Advanced Nuclear Energy Need, Characteristics, Projected Costs, and Opportunities Image Credit: Third Way/Gensler”

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Nuclear Energy Need, Characteristics, Projected Costs, and Opportunities Image Credit: Third Way/Gensler” April 2018 Advanced Nuclear Energy Need, Characteristics, Projected Costs, and Opportunities Image credit: Third Way/Gensler” Advanced Nuclear Energy: Acknowledgements Need, Characteristics, Projected Costs, and Opportunities Clean Air Task Force would like to acknowledge the contributions of Michael J. Ford, Eric Ingersoll, Andrew Foss, and John Herter to the content April 2018 of this report. © 2018 Clean Air Task Force All errors are the responsibility of Clean Air Task Force. All Rights Reserved. DISCLAIMER Company profiles in Appendix A were compiled from publicly available information. The state of the industry is evolving rapidly, so the information may become obsolete or out of date as time www.catf.us goes on. Please verify information from contemporary sources. 114 State Street, 6th Floor Boston, MA 02109 This report is available online at: http://www.catf.us/publications/files/Advanced_ Nuclear_Energy.pdf DESIGN David Gerratt/NonProfitDesign.com COVER PHOTO Artist’s depiction of small modular nuclear units and solar panels powering a data center with consistent zero carbon energy. © Third Way/Gensler ADVANCED NUCLEAR ENERGY 1 Contents 1. Executive Summary ................................................................................................2 2. Why Advanced Nuclear Energy? ..............................................................................5 3. Characteristics of Advanced Reactors .....................................................................8 Safety ....................................................................................................................8 Siting/Deployment ................................................................................................10 Waste and Waste Management ..............................................................................10 Proliferation Risk and Physical Protection ................................................................11 Hybrid/Non-electric applications/Load Following ......................................................12 4. Costs and Timing of Advanced Nuclear Energy .......................................................14 Cost Reduction Potential: Overview .........................................................................15 Cost Reduction Opportunities: A Close-up ...............................................................16 5. Technical Challenges and Opportunities ................................................................26 6. Institutional Obstacles and Policy Approaches to Licensing, Demonstration, and Diffusion ........................................................................................................21 7. Conclusion ...........................................................................................................23 Appendix A: Profiles of Representative Advanced Nuclear Energy Companies .........24 Appendix B: Table of Representative Advanced Nuclear Organizations/Technologies ..................................................................................40 Appendix C: Definitions .........................................................................................42 2 CLEAN AIR TASK FORCE CHAPTER 1 Executive Summary or nuclear energy to play a meaningful While new water-cooled technologies can have role in a high-energy, low-carbon future, some of these features, non-water based tech- we must fundamentally transform the way nologies ultimately offer the greatest chance nuclear reactors work, how they are built, of achieving more of these objectives. Fand what they cost. To serve rapidly escalating “Advanced” does not necessarily mean climate change mitigation and energy needs in “small.” Advanced reactor designs range in size the next few decades, nuclear plants must be from 1 MWe to 1,000 MWe or more. More often competitive on price with coal and gas; deploy- manufacturability, rather than size, radically able as fast as coal plants or faster; and suitable lowers costs and reduces construction times. for operation in developing countries that lack significant pre-existing nuclear capabilities. How do advanced reactors achieve these desired attributes? Characteristics of Advanced Nuclear Energy • Safety. Cooling water was a common denomi- Advanced nuclear energy includes technologies nator of the Three Mile Island, Chernobyl, and using a reactor or fuel cycle that offer many of Fukushima accidents. By using non-water cool- these features: ants, the likelihood of an unsafe temperature • Substantially lower capital and/or operational or pressure event is substantially reduced. costs than existing plants Some designs, such as certain molten salt • Reduced material inputs reactors, incorporate such fail-safe features as plugs that dissolve should temperatures • Manufacturability or rapid deployment capability in the fuel core rise, draining the fuel into • Passive safety systems and inherent safety an isolated underground chamber. strategies • Waste Management. Light-water reactors use • Ease of operation and maintenance less than 5% of the energy value of their fuel, • Reduced emergency planning zones leaving 95% as waste. Many advanced reactors, operating on the fast neutron spectrum, can • Reduced offsite impact during an accident use up to 95% of the energy value of the fuel, and increased flexibility/scalability of siting leaving a much lower waste volume. Moreover, • Increased proliferation resistant, decreased the remaining wastes are far less persistent, waste production and/or actinide management with toxicity half lives of hundreds, rather than capacity, and more efficient use of fuel tens of thousands, of years. These waste forms, resources rather than requiring geological isolation for • Hybrid generation adaptability (e.g. hydrogen millennia, would need only to be contained for production, desalination, etc.) and/or load several hundred years and could thus be housed following and monitored in man-made containers. ADVANCED NUCLEAR ENERGY 3 Artist’s depiction of a large advanced nuclear power plant paired with desalination to provide power, water, and economic growth in an arid part of the developing world. © Third Way/Gensler • Weapons Proliferation and Physical Protection. more important as increasing amounts of As with current reactors, there is always some wind and solar energy are added to global grids. risk of diversion of nuclear material for illicit And because many advanced reactors produce purposes. A potential benefit of advanced much higher temperature heat, they can substi- reactors is that many designs use fuels and tute for process heat in the chemical, refining, produce waste streams that are less desirable food processing, and steel industries—whose for diversion—first, because many advanced heat use from fossil fuels accounts for more fuels are not readily accessed (e.g. the fuels than 10% of global energy CO2 emissions— are contained in sealed cores that are designed as well as displace boilers in existing coal so as not to be opened in the host country) plants. (Higher temperature output also and second, because waste streams are often enables much more efficient power conver- much smaller due to high burnup of fissile sion processes such as the Brayton Cycle.) material during operation. Ongoing efforts in • Capital Cost. Less than 20% of the costs this area by the Gen IV Forum Working Group of a conventional light water nuclear plant are on Proliferation Resistance and Physical Protec- connected to the cost of the nuclear reactor tion to quantify and assess “safeguardability” itself and power production equipment. Most must continue apace and must be factored into of the cost comes from the construction of any regulatory and licensing effort. Safeguards large containment structures, cooling equip- compatibility should be a priority in the design ment, site infrastructure, and financing costs of advanced reactors. for lengthy construction periods that typically • Multiple applications. Today’s nuclear power last four to five years or more (as compared with plants are best at producing electricity in base- months to two years for a gas or coal plant). load operation. But many advanced reactors Advanced reactors address the cost issues are more versatile and can more easily cycle in two ways. First, by using coolants with differ- to match fluctuating load, which may become ent characteristics and using inherent safety 4 CLEAN AIR TASK FORCE strategies, the need for large pressurized con- • Improve regulatory process and regulator tainment and redundant cooling equipment is experience. In addition to common standards, eliminated or reduced, decreasing total plant regulatory processes must be developed and mass of concrete and steel by as much as two expertise and experience built within regulatory thirds. Second, by reducing the complexity and agencies. Standards should be risk informed size of the on-site structures needed, most of and nonprescriptive, allowing for phased licens- the advanced plants can be built in a factory or ing of new reactor designs rather than “all or shipyard and delivered to a site. This can re- nothing” commitments that may deter invest- duce construction times by half or better, avoid- ment. Programs will be needed to eventuate ing two years or more of plant financing costs, depth and expertise for an expansion of which can in turn result in substantial savings. advanced reactor regulatory oversight and A recent survey of a dozen advanced reactor encourage an international effort to build train- developers
Recommended publications
  • Bringing American Ingenuity to a Global Nuclear Sector
    TERRAPOWER: BRINGING AMERICAN INGENUITY TO A GLOBAL NUCLEAR SECTOR TerraPower, LLC is a nuclear innovation company headquartered in Bellevue, Washington. The company originated with Bill Gates and a group TerraPower Fast Facts of like-minded visionaries who evaluated the fundamental challenges to Founded: 2008 raising living standards around the world. They recognized energy access was crucial to the health and economic well-being of communities and decided Location: Bellevue, Washington that the private sector needed to act and create energy sources that would advance global development. Full-time employees: 150 Now marking more than 10 years of innovation, TerraPower continues to Supply chain: 80+ contracts worldwide grow and diversify. The multidisciplinary team of approximately 150 full-time Products: professionals has made progress on advanced reactor designs, modeling Traveling Wave Reactor interfaces and future isotope applications. Their dedication and talent help Molten Chloride Fast Reactor TerraPower pursue its vision to be a world leader in new nuclear technologies Medical Radiochemistry Applications that bring the world sustainable, affordable and safe energy, and other high- Innovative Industrial Applications benefit products. The company has put together an impressive aggregate of American suppliers, universities, laboratories and consultants. These partnerships yield significant breakthroughs and shape the foundation of modern supply chains that use nuclear science and technology to the benefit of humanity. GENERATE INITIATE ESTABLISH REFINE DEVELOP DEPLOY IDEAS DESIGN STRATEGIC PARTNERSHIPS CONCEPT PRODUCT ACADEMIA GOVERNMENT PRIVATE SECTOR CREATING A CULTURE THAT INNOVATES TerraPower’s agile business approach leverages the world’s best capabilities and expertise to design and develop nuclear science and technology. Private-sector management, flexibility, funding and efficiency enable TerraPower to accelerate its product deployment.
    [Show full text]
  • Small Modular Reactor Design and Deployment
    INL/MIS-15-34247 Small Modular Reactor Design and Deployment Curtis Wright Symposium xx/xx/xxxx www.inl.gov INL SMR Activities • INL works with all vendors to provide fair access to the laboratory benefits • INL works with industry on SMR technology and deployment • INL is supporting multiple LWR SMR vendors – Small, <300MWe reactors and less expensive reactors compared to current LWR reactors (Small) – Often, but not always, multiple reactors at the same site that can be deployed as power is needed (Modular) – Primary cooling system and reactor core in a single containment structure, but not always (Reactors) – Factory built, usually, which improves quality and costs • Integrated PWR SMR’s are closest to deployment – designed to be inherently safer and simple – primary reactor system inside a single factory built containment vessel – Higher dependence on passive systems to simplify operation and design Reactor Power Nuclear Plant Power Los Angeles Class Submarine -26 MW 5000 Enterprise Class Aircraft Carrier 8x 4000 Unit Power Nimitz Class Aircraft Carrier 2x97MW, 194MW 3000 Plant Power NuScale Reactor 12 x 150MW, 1800MW 2000 Cooper BWR, 1743MW PowerThermal MW 1000 Westinghouse AP-1000, 3000MW 0 European Pressurized Reactor, 4953MW SMRs are Smaller VC Summer • Power less than 300MWe. Dearater – Current Plants 1000MWe – Physically smaller – Fewer inputs – Fits on power grid with less infrastructure – Built in a factory – Simplified designs VC Summer • Passive systems Core • Fewer components NuScale Reactor Multiple Units • SMR Nuclear
    [Show full text]
  • Analysis on the Thermal Striping and Thermal Shock of the Lower Head of Central Measuring Shroud in a Fast Reactor
    Transactions, SMiRT-25 Charlotte, NC, USA, August 4-9, 2019 Division III Analysis on the Thermal Striping and Thermal Shock of the Lower Head of Central Measuring Shroud in a Fast Reactor Zheng Shu 1, Lu Daogang 1, Cao Qiong 1 1School of Nuclear Science and Engineering, Beijing Key Laboratory of Passive Nuclear Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206, China ([email protected]) ABSTRACT The central measuring shroud, as an important in-vessel component, contains the conduits of control rod and a variety of measuring equipment. The distance between the core outlet and the lower head of central measuring shroud (LHCMS), which is located above the core outlet, is only 500mm. Therefore, the LHCMS is affected by the core coolant for a long period, especially the temperature effects of the following two types. Firstly, under the operating condition of the sodium-cooled fast reactor, the uneven distribution of the core power causes the phenomenon of thermal striping, which may cause large stress. In addition, under the scram condition, the coolant temperature at the core outlet is sharply reduced due to the decrease of the core power, inducing the phenomenon of thermal shock that may induce large stress. Therefore, stress analysis of the LHCMS under the operating condition and scram condition is very necessary. In the paper, the simulation first established the finite element model of the LHCMS, and then calculated the thermal stress of the LHCMS according to the temperature fluctuation curve and the scram temperature curve. The results show that the temperature field under thermal shock changes dramatically with time, while the temperature field under thermal striping changes relatively slowly with time.
    [Show full text]
  • Security Operational Skills 2 (Tracing).P65
    Unit - 4 K Operating Skill for handling Natural Disasters Structure 4.1 Objectives 4.2 Introduction 4.3 Operating Skill for natural and nuclear disasters 4.4 Accident Categories 4.5 Nuclear and radiation accidents and incidents 4.6 Geological disasters 4.7 Operating Skills for handling Mines and other Explosive Devices 4.8 Operating Skills for handing hijacking situation (other than an airline hijacking 4.9 Operating skills for antivehicle theft operations 4.10 Operating skills for facing a kidnapping or hostage situation 4.11 Operating Skill for handling coal mines and other explosive devices 4.12 Hostage Rights : Law and Practice in Throes of Evolution 4.12.1 Terminology 4.13 Relative Value of Rights 4.14 Conflict of Rights and Obligations 4.15 Hong Kong mourns victims of bus hijacking in the Philoppines 4.16 Rules for Successful Threat Intelligence Teams 4.16.1 Tailor Your Talent 4.16.2 Architect Your Infrastructure 4.16.3 Enable Business Profitability 4.16.4 Communicate Continuously 4.17 Construction Safety Practices 4.17.1 Excavation 4.17.2 Drilling and Blasting 4.17.3 Piling and deep foundations 234 4.18 Planning 4.18.1 Steps in Planning Function 4.18.2 Characteristics of planning 4.18.3 Advantages of planning 4.18.4 Disadvantages of planning 4.1 Objectives The following is a list of general objectives departments should consider when creating an Information Disaster Prevention and Recovery Plan: O Ensure the safety of all employees and visitors at the site/facility O Protect vital information and records O Secure business sites
    [Show full text]
  • Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates
    PNNL-25978 Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates November 2016 SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) DISCLAIMER NOTICE This report was prepared under contract with the U.S. Department of Energy (DOE), as an account of work sponsored by Alberta Innovates (“AI”). Neither AI, Pacific Northwest National Laboratory (PNNL), DOE, the U.S. Government, nor any person acting on their behalf makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by AI, PNNL, DOE, or the U.S. Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of AI, PNNL, DOE or the U.S. Government. Deployability of Small Modular Nuclear Reactors for Alberta Applications SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) November 2016 Prepared for Alberta Innovates (AI) Pacific Northwest National Laboratory Richland, Washington 99352 Executive Summary At present, the steam requirements of Alberta’s heavy oil industry and the Province’s electricity requirements are predominantly met by natural gas and coal, respectively. On November 22, 2015 the Government of Alberta announced its Climate Change Leadership Plan to 1) phase out all pollution created by burning coal and transition to more renewable energy and natural gas generation by 2030 and 2) limit greenhouse gas (GHG) emissions from oil sands operations.
    [Show full text]
  • WHAT WILL ADVANCED NUCLEAR POWER PLANTS COST? a Standardized Cost Analysis of Advanced Nuclear Technologies in Commercial Development
    WHAT WILL ADVANCED NUCLEAR POWER PLANTS COST? A Standardized Cost Analysis of Advanced Nuclear Technologies in Commercial Development AN ENERGY INNOVATION REFORM PROJECT REPORT PREPARED BY THE ENERGY OPTIONS NETWORK TABLE OF CONTENTS Executive Summary 1 1. Study Motivation and Objectives 6 Why Care about Advanced Nuclear Costs? 7 Origins of This Study 8 A Standardized Framework for Cost Analysis 8 2. Results 9 3. Study Methodology 14 EON Model 15 Company Preparedness and Strategies 19 Limits of This Analysis 20 Certainty Levels for Advanced Nuclear Cost Estimates 20 Realistic Considerations That May Influence Cost 21 4. Advanced Nuclear’s Design and Delivery Innovations 22 Context: The Cost of Conventional Nuclear 23 Design Considerations for Conventional Nuclear Reactors 24 Safety Enhancements of Advanced Nuclear 24 Overview of Reactor Designs 25 Delivery Issues with Conventional Nuclear Power 27 Innovations in the Delivery of Advanced Nuclear Technologies 28 Design Factors That Could Increase Advanced Nuclear Costs 30 5. Conclusions 31 6. References 32 Appendix A: Nuclear Plant Cost Categories 34 Appendix B: Operating Costs for a Nuclear Plant 35 Appendix C: Cost Category Details and Modeling Methodology 36 Appendix D: External Expert Review of Draft Report 43 THE FUTURE OF NUCLEAR TECHNOLOGY: A STANDARDIZED COST ANALYSIS EXECUTIVE SUMMARY Advanced nuclear technologies are controversial. Many people believe they could be a panacea for the world’s energy problems, while others claim that they are still decades away from reality and much more complicated and costly than conventional nuclear technologies. Resolving this debate requires an accurate and current understanding of the increasing movement of technology development out of national nuclear laboratories and into private industry.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • Licensing Small Modular Reactors an Overview of Regulatory and Policy Issues
    Reinventing Nuclear Power Licensing Small Modular Reactors An Overview of Regulatory and Policy Issues William C. Ostendorff Amy E. Cubbage Hoover Institution Press Stanford University Stanford, California 2015 Ostendorff_LicensingSMRs_2Rs.indd i 6/10/15 11:15 AM The Hoover Institution on War, Revolution and Peace, founded at Stanford University in 1919 by Herbert Hoover, who went on to become the thirty-first president of the United States, is an interdisciplinary research center for advanced study on domestic and international affairs. The views expressed in its publications are entirely those of the authors and do not necessarily reflect the views of the staff, officers, or Board of Overseers of the Hoover Institution. www.hoover.org Hoover Institution Press Publication Hoover Institution at Leland Stanford Junior University, Stanford, California 94305-6003. Copyright © 2015 by the Board of Trustees of the Leland Stanford Junior University The publisher has made this work available under a Creative Commons Attribution-NoDerivs license 3.0. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0. Efforts have been made to locate the original sources, determine the current rights holders, and, if needed, obtain reproduction permissions. On verification of any such claims to rights in illustrations or other elements reproduced in this essay, any required corrections or clarifications will be made in subsequent printings/editions. Hoover Institution Press assumes no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.
    [Show full text]
  • "U.S. Nuclear Energy Leadership: Innovation and the Strategic Global Challenge." (Pdf)
    US Nuclear Energy Leadership: Innovation and the Strategic Global Challenge US Nuclear Energy Leadership: Innovation And The Strategic Global Challenge Report of the Atlantic Council Task Force on US Nuclear Energy Leadership Honorary Co-Chairs Senator Mike Crapo Senator Sheldon Whitehouse Rapporteur Dr. Robert F. Ichord, Jr. Co-Directors Randolph Bell Dr. Jennifer T. Gordon Ellen Scholl ATLANTIC COUNCIL 1 US Nuclear Energy Leadership: Innovation and the Strategic Global Challenge 2 ATLANTIC COUNCIL US Nuclear Energy Leadership: Innovation and the Strategic Global Challenge US Nuclear Energy Leadership: Innovation And The Strategic Global Challenge Report of the Atlantic Council Task Force on US Nuclear Energy Leadership Honorary Co-Chairs Senator Mike Crapo Senator Sheldon Whitehouse Rapporteur Dr. Robert F. Ichord, Jr. Co-Directors Randolph Bell Dr. Jennifer T. Gordon Ellen Scholl ISBN-13: 978-1-61977-589-3 Cover: A US flag flutters in front of cooling towers at the Limerick Generating Station in Pottstown, Penn- sylvania May 24, 2006. US President George W. Bush briefly toured the nuclear facility and spoke about energy and the economy. Source: REUTERS/Kevin Lamarque. This report is written and published in accordance with the Atlantic Council Policy on Intellectual Independence. The authors are solely responsible for its analysis and recommendations. The Atlantic Council and its donors do not determine, nor do they necessarily endorse or advocate for, any of this report’s conclusions. May 2019 ATLANTIC COUNCIL I US Nuclear Energy Leadership: Innovation and the Strategic Global Challenge II ATLANTIC COUNCIL US Nuclear Energy Leadership: Innovation and the Strategic Global Challenge TABLE OF CONTENTS STATEMENT BY HONORARY CO-CHAIRS 2 TASK FORCE MEMBERS AND ACKNOWLEDGMENTS 3 EXECUTIVE SUMMARY 4 I.
    [Show full text]
  • 2021 Terrapower Public Letterhead
    June 8, 2021 TP-LIC-LET-0005 Project Number 99902087 U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 ATTN: Document Control Desk Subject: Regulatory Engagement Plan for the Natrium™ Reactor This letter transmits the TerraPower, LLC (TerraPower) Regulatory Engagement Plan. The plan is provided for information and outlines proposed interactions with the U.S. Nuclear Regulatory Commission (NRC) associated with the Natrium™ Reactor. The Natrium design is a TerraPower and GE-Hitachi technology. The Regulatory Engagement Plan for the Natrium Reactor, Enclosure 1, includes anticipated future dates for interactions or submittals, changes will be communicated to the NRC in advance. If you have any questions regarding this submittal, please contact Ryan Sprengel at [email protected] or (425) 324-2888. Sincerely, Ryan Sprengel License Application Development Manager TerraPower, LLC Enclosure: 1. Natrium Reactor Regulatory Engagement Plan cc: William Kennedy, NRC Mallecia Sutton, NRC 15800 Northup Way, Bellevue, WA 98008 www.TerraPower.com P. +1 (425) 324-2888 F. +1 (425) 324-2889 ENCLOSURE 1 Regulatory Engagement Plan for the Natrium Reactor Controlled Document - Verify Current Revision PLAN Document Number: NATD-LIC-PLAN-0001 Revision: 0 Document Title: Regulatory Engagement Plan for the Natrium Reactor Engineering Functional Area: Licensing N/A Discipline: Effective Date: 6/7/2021 Released Date: 6/7/2021 Page: 1 of 17 Approval Title Name Signature Date Originator, License Application Development Ryan Sprengel Electronically Signed in Agile 6/7/2021 Manager Reviewer, Director George Wilson Electronically Signed in Agile 6/7/2021 Regulatory Affairs Approver, Project Director Natrium Demonstration Tara Neider Electronically Signed in Agile 6/7/2021 Reactor ☒ Export Controlled Content: Yes ☐ No ☒ QA Related: Yes ☐ No QA Criterion: N/A SUBJECT TO DOE COOPERATIVE AGREEMENT NO.
    [Show full text]
  • Status of Small and Medium Sized Reactor Designs
    STATUS OF SMALL AND MEDIUM SIZED REACTOR DESIGNS A Supplement to the IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org @ September 2012 STATUS OF SMALL AND MEDIUM SIZED REACTOR DESIGNS A Supplement to the IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org FOREWORD There is renewed interest in Member States grids and lower rates of increase in demand. in the development and application of small They are designed with modular technology, and medium sized reactors (SMRs) having an pursuing economies of series production, factory equivalent electric power of less than 700 MW(e) fabrication and short construction times. The or even less than 300 MW(e). At present, most projected timelines of readiness for deployment new nuclear power plants under construction of SMR designs generally range from the present or in operation are large, evolutionary designs to 2025–2030. with power levels of up to 1700 MW(e), The objective of this booklet is to provide building on proven systems while incorporating Member States, including those considering technological advances. The considerable initiating a nuclear power programme and those development work on small to medium sized already having practical experience in nuclear designs generally aims to provide increased power, with a brief introduction to the IAEA benefits in the areas of safety and security, non- Advanced Reactors Information System (ARIS) proliferation, waste management, and resource by presenting a balanced and objective overview utilization and economy, as well as to offer a of the status of SMR designs. variety of energy products and flexibility in This report is intended as a supplementary design, siting and fuel cycle options.
    [Show full text]
  • Global Nuclear Markets – Market Arrangements and Service Agreements
    INL/EXT-16-38796 Global Nuclear Markets – Market Arrangements and Service Agreements Brent Dixon Leilani Beard June 2016 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. INL/EXT-16-38796 Global Nuclear Markets – Market Arrangements and Service Agreements Brent Dixon Leilani Beard June 2016 Idaho National Laboratory Nuclear Systems Design & Analysis Division Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Office of Energy Policy and Systems Analysis Under U.S. Department of Energy-Idaho Operations Office Contract DE-AC07-05ID14517 Forward The U.S. Department of Energy’s Office of Energy Policy and Systems Analysis (EPSA) requested an assessment of global nuclear markets, including the structure of nuclear companies in different countries and the partnerships between reactor vendors and buyers.
    [Show full text]