae Species from Vidarbha Region, Maharashtra, India
Ethnobotanical Leaflets 14: 674-80, 2010. Ethnobotanical Observations of Euphorbiaceae Species from Vidarbha region, Maharashtra, India G. Phani Kumar* and Alka Chaturvedi# Defence Institute of High Altitude Research (DRDO), Leh-Ladakh, India #PGTD Botany, RTM Nagpur University, Nagpur, India *corresponding author: [email protected] Issued: 01 June, 2010 Abstract An attempt has been made to explore traditional medicinal knowledge of plant materials belonging to various genera of the Euphorbiaceae, readily available in Vidharbha region of Maharasthtra state. Ethnobotanical information were gathered through several visits, group discussions and cross checked with local medicine men. The study identified 7 species to cure skin diseases (such as itches, scabies); 5 species for antiseptic (including antibacterial); 4 species for diarrhoea; 3 species for dysentery, urinary infections, snake-bite and inflammations; 2 species for bone fracture/ dislocation, hair related problems, warts, fish poisons, night blindness, wounds/cuts/ burns, rheumatism, diabetes, jaundice, vomiting and insecticide; 1 species as laxative , viral fever and arthritis. The results are encouraging but thorough scientific scrutiny is absolutely necessary before being put into practice. Key words: Ethnopharmacology; Vidarbha region; Euphorbiaceae; ethnobotanical information. Introduction The medicinal properties of a plant are due to the presence of certain chemical constituents. These chemical constituents, responsible for the specific physiological action, in the plant, have in many cases been isolated, purified and identified as definite chemical compounds. Quite a large number of plants are known to be of medicinal use remain uninvestigated and this is particularly the case with the Indian flora. The use of plants in curing and healing is as old as man himself (Hedberg, 1987). -
(Alhagi Maurorum) As New Sources of Bioactive Compounds Using GC-MS Technique
POJ 12(01):70-77 (2019) ISSN:1836-3644 doi: 10.21475/poj.12.01.19.pt1971 Assessment of camel thorn (Alhagi maurorum) as new sources of bioactive compounds using GC-MS technique Reham M. Mostafa, Heba S. Essawy* Botany Department, Facukty of Science, Benha University, Egypt Corresponding author: [email protected] Abstract Alhagi maurorum (A. maurorum) is one of the medicinally important plants belonging to the family leguminasae, commonly known as camel thorn. This research was amid to identify the chemical compounds in the aerial part of A. maurorum using GC-mass analysis. Three solvents with different polarities were used for the extraction of chemical constituents (water, methanol and petroleum ether). The results of GC-MS analysis led to identification of various compounds. In total, thirty-nine compounds from petroleum ether extract, thirty-two compounds in methanolic extract and seventeen compounds in aqueous extract were identified. Majority of the identified compounds have been reported to possess many biological activities. Among them, we reported 10 new anticancer compounds (Vitamin E; Hexadecanoic acid; Stigmast-5-en-3-ol; Phytol,2-hexadecen-1-ol,3,7,11,15-tetramethyl; Squalene; Hexadecanoic acid; 2-hydroxy-1-(hydroxymethyl) ethyl ester; Oxime,methoxy-phenyl,methyl N-hydroxyben- zenecarboximidoate; Ergost-5-en-3-ol; 9,12- Octadecad-ienoic acid and Farnesol) from A. maurorum using three solvent, while the best effective solvent was petroluem ether. Therefore, we report that A. maurorum has great potential to be developed into anticancer drugs. Keywords: Secondary metabolites; Alhagi maurarum; GC-mass spectroscopy; anticancer compounds. Introduction Natural products have useful and interesting biological tissue-repairing properties (Al-Snafi, 2015). -
SPECIES L RESEARCH ARTICLE
SPECIES l RESEARCH ARTICLE Species Sexual systems, pollination 22(69), 2021 modes and fruiting ecology of three common herbaceous weeds, Aerva lanata (L.) Juss. Ex Schult., Allmania nodiflora (L.) To Cite: Solomon Raju AJ, Mohini Rani S, Lakshminarayana G, R.Br. and Pupalia lappacea (L.) Venkata Ramana K. Sexual systems, pollination modes and fruiting ecology of three common herbaceous weeds, Aerva lanata (L.) Juss. Ex Schult., Allmania nodiflora (L.) R.Br. and Juss. (Family Amaranthaceae: Pupalia lappacea (L.) Juss. (Family Amaranthaceae: Sub-family Amaranthoideae). Species, 2021, 22(69), 43-55 Sub-family Amaranthoideae) Author Affiliation: 1,2Department of Environmental Sciences, Andhra University, Visakhapatnam 530 003, India Solomon Raju AJ1, Mohini Rani S2, Lakshminarayana 3Department of Environmental Sciences, Gayathri Vidya Parishad College for Degree & P.G. Courses (Autonomous), G3, Venkata Ramana K4 M.V.P. Colony, Visakhapatnam 530 017, India 4Department of Botany, Andhra University, Visakhapatnam 530 003, India ABSTRACT Correspondent author: A.J. Solomon Raju, Mobile: 91-9866256682 Aerva lanata and Pupalia lappacea are perennial herbs while Allmania nodiflora is an Email:[email protected] annual herb. A. lanata is dioecious with bisexual and female plants while P. lappacea and A. nodiflora are hermaphroditic. In P. lappacea, the flowers are borne as triads Peer-Review History with one hermaphroditic fertile flower and two sterile flowers alternately along the Received: 25 December 2020 entire length of racemose inflorescence. A. lanata and A. nodiflora flowers are Reviewed & Revised: 26/December/2020 to 27/January/2021 nectariferous while P. lappacea flowers are nectarless. The hermaphroditic flowers of Accepted: 28 January 2021 Published: February 2021 A. -
Table 4: Pollen-Types in Amaranthaceae by Mittre (1963). Amaranthus-Type
Table 4: Pollen-types in Amaranthaceae by Mittre (1963). Amaranthus-type Amaranthus- type sensu stricto Cyathula-type Celosia-type Pollen Faintly to moderately granulate Prominently granulate Baculariate morphological characters: Sexine pattern Total number of 5 2 2 genera studied Genera Amaranthus spinosus L., Cyathula prostrate (L.) Blume, Celosia argentea L., C. cristata L., A. viridis L., A. tricolor L., C. capitata Moq., Allmania albida (Willd.) R.Br. ex Hook.f., A. hybridus L., Deeringia celosioides R.Br. A. nodiflora (L.) R.Br. ex Wight. A. polygamous L., A. tenuifolius Willd., A. spinosus L., Achyranthes aspera L., A. bidentata Blume, Aerva lanata (L.) Juss., A. sanguinolenta (L.) Blume, A. tomentosa Forssk., A. javanica (Burm.f.) Juss. ex Schult., A. monsoniae (L. f.) Mart., Digera arvensis Forssk., Pupalia lappacea (L.) Juss., P. atropurpurea (Lam.) Moq. 22 Table 4: Continued. Gomphrena-type Gomphrena-type sensu stricto Alternanthera-type Not included in any group Pollen reticulate several meshes, without reticulate with few meshes, without reticulate with several meshes and spinulate morphological spinules spinules characters: Sexine pattern Total number of 1 1 1 genera studied Genera Gomphrena globosa L., Alternanthera sessilis (L.) R.Br. ex DC., Psilotrichum ferrugineum (Roxb.) Moq. G. celosioides Mart. A. repens J.F.Gmel. 2 3 Table 5: Pollen-types in Centrospermae by Nowicke (1975). Type I Type II Type III Pollen morphological 3- Colpate Pantoporate Pantocolpate characters: apertures Family studied Aizoaceae, Cactaceae, Caryophyllaceae, Amaranthaceae, Cactaceae, Basellaceae, Cactaceae, Molluginaceae, Nyctaginaceae, Caryophyllaceae, Chenopodiaceae, Molluginaceae, Nyctaginaceae, Phytolaccaceae, Portulacaceae Dysphaniaceae, Nyctaginaceae, Phytolaccaceae, Portulacaceae Phytolaccaceae, Portulacaceae Genera studied in 11 Amaranthaceae Species studied in Amaranthus spinosus L., Amaranthaceae Aerva leucura Moq., Allmania nodiflora (L.) R.Br. -
Trees of Somalia
Trees of Somalia A Field Guide for Development Workers Desmond Mahony Oxfam Research Paper 3 Oxfam (UK and Ireland) © Oxfam (UK and Ireland) 1990 First published 1990 Revised 1991 Reprinted 1994 A catalogue record for this publication is available from the British Library ISBN 0 85598 109 1 Published by Oxfam (UK and Ireland), 274 Banbury Road, Oxford 0X2 7DZ, UK, in conjunction with the Henry Doubleday Research Association, Ryton-on-Dunsmore, Coventry CV8 3LG, UK Typeset by DTP Solutions, Bullingdon Road, Oxford Printed on environment-friendly paper by Oxfam Print Unit This book converted to digital file in 2010 Contents Acknowledgements IV Introduction Chapter 1. Names, Climatic zones and uses 3 Chapter 2. Tree descriptions 11 Chapter 3. References 189 Chapter 4. Appendix 191 Tables Table 1. Botanical tree names 3 Table 2. Somali tree names 4 Table 3. Somali tree names with regional v< 5 Table 4. Climatic zones 7 Table 5. Trees in order of drought tolerance 8 Table 6. Tree uses 9 Figures Figure 1. Climatic zones (based on altitude a Figure 2. Somali road and settlement map Vll IV Acknowledgements The author would like to acknowledge the assistance provided by the following organisations and individuals: Oxfam UK for funding me to compile these notes; the Henry Doubleday Research Association (UK) for funding the publication costs; the UK ODA forestry personnel for their encouragement and advice; Peter Kuchar and Richard Holt of NRA CRDP of Somalia for encouragement and essential information; Dr Wickens and staff of SEPESAL at Kew Gardens for information, advice and assistance; staff at Kew Herbarium, especially Gwilym Lewis, for practical advice on drawing, and Jan Gillet for his knowledge of Kew*s Botanical Collections and Somalian flora. -
Island Bats: Evolution, Ecology, and Conservation
CHA P T E R 1 3 The Ecology and Conservation of Malagasy Bats Paul A. Racey, Steven M. Goodman, and Richard K. B. Jenkins Introduction Despite the important contribution that bats make to tropical biodiversity and ecosystem function, as well as the threatened status of many species, conserva tion initiatives for Madagascar’s endemic mammals have rarely included bats. Until recently, most mammalogical research in Madagascar concerned lemurs, rodents, and tenrecs. This focus resulted in a dearth of information on bat bi ology. However, since the mid1990s considerable advancement has been made following the establishment of capacitybuilding programs for Malagasy bat biologists, and bats are now included in biodiversity surveys and a growing number of field studies are in progress. In this chapter we summarize the advances made in recent years in un derstanding the diversity of Malagasy bats and briefly describe their biogeo graphic affinities and levels of endemism. We draw attention to the importance of understanding the ecology of these animals and why this is a prerequisite to their conservation. In discussing monitoring and hunting, we highlight some of the reasons that make bat conservation notably different from other vertebrate conservation challenges on the island. The Diversity of Malagasy Bats The recent surge of interest in Malagasy bats has resulted in the discovery and description of nine new taxa on the island. The rate of new discoveries quickly makes statements on endemism and species richness out of date. For example, of the 37 bat taxa listed for Madagascar in table 13.1, only 29 were treated in the 2005 Global Mammal Assessment in Antananarivo. -
Aerva Lanata
Athira P et al /J. Pharm. Sci. & Res. Vol. 9(9), 2017,1420-1423 Pharmacognostic Review Of Medicinal Plant Aerva lanata Athira P1,Sreesha N Nair* Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research, Amrita Vishwa Vidyapeetham, Amrita University, Kochi, Kerala, India. Abstract Recently medicinal plants are used to prepare many medicines. Aerva lanata is a medicinal plant used for many purposes. Aerva lanata is also known as knot grass is prostate herb in family Amaranthaceae. It branched and found wild in India. It is a traditional plant in India used for many diseases like anti diuretic, infections, cough, antidote, emollient, skin infections etc… And it has many pharmacological properties like antibacterial, antioxidant, antidiuretic, urolithiasis etc… This review is about the Pharmacognostic study include morphology, microscopy, chemical constituents, pharmacological activity of Aerva lanata. Key words: Aerva lanata, Amaranthaceae, Diuretic, Urolithiasis, INTRODUCTION Cultivation Aerva lanata (L.) Juss Ex.Schult commonly called as The cultivation of Aerva lanata is by seed propagation. Polphala of Amaranthaceae is a perennial shrub which is Each plant is planted with the space of 30cm in a row. Sun seen commonly in different waste parts of India. 1It iis also light is needed for the growth of the plant. These plants are known as Gorakha Ganga, belonging to the family cultivated during september month. First year of cultivation amaranthaceous, in the genus Aerva and the species lanata it will flowers. .They are originated in India, Africa, as well as To prevent attacking of foreign substances like Australia. microorganism, weed, insect etc.. -
POLICY PAPER Conserving Ras Al Khaimah's Botanical Diversity
POLICY PAPER Policy Paper 49 July 2021 EXECUTIVE SUMMARY Conserving Ras Al Khaimah is home to a diverse ecosystem of plant species, many of which have medicinal uses and Ras Al Khaimah’s cultural significance in addition to supporting wildlife. As the human population and associated urban Botanical Diversity development increases in the Emirate, it is essential to ensure the national heritage related to plant Marina Tsaliki, Landscape Agency – Public Services Department – Ras Al Khaimah diversity is protected. In this policy paper, we present Chloe MacLaren, Rothamsted Research the results of an emirate-wide botanical survey that explores how the plant species, present across Ras Al Introduction Khaimah, vary according to the Emirate’s geography. Ras Al Khaimah encompasses various natural habitats, including In total, 320 plant species were documented in mountain ranges, hills, coastal dunes, mangroves, gravel plains, and the survey, 293 of which were identified. Some of desert. These landscapes can seem universally harsh in their aridity or the recorded species are either uniquely found in salinity. However, the variations in environmental conditions, such as the Emirate or are rare and endangered. Four main temperature, water availability, and soil type, that define the habitats vegetation types have been identified in the Emirate: allow for a great diversity of flora and fauna. The complete range of coastal and lowland vegetation, plains vegetation, species present in Ras Al Khaimah has yet to be fully cataloged and low mountain vegetation, and high mountain investigated. There is a particular lack of information on the diversity vegetation. Within each of these, there are several and distributions of plants.