Caltech News
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetary Geologic Mappers Annual Meeting
Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m. -
Orbital Detection and Implications of Akaganeite on Mars
45th Lunar and Planetary Science Conference (2014) 2364.pdf ORBITAL DETECTION AND IMPLICATIONS OF AKAGANEITE ON MARS. J. Carter1, C. Viviano-Beck2, L. Le Deit3, J. Bishop4, D. Loizeau5, 1IAS (Paris-Sud University, France, [email protected]), 2JHU/APL (Laurel, MD), 3LPGN (Nantes University, France), 4SETI Institute (Mountain View, CA), 5LGL (Lyon 1 University, France). Introduction: Recent orbital and landed investiga- lands, and intertidal marshes; and within hydrothermal tions of the Martian surface have demonstrated that the brines [13,14,15,16]. The main conditions necessary planet underwent a complex geological and aqueous for akaganéite precipitation are high salinity, mild acid- alteration history, fragments of which are recorded in ity (pH ~6), oxidizing conditions, and most important- the mineralogy of the heavily disrupted surface [1,2,3]. ly, high iron (II/III) and chlorine concentrations. On Of particular interest are aqueously altered minerals Earth, the source of Fe in akaganéite formation is typi- that trace warmer and wetter surface environments on cally iron ore or sulfides (the latter also providing acid- Early Mars, some of which also exhibit biogenic for- ity as they dissolve) [15,16]. Highly concentrated chlo- mation pathways [4,5]. rine occurs within volcanic fumaroles or deep sea vents The most abundant alteration minerals on Mars that as well as within evaporating, closed or semi-closed have likely been detected are hydrated silicates, hy- water systems [15,16,17]. drated sulfates, and chloride salts [6,7,8]. The detection of minor phases remains important, however, as they further constrain localized geochemical environments at different epochs in the timeline of Mars’s geological history. -
Program of the 75Th Anniversary Meeting
PROGRAM OF THE 75 TH ANNIVERSARY MEETING April 14−April 18, 2010 St. Louis, Missouri THE ANNUAL MEETING of the Society for American Archaeology provides a forum for the dissemination of knowledge and discussion. The views expressed at the sessions are solely those of the speakers and the Society does not endorse, approve, or censor them. Descriptions of events and titles are those of the organizers, not the Society. Program of the 75th Anniversary Meeting Published by the Society for American Archaeology 900 Second Street NE, Suite 12 Washington DC 20002-3560 USA Tel: +1 202/789-8200 Fax: +1 202/789-0284 Email: [email protected] WWW: http://www.saa.org Copyright © 2010 Society for American Archaeology. All rights reserved. No part of this publication may be reprinted in any form or by any means without prior permission from the publisher. Program of the 75th Anniversary Meeting 3 Contents 4............... Awards Presentation & Annual Business Meeting Agenda 5……….….2010 Award Recipients 10.................Maps of the America’s Center 12 ................Maps of Renaissance Grand St. Louis 14 ................Meeting Organizers, SAA Board of Directors, & SAA Staff 15 .............. General Information 18. ............. Featured Sessions 20 .............. Summary Schedule 25 .............. A Word about the Sessions 27............... Program 161................SAA Awards, Scholarships, & Fellowships 167............... Presidents of SAA . 168............... Annual Meeting Sites 169............... Exhibit Map 170................Exhibitor Directory 180................SAA Committees and Task Forces 184………….Index of participants 4 Program of the 75th Anniversary Meeting Awards Presentation & Annual Business Meeting America’s Center APRIL 16, 2010 5 PM Call to Order Call for Approval of Minutes of the 2009 Annual Business Meeting Remarks President Margaret W. -
Orbital Evidence for More Widespread Carbonate- 10.1002/2015JE004972 Bearing Rocks on Mars Key Point: James J
PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Orbital evidence for more widespread carbonate- 10.1002/2015JE004972 bearing rocks on Mars Key Point: James J. Wray1, Scott L. Murchie2, Janice L. Bishop3, Bethany L. Ehlmann4, Ralph E. Milliken5, • Carbonates coexist with phyllosili- 1 2 6 cates in exhumed Noachian rocks in Mary Beth Wilhelm , Kimberly D. Seelos , and Matthew Chojnacki several regions of Mars 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA, 2The Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland, USA, 3SETI Institute, Mountain View, California, USA, 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 5Department of Geological Sciences, Brown Correspondence to: University, Providence, Rhode Island, USA, 6Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA J. J. Wray, [email protected] Abstract Carbonates are key minerals for understanding ancient Martian environments because they Citation: are indicators of potentially habitable, neutral-to-alkaline water and may be an important reservoir for Wray, J. J., S. L. Murchie, J. L. Bishop, paleoatmospheric CO2. Previous remote sensing studies have identified mostly Mg-rich carbonates, both in B. L. Ehlmann, R. E. Milliken, M. B. Wilhelm, Martian dust and in a Late Noachian rock unit circumferential to the Isidis basin. Here we report evidence for older K. D. Seelos, and M. Chojnacki (2016), Orbital evidence for more widespread Fe- and/or Ca-rich carbonates exposed from the subsurface by impact craters and troughs. These carbonates carbonate-bearing rocks on Mars, are found in and around the Huygens basin northwest of Hellas, in western Noachis Terra between the Argyre – J. -
About the Beckman Institute
Annual Report 2010-2011 FBOR eADcVAkNCmED SaCInENCE IAnND sTtEiCHtNuOLtOeGY ABOUT THE BECKMAN INSTITUTE he Beckman Institute for Advanced The Beckman Institute is also home to The 313,000-square-foot building was Science and Technology at the three strategic initiatives that seek to made possible by a generous gift from TUniversity of Illinois at Urbana- unify campus activities in their respective University of Illinois alumnus and founder Champaign is an interdisciplinary areas: of Beckman Instruments, Inc., Arnold research institute devoted to leading- • HABITS O. Beckman, and his wife Mabel M. edge research in the physical sciences, • Imaging Beckman, with a supplement from computation, engineering, biology, • Social Dimensions of Environmental the State of Illinois. behavior, cognition, and neuroscience. Policy The Institute’s primary mission is to foster Additionally, the Arnold and Mabel interdisciplinary work of the highest qual - More than 1,000 researchers from more Beckman Foundation provides ongoing ity, transcending many of the limitations than 40 University of Illinois departments financial assistance for various Institute inherent in traditional university organi - as diverse as psychology, computer and campus programs. Daily operating zations and structures. The Institute was science, electrical and computer engi - expenses of the Institute are covered by founded on the premise that reducing neering, and biochemistry, comprising the state and its research programs are the barriers between traditional scientific 14 Beckman Institute groups, work within mainly supported by external funding and technological disciplines can yield and across these overlapping areas. The from the federal government, corpora - research advances that more conven - building offers more than 200 offices; tions, and foundations. -
Water on the Moon, III. Volatiles & Activity
Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere). -
Research Awardsby
]\ LL O]\ LM • • • • • • • • • t r o p Beckman Institute e R FOR ADVANCED SCIENCE AND TECHNOLOGY l a • • • • • • • • • u n n A Beckman Institute • • • • • • • • • • he Beckman Institute for Advanced Science and Director’s Message from Art Kramer 2 TTechnology at the University of Illinois at Urbana- s Champaign is an interdisciplinary research institute devoted RESEARCH THEMES to leading-edge research in the physical sciences, computation, t Biological Intelligence engineering, biology, behavior, cognition, and neuroscience. Highlights 4 The Institute’s primary mission is to foster interdisciplinary Faculty Profile: Jennifer Cole 8 work of the highest quality, transcending many of the n limitations inherent in traditional university organizations Human-Computer Intelligent Interaction and structures. The Institute was founded on the premise e Highlights 10 that reducing the barriers between traditional scientific and Faculty Profile: Mark Hasegawa-Johnson 14 technological disciplines can yield research advances that t more conventional approaches cannot. Integrative Imaging Highlights 16 Beckman Institute research is focused around four research n Faculty Profile: Brad Sutton 20 themes: • Biological Intelligence (page 4) Molecular and Electronic Nanostructures o • Human-Computer Intelligent Interaction (page 10) Highlights 22 • Integrative Imaging (page 16) Faculty Profile: Scott White 28 • Molecular and Electronic Nanostructures (page 22) C Selected Faculty Awards, Invention Disclosures, 30 The Beckman Institute is also home to three -
Ingersoll OHO.Pdf
ANDREW P. INGERSOLL (1940 – ) INTERVIEWED BY SARA LIPPINCOTT April 13 and 26, 2004 Photo courtesy A. Ingersoll ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Planetary science Abstract Interview in two sessions conducted by Sara Lippincott in 2004 with Andrew P. Ingersoll, Earle C. Anthony Professor of Planetary Science at the California Institute of Technology. Discusses parents’ social activism in the 1930s. His youth and education at Amherst College (B.A. physics, 1960) and Harvard University (M.A. physics, 1961; PhD 1966); his early interest in atmospheres, oceans and meteorology; working with A. Arons and H. Stommel at Woods Hole on ocean acoustics. Recruited to Caltech in 1966 in planetary science; early atmospheric studies of Venus, Jupiter (Great Red Spot) and Mars; collaborates with G. Munch and G. Neugebauer. Involvement with NASA’s Pioneer 11 and Voyager imaging team at JPL; results of Voyager’s “Grand Tour” of Saturn, Uranus, and Neptune; his theories on winds and turbulence in outer space. The Shoemaker-Levy comet, Hubble Space Telescope observations, and Jupiter’s effect on protecting the Earth from comets. Works with the Soviet Venera space program on Venus’ atmosphere; visit to the Soviet Union in the 1980s. Galileo and photographing Jupiter’s atmosphere; Europa lander to study its subterranean ocean. Discusses recent evidence of water on Mars, terraforming Mars, and colonizing planets. Concludes with administrative work at Caltech: Executive officer for planetary sciences (1987-1994); G. Wasserburg as division head http://resolver.caltech.edu/CaltechOH:OH_Ingersoll_A (1987-1988); Caltech committees; Caltech’s core curriculum and the need for greater emphasis on research time. -
Orthodox Political Theologies: Clergy, Intelligentsia and Social Christianity in Revolutionary Russia
DOI: 10.14754/CEU.2020.08 ORTHODOX POLITICAL THEOLOGIES: CLERGY, INTELLIGENTSIA AND SOCIAL CHRISTIANITY IN REVOLUTIONARY RUSSIA Alexandra Medzibrodszky A DISSERTATION in History Presented to the Faculties of the Central European University In Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy CEU eTD Collection Budapest, Hungary 2020 Dissertation Supervisor: Matthias Riedl DOI: 10.14754/CEU.2020.08 Copyright Notice and Statement of Responsibility Copyright in the text of this dissertation rests with the Author. Copies by any process, either in full or part, may be made only in accordance with the instructions given by the Author and lodged in the Central European Library. Details may be obtained from the librarian. This page must form a part of any such copies made. Further copies made in accordance with such instructions may not be made without the written permission of the Author. I hereby declare that this dissertation contains no materials accepted for any other degrees in any other institutions and no materials previously written and/or published by another person unless otherwise noted. CEU eTD Collection ii DOI: 10.14754/CEU.2020.08 Technical Notes Transliteration of Russian Cyrillic in the dissertation is according to the simplified Library of Congress transliteration system. Well-known names, however, are transliterated in their more familiar form, for instance, ‘Tolstoy’ instead of ‘Tolstoii’. All translations are mine unless otherwise indicated. Dates before February 1918 are according to the Julian style calendar which is twelve days behind the Gregorian calendar in the nineteenth century and thirteen days behind in the twentieth century. -
RUTH V. AGUILERA Darla and Frederick Brodsky Trustee
Aguilera June 2020 RUTH V. AGUILERA Darla and Frederick Brodsky Trustee Professor in Global Business Distinguished Professor, International Business and Strategy Department D'Amore-McKim School of Business, Northeastern University 360 Huntington Avenue, Boston, MA 02115-5000 -- [email protected] Visiting Scholar, ESADE Business School, Universitat Ramon Llull, Barcelona, Catalonia, Spain. EXPERTISE Research: International Corporate Governance; Corporate Social Responsibility; Global Strategy; Teaching: Corporate Governance; Global Strategy; Economic Sociology; Comparative Capitalism PAST ACADEMIC POSITIONS Visiting Full Professor, Department of Strategy and Policy, and Research Affiliate, Centre for Governance, Institutions & Organisations (CGIO), Business School, National University of Singapore (Fall 2014-Spring 2015). Associate Professor (with tenure) to Full Professor, Department of Business Administration, College of Business, University of Illinois at Urbana-Champaign (August 2006- June 2014). Faculty Fellow, Center for Professional Responsibility in Business and Society, College of Business, University of Illinois at Urbana-Champaign (2007-June 2014) Associate Professor (courtesy appointment), College of Law, School of Labor and Employment Relations, & Department of Sociology, University of Illinois at Urbana-Champaign (August 2006- June 2014). Assistant Professor, Department of Business Administration, College of Business, and Institute of Labor and Industrial Relations, University of Illinois at Urbana-Champaign (1999-2006). -
Peter Weiss. Andrei Platonov. Ragnvald Blix. Georg Henrik Von Wright. Adam Michnik
A quarterly scholarly journal and news magazine. March 2011. Vol IV:1 From the Centre for Baltic and East European Studies (CBEES) Södertörn University, Stockholm FEATURE. Steklov – Russian BALTIC temple of pure thought W O Rbalticworlds.com L D S COPING WITH TRANSITIONS PETER WEISS. ANDREI PLATONOV. RAGNVALD BLIX. GEORG HENRIK VON WRIGHT. ADAM MICHNIK. SLAVENKA DRAKULIĆ. Sixty pages BETRAYED GDR REVOLUTION? / EVERYDAY BELARUS / WAVE OF RELIGION IN ALBANIA / RUSSIAN FINANCIAL MARKETS 2short takes Memory and manipulation. Transliteration. Is anyone’s suffering more important than anyone else’s? Art and science – and then some “IF YOU WANT TO START a war, call me. Transliteration is both art and science CH I know all about how it's done”, says – and, in many cases, politics. Whether MÄ author Slavenka Drakulić with a touch царь should be written as tsar, tzar, ANNA of gallows humor during “Memory and czar, or csar may not be a particu- : H Manipulation: Religion as Politics in the larly sensitive political matter today, HOTO Balkans”, a symposium held in Lund, but the question of the transliteration P Sweden, on December 2, 2010. of the name of the current president This issue of the journal includes a of Belarus is exceedingly delicate. contribution from Drakulić (pp. 55–57) First, and perhaps most important: in which she claims that top-down gov- which name? Both the Belarusian ernance, which started the war, is also Аляксандр Лукашэнка, and the Rus- the path to reconciliation in the region. sian Александр Лукашенко are in use. Balkan experts attending the sympo- (And, while we’re at it, should that be sium agree that the war was directed Belarusian, or Belarussian, or Belaru- from the top, and that “top-down” is san, or Byelorussian, or Belorussian?) the key to understanding how the war BW does not want to take a stand on began in the region. -
Annual Report
Annual Report BECKMAN INSTITUTE FOR ADVANCED SCIENCE AND TECHNOLOGY 2 0 0 0 UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN BIHighlights in 2000 ❏ How do you isolate, characterize, and manipu- TABLE OF CONTENTS late molecules in amounts so small that Mother Nature created special containers inside single cells 2000 MESSAGE FROM THE DIRECTOR just to transport them? In 2000, Beckman Institute Jiri Jonas, Director pages 2–4 faculty members Paul Bohn, Mark Shannon, and MOLECULAR AND ELECTRONIC NANOSTRUCTURES Jonathan Sweedler initiated a new collaborative pro- Overview pages 6–7 ject funded through the Defense Advanced Research Projects Agency to design a new Karl Hess and Jeffrey S. Moore, Co-chairs category of measurement device, the Biofluidic Intelligent Processor. This device will Highlights pages 8–12 allow the active manipulation, detection, and characterization of biological fluids with BIOLOGICAL INTELLIGENCE volumes more than a million times smaller than a single drop of blood. At the heart of Overview pages 14–15 the Biofluidic Intelligent Processor are molecular gates with active areas not much Gary S. Dell and William T. Greenough, Co-chairs larger than transistors in microprocessors. The molecular gates can intelligently sepa- Highlights pages 16–20 rate specific components, passing the rest, concentrating them in attoliter volumes, HUMAN-COMPUTER INTELLIGENT INTERACTION then digitally tagging them for detection. As digitizing electronics has permitted com- Overview pages 22–23 Thomas S. Huang and Arthur F. Kramer, Co-chairs plex operations to be processed, digitizing molecular fluid flow can potentially solve the Highlights pages 24–28 daunting challenges posed by trace levels of extraordinarily lethal toxins.