Preliminary Quantitative Feasibility Analysis of Proposed Thorium-Based Nuclear Reactor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molten Salt Reactor: Sustainable and Safe Reactor for the Future?
WIR SCHAFFEN WISSEN –HEUTE FÜR MORGEN Jiří Křepel :: MSR activity coordinator :: Paul Scherrer Institut Molten Salt Reactor: sustainable and safe reactor for the future? NES colloquium 14.09.2016 [email protected] INTRODUCTION Page 2 History of Molten Salt Reactor (MSR) Illustration, not MSR started at Oak Ridge National Laboratory 1950s • Aircraft Reactor Experiment (ARE)* 1960s • Molten Salt Reactor Experiment (MSRE)* 1970s • Molten Salt Breeder Reactor (MSBR)* 1970s • EIR (PSI) study (report nr. 411, 1975) fast spectrum, chlorides 1980s • Denatured Molten Salt Reactor (DMSR)* * ORNL <= <= <= Page 3 History of MSR: revival 100 90 80 1990s • Accelerator-driven transmutation 70 keff=0.95 [mA] of Nuclear Waste - ATW (LANL) 60 keff=0.97 curent 2000s • Generation IV, Amster, Sphinx, … 50 keff=0.98 40 2010s • MSFR, Mosart, … fast spectrum, fluorides Accelerator 30 keff=0.99 FHR (fluorides cooled HTR) 20 keff=0.995 2015+ • MCFR, Breed & Burn (TerraPower, PSI, …) 10 keff=0.997 WR at PSI 2.3mA 0 keff=1 fast spectrum, chlorides 0 0.5 1 1.5 2 2.5 3 3.5 ADS reactor power [GWth] <= <= <= Page 4 Classification of MSR MSR is a class of reactors with two groups Type of: Molten salt Application Molten salt fueled reactors cooled reactors Reactor Thermal reactors Fast reactors Fission reactors Fusion reactors Salt Fluorides Fluorides or Chlorides Fluorides Fluorides Core Graphite moderated “Empty” cylinder Graphite based fuel Blanket of the core (ZrH, H2O, D2O, Be, … (TRISO particles) (coolant and/or needs barrier) tritium production) Page 5 Anions in the salts Fluorides Chlorides 19 35 37 100% F 76% Cl + 24% Cl ] 1000 ‐ 1 [ 35Cl 37Cl 19F 0.1 100 interaction 0.01 [b] per XS 10 0.001 Total 0.0001 probabilty 1 0.00001 Capture 35Cl 37Cl 19F 0.1 0.000001 0.001 0.1 10 1000 100000 10000000 0.001 0.1 10 1000 100000 10000000 Incident neutron energy [eV] Incident neutron energy [eV] Number of collision to slow-down fast neutron (2MeV->1eV) 19F 35Cl 37Cl 142 (+big inelastic XS) 258 273 For instance: Iodine as the fission product is the next possible anion. -
The Potential Impact of Molten Salt Reactors on the UK Electricity Grid
The Potential Impact of Molten Salt Reactors on the UK Electricity Grid Charles Denbowa,b, Niccolo` Le Bruna, Niall Mac Dowella, Nilay Shaha, Christos N. Markidesa aDepartment of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ bDepartment of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ Abstract The UK electricity grid is expected to supply a growing electricity demand and also to cope with electricity generation variability as the country pursues a low-carbon future. Molten Salt Reactors (MSRs) could offer a solution to meet this demand thanks to their estimated low capital costs, low operational risk, and promise of reliably dispatchable low-carbon electricity. In the published literature, there is little emphasis placed on estimating or modelling the future impact of MSRs on electricity grids. Previous modelling efforts were limited to quantifying the value of renewable energy sources, energy storage and carbon capture technologies. To date, no study has assessed or modelled MSRs as a competing power generation source for meeting decarbonization targets. Given this gap, the main objective of this paper is to explore the cost benefits for policy makers, consumers and investors when MSRs are deployed between 2020 and 2050 for electricity generation in the UK. This paper presents results from electricity systems optimization (ESO) modelling of the costs associated with the deployment of 1350 MWe MSRs, from 2025 onwards to 2050, and compares this against a UK grid with no MSR deployment. Results illustrate a minimum economic benefit of £1.25 billion for every reactor installed over this time period. Additionally, an investment benefit occurs for a fleet of these reactors which have a combined net present value (NPV) of £22 billion in 2050 with a payback period of 23 years if electricity is sold competitively to consumers at a price of £60/MWh. -
Economics and Finance of Molten Salt Reactors
Progress in Nuclear Energy 129 (2020) 103503 Contents lists available at ScienceDirect Progress in Nuclear Energy journal homepage: http://www.elsevier.com/locate/pnucene Economics and finance of Molten Salt Reactors Benito Mignacca, Giorgio Locatelli * University of Leeds, School of Civil Engineering, Leeds, United Kingdom ARTICLE INFO ABSTRACT Keywords: There is a long-standing and growing interest in Molten Salt Reactors (MSRs) mainly because of their potential Molten salt reactor advantages in terms of safety, sustainable fuel cycle, and the high melting and boiling points of salt which allow Economics operations at high temperatures and atmospheric pressure with potential merits in terms of cost. A key objective Finance of MSRs is to have a life-cycle cost advantage over other energy sources. Leveraging a systematic literature LCOE review, this paper firstly provides an overview of “what we know” about MSR economics and finance following Modularisation “ ” GEN IV reactor two main streams: scientific and industrial literature. Secondly, this paper highlights what we should know about the economics and financeof MSRs, suggesting a research agenda. The literature is very scarce and focuses on MSR overnight capital cost estimations and the comparison between MSR cost of electricity and other energy sources. Cost estimations need to be more transparent and independently assessed. Furthermore, there is no peer- reviewed literature on MSR financing, only claims from vendors. 1. Introduction - SCWR (Supercritical-Water-cooled Reactor) is a thermal/fast reactor technology cooled by supercritical water. It is considered as an The evolution of Nuclear Power Plants (NPPs) is usually divided into evolution of the actual boiling water reactor because of its compa four generations (GIF, 2014): rable plant layout and size, same coolant and identical main appli cation, i.e. -
WHAT WILL ADVANCED NUCLEAR POWER PLANTS COST? a Standardized Cost Analysis of Advanced Nuclear Technologies in Commercial Development
WHAT WILL ADVANCED NUCLEAR POWER PLANTS COST? A Standardized Cost Analysis of Advanced Nuclear Technologies in Commercial Development AN ENERGY INNOVATION REFORM PROJECT REPORT PREPARED BY THE ENERGY OPTIONS NETWORK TABLE OF CONTENTS Executive Summary 1 1. Study Motivation and Objectives 6 Why Care about Advanced Nuclear Costs? 7 Origins of This Study 8 A Standardized Framework for Cost Analysis 8 2. Results 9 3. Study Methodology 14 EON Model 15 Company Preparedness and Strategies 19 Limits of This Analysis 20 Certainty Levels for Advanced Nuclear Cost Estimates 20 Realistic Considerations That May Influence Cost 21 4. Advanced Nuclear’s Design and Delivery Innovations 22 Context: The Cost of Conventional Nuclear 23 Design Considerations for Conventional Nuclear Reactors 24 Safety Enhancements of Advanced Nuclear 24 Overview of Reactor Designs 25 Delivery Issues with Conventional Nuclear Power 27 Innovations in the Delivery of Advanced Nuclear Technologies 28 Design Factors That Could Increase Advanced Nuclear Costs 30 5. Conclusions 31 6. References 32 Appendix A: Nuclear Plant Cost Categories 34 Appendix B: Operating Costs for a Nuclear Plant 35 Appendix C: Cost Category Details and Modeling Methodology 36 Appendix D: External Expert Review of Draft Report 43 THE FUTURE OF NUCLEAR TECHNOLOGY: A STANDARDIZED COST ANALYSIS EXECUTIVE SUMMARY Advanced nuclear technologies are controversial. Many people believe they could be a panacea for the world’s energy problems, while others claim that they are still decades away from reality and much more complicated and costly than conventional nuclear technologies. Resolving this debate requires an accurate and current understanding of the increasing movement of technology development out of national nuclear laboratories and into private industry. -
Stable Salt Reactors
Stable Salt Reactors A new platform technology in nuclear fission October 15th, 2020 Ian Scott, M.A., Ph.D., Chairman and Chief Scientist Moltex Energy Ltd 13 The Courtyard Timothy’s Bridge Road Stratford-upon-Avon Warwickshire United Kingdom CV37 9NP [email protected] www.moltexenergy.com Moltex mission • To reduce the cost of nuclear fission energy so that it economically beats burning coal and gas and the world is powered with renewables and nuclear 2 Copyright @ 2020 Moltex Energy Ltd www.moltexenergy.com The real challenge for nuclear • Nuclear energy with low enough capital and fixed operating costs to be profitable at 30-50% capacity factor in unsubsidised competition with fossil fuels • Radical innovation needed to slash costs of nuclear • SSR achieves that cost objective, comfortably, through a single minded focus on intrinsic safety and simplicity 3 Copyright @ 2020 Moltex Energy Ltd www.moltexenergy.com Two ways to use molten salt fuel Conventional MSRs Stable Salt Reactor platform Heat exchanger Reaction chamber Emergency dump tank • Intensely radioactive fuel salt pumped at • Fuel salt placed in fuel assemblies pressure round an engineered system which • New concept, patent now granted worldwide can never be approached by a human being 4 Copyright @ 2020 Moltex Energy Ltd www.moltexenergy.com Why is this a new idea? • “Static” molten salts in fuel pins Aircraft reactor experiment which led rejected by ORNL because to molten salt reactor experiment convection of fluids would be unreliable in an aircraft – but convection -
A Comparison of Advanced Nuclear Technologies
A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department. -
Advances in Small Modular Reactor Technology Developments
Advances in Small Modular Reactor Technology Developments Advances in Small Modular Reactor Technology Developments Technology in Small Modular Reactor Advances A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2018 Edition For further information: Nuclear Power Technology Development Section (NPTDS) Division of Nuclear Power IAEA Department of Nuclear Energy International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Telephone: +43 1 2600-0 Fax: +43 1 2600-7 Email: [email protected] Internet: http://www.iaea.org Printed by IAEA in Austria September 2018 18-02989E ADVANCES IN SMALL MODULAR REACTOR TECHNOLOGY DEVELOPMENTS 2018 Edition A Supplement to: IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org DISCLAIMER This is not an official IAEA publication. The material has not undergone an official review by the IAEA. The views expressed do not necessarily reflect those of the International Atomic Energy Agency or its Member States and remain the responsibility of the contributors. Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. -
Breakthrough Institute How to Make Nuclear Cheap
HOW TO MAKE NUCLEAR CHEAP July 2013 SAFET Y, READINESS, MODULARIT Y, and EFFICIENCY TED NORDHAUS, JESSICA LOVERING, AND MICHAEL SHELLENBERGER HOW TO MAKE NUCLEAR CHEAP SAFETY, READINESS, MODULARITY, and EFFICIENCY TED NORDHAUS, JESSICA LOVERING, AND MICHAEL SHELLENBERGER THE BREAKTHROUGH INSTITUTE | JULY 2013 ACKNOWLEDGMENTS The Breakthrough Institute would like to thank the following people for their contri - bu tions to this report. All opinions expressed herein are those of the Break through Institute and do not necessarily reflect the opinions of the individuals below. Joseph Chaisson, Research and Technical Director, Clean Air Task Force Armond Cohen, Executive Director, Clean Air Task Force Ashley Finan, Senior Project Manager for Energy Innovation, Clean Air Task Force Richard Lester, Japan Steel Industry Professor and Head of the Department of Nuclear Science and Engineering at the Massachusetts Institute of Technology Mark Lynas, journalist and visiting research associate, Oxford University’s School of Geography and the Environment Charles Peterson, Partner, Energy Section, Pillsbury Law Per Peterson, William and Jean McCallum Floyd Endowed Chair, Department 4 of Nuclear Engineering, University of California, Berkeley Burton Richter, Paul Pigott Professor in the Physical Sciences, Stanford University, and Director Emeritus at the Stanford Linear Accelerator Center Ray Rothrock, Partner, Venrock Jim Swartz, Accel Partners Special thanks to Brian Sergi for preliminary research performed during the 2012 Breakthrough Generation Fellowship program. About the Authors Ted Nordhaus and Michael Shellenberger are cofounders of the Breakthrough Institute, where they are Chairman and President, respectively. They are coauthors of Break Through: From the Death of Environmentalism to the Politics of Possibility as well as dozens of essays and reports on energy, climate change, and the environment. -
Molten Salt Reactors
1 Molten Salt Reactors Thomas J. Dolan, Member, IEEE Fig. 1. MSRE core. Liquid fuel flowed upwards through Abstract— Nuclear power is advancing slowly because of public channels in the graphite. [ORNL] concerns about nuclear accidents, radioactive waste, fuel supply, cost, and nuclear proliferation. The development of molten salt reactors could alleviate most of these concerns and prevent water-cooled The MSRE demonstrated that the issues of control, reactor accidents like those at Three Mile Island, Chernobyl, and pumping, heat removal, radioactivity containment, and Fukushima. The purpose of this article is to provide information about corrosion could be managed. Oak Ridge also designed a the potential advantages and problems of molten salt reactors. The coolants could be either fluorides or chlorides, operated above their Molten Salt Breeder Reactor (MSBR) that would produce melting temperatures, to avoid solidification, and well below their more fuel than it burned, using Flibe salt with dissolved ThF4 233 boiling temperatures, to prevent evaporation losses. “Fast” reactors use and UF4. It would have had a breeding ratio (BR) of 1.06 energetic fission neutrons, while “thermal” reactors use graphite to and a fuel doubling time of 22 years but funding was slow the neutrons down to thermal energies. We describe four reactor i types: solid fuel thermal, liquid fuel thermal, liquid fuel fast, and terminated in the 1970s. “stable salt” fast reactors (liquid fuel in tubes). We discuss load following, reactor design projects, and development problems. Liquid II. LIQUID AND SOLID FUEL MSRS fuel reactors will require a chemical processing plant to adjust fissile fuel inventory, fission products, actinides, and corrosivity in a hot, Neutrons emitted by fission start at high energies, called highly-radioactive environment. -
Two-Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor
ORNL/TM-2016/742 Two-Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor Benjamin R. Betzler, ORNL Jeffrey J. Powers, ORNL Andrew Worrall, ORNL Sean Robertson, TAP Leslie Dewan, TAP Mark Massie, TAP Approved for public release. Distribution is unlimited. January 15, 2017 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website: http://www.osti.gov/scitech/ Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: [email protected] Website: http://www.ntis.gov/help/ordermethods.aspx Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex- change representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone: 865-576-8401 Fax: 865-576-5728 E-mail: [email protected] Website: http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal lia- bility or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep- resents that its use would not infringe privately owned rights. -
“Advanced” Isn't Always Better
SERIES TITLE OPTIONAL “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors Edwin Lyman March 2021 © 2021 Union of Concerned Scientists All Rights Reserved Edwin Lyman is the director of nuclear power safety in the UCS Climate and Energy Program. The Union of Concerned Scientists puts rigorous, independent science to work to solve our planet’s most pressing problems. Joining with people across the country, we combine technical analysis and effective advocacy to create innovative, practical solutions for a healthy, safe, and sustainable future. This report is available online (in PDF format) at www.ucsusa.org/resources/ advanced-isnt-always-better and https:// doi.org/10.47923/2021.14000 Designed by: David Gerratt, Acton, MA www.NonprofitDesign.com Cover photo: Argonne National Laboratory/Creative Commons (Flickr) Printed on recycled paper. ii union of concerned scientists [ contents ] vi Figures, Tables, and Boxes vii Acknowledgments executive summary 2 Key Questions for Assessing NLWR Technologies 2 Non-Light Water Reactor Technologies 4 Evaluation Criteria 5 Assessments of NLWR Types 8 Safely Commercializing NLWRs: Timelines and Costs 9 The Future of the LWR 9 Conclusions of the Assessment 11 Recommendations 12 Endnotes chapter 1 13 Nuclear Power: Present and Future 13 Slower Growth, Cost and Safety Concerns 14 Can Non-Light-Water Reactors -
Utah Thorium Energy and Medical Isotopes
Utah Thorium Energy and Medical Isotopes Dr. Matthew J Memmott Brigham Young University November 16th 2016 2 Utah Winters… 3 Why Nuclear? • Massive Energy – 10,000,000 times chemical – 1 Uranium Pellet ( 7 gm): • 3.5 barrels of oil • 17,000 scf natural gas • 1800 lbs coal – Reliable • ~92% Capacity factor – Clean – No emissions! – Medicine • 99Mo, 131I, etc. – only come from nuclear reactors! 4 Widespread Uses • Medicine • 20M procedures a year in US – X-rays – Cancer Treatments – Diagnostics (PET, MRI, CTS) • Energy • 20% of the US electricity • No emissions • Lowest Death Rate Annual Death rates per TW*hr US Electricity • Reliable – runs 343 days/year Source Deaths Percentage Coal 161 39% Oil 36 1% • Research Natural Gas 4 27% Biofuel/Biomass 12 1.70% • Manufacturing Solar 0.83 0.40% Wind 0.15 4.40% Hydro 1.4 6% Nuclear 0.04 20% 5 Targeted Alpha Therapy 6 Two Nuclear Pathways • Light Water Reactor – Modified sub reactor – Requires lots of water – Pressurized – Weapons path - Pu • Molten Salt Reactor – No solid fuel – No high pressure – Coolant is Fl-Li-Be – No Weapons – 5-10 years operation 7 Molten Salt Reactor • Silicone chip vs. vacuum tube • 800+ ˚C • 44% efficiency • Medical isotopes AND electricity concurrently • Solves 3 nuclear problems 8 Safety 9 Waste 10 Reduce Proliferation Risk • Must produce (and gather) 241Pu, 239Pu, 235U, or 233U – 241Pu, 239Pu are never formed – 235U in very small amounts, rapidly fissioned – Lots of 233U, but • 233U is mixed with 232U • 232U is active gamma emitter • Gammas ruin bombs: – Harmful to handle